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Chapter 1

General Dynamical
Systems

In this chapter we recall basic concepts from the theory of dynamical
systems which will play an important role in the sequel. We also state
Birkhoff’s ergodic theorem and give a proof of the Koopman-von
Neumann theorem on weakly mixing systems.

1.1 Basic concepts
Let § = (Q,G,P,8;) be a dynamical system consisting of a probability

space (§2,G,P) and a group of invertible, measurable transformations
8;, t € R, from  into €, preserving measure P:

P(6;A) = P(A), for arbitrary A € G and t € R. (1.1.1)
The group 6;, t € R, induces a group of linear transformations

U;, t € R, either on the real Hilbert space H = L*(Q,G,P) or on
the complex Hilbert space H¢ = L4(Q,G,P), by the formula

Ui(w) = £(Ow), € € H (resp. (Hc)), w € Q, t € R. (1.1.2)

We shall denote by (:,-) the scalar product in H (resp. Hg). It is
clear that the operators U, t € R, are unitary and that U} = U_;,
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4 Chapter 1

since, by the invariance of P,

) = [ €bwinw) aw)

= [ €@in(6-w) Paw)
Q

= (&U_n), £ € H (resp. He), t € R.
A dynamical system § = (,G,P,6,) is said to be continuous if

liné Ui€ = £ for arbitrary £ € H (resp. Hc). (1.1.3)

We will restrict our considerations only to continuous systems .
A dynamical system § = (Q,G,P,6;) is called ergodic if

T
lim -1-/ P(6_,AN B)dt = B(A)P(B), for all A, B € G. (1.1.4)
T—too T 0

Equivalently, in terms of the group U;, t € R, a system § is ergodic
if

1 (T |
lim —/ (U, mydt = (€,1)(1,n), for all €,7 € He.  (L.1.5)
T—+oo T Jg

In fact (1.1.5) with € = x, and 7 = x, implies (1.1.4). Conversely
from (1.1.4) it follows that (1.1.5) holds when £ and 7 are simple,
and so for all £, € Hc¢.

A dynamical system S = (Q,G,P,0;) is called weakly mizing if
there exists a set I C [0, +00] of relative measure 1 such that

lim  P(0_;AN B)=P(A)P(B), forall A,B€G. (1.1.6)
t—+oo,tel

A set I C [0,400][ is said to have relative measure 1 if
) 1
Tlin;o TZI(IO 0, T) =1, (1.1.7)

where £; denotes the Lebesgue measure on R. Equivalently, a system
$ is weakly mixing if for a set I C [0, 400] of relative measure 1

t_hlLiorcr’l’tel(Utf,n) = (&,1)(1,n), for all £, € Hc. (1.1.8)
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Finally, a system S is said to be strongly mizing if

Jim P(6_.AN B) = P(A)P(B), for all 4,B € G, (1.1.9)

or equivalently, if
t_légloo(Uté,n) = (€,1)(1,7), for all £, € He. (1.1.10)

It is clear that a strongly mixing system is weakly mixing and that
a weakly mixing system is ergodic.

Remark 1.1.1 For a thorough discussion and motivation of the con-
cepts introduced we refer to K. Petersen [125]. See in particular
Chapter 2.

1.2 Ergodic Systems and the Koopman—von
Neumann Theorem

Since for any (continuous) dynamical system S the corresponding
group U, t € R, is a Cy—group of unitary transformations on He,
therefore, by Stone’s theorem, see e.g. M. Reed and B. Simon [127,
page 274] the infinitesimal generator of U;, t € R, is of the form 7.4
where A is a self-adjoint operator acting on Hc¢. A is called the in-
finitesimal generator of S. We will need the following characterization
of ergodic and weakly mixing systems:

Theorem 1.2.1 Let S be a continuous dynamical system, and let A
be its infinitesimal generator.

(i) S is ergodic if and only if 0 is a simple eigenvalue of A.

(71) S is weakly mizing if and only if the operator A has no eigen-
values A # 0 and 0 is a simple eigenvalue of A.

The characterization of weakly mixing systems given in (ii) is called
the Koopman-von Neumann theorem.

Remark 1.2.2 Since U;1 =1 for ¢t € R, 0 is a simple eigenvalue of
A if and only if the only elements £ € H¢ (resp. H) such that

Uil =€ forallt € R, (1.2.1)
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6 Chapter 1

are constant functions.
In a similar manner the operator .4 has no eigenvalues A # 0 and
0 is a simple eigenvalue of A, if and only if from the identity

Uk = eMi¢ (1.2.2)

valid for some A € R,£ € H¢ and all ¢ € R it follows that A = 0 and
£ is a constant function. |

To prove Theorem 1.2.1 we will take for granted Birkhoff’s ergodic
theorem, whose proof can be found in any textbook on ergodic theory,
see e.g. K. Petersen {125, Theorem 2.3].

Theorem 1.2.3 Let (Q,G,P) be a probability space, ® : @ — Q a
measure preserving transformation and £ € Hc. Then for all £ € He
there exists £€* € H¢ such that

n-1
lim ~ 3" £(04(w)) = £ (w).w € (1.2.3)
P-a.s. and in Hc.
Moreover
& (w) = &(O(w)), forP-a.s.weqQ, (1.2.4)
and
E¢{ = E¢7, (1.2.5)

where B¢ = [ é(w)P(dw) denotes the ezpectation of &.

Proof of Theorem 1.2.1 — (i) Assume that 0 is a simple eigen-
value of A. We will show that (1.1.5) holds. Without any loss of
generality we can assume that £ > 0, P-a.s. For an arbitrary posi-
tive number A define

h
&= [ Uieds, €€ e, (1.2.6)

and consider 6, a fixed measure preserving transformation on Q.
Then

L3~ ot ) = L+ [ U.e(w)d Q
7 L EOiw) = o [ Vg, w e 0,
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and therefore, by Theorem 1.2.3, for arbitrary A > 0 there exists
&}, € Hc such that
1 nh
lim — Uséds = &, in Hc and P—geda.s. (1.2.7)

n—oo 13 Jo

For arbitrary T > 0 let ny = [T'/h] be the maximal nonnegative
integer less or equal to T'/h. Then nth < T < (nr + 1)h and P-a.s.

nr 1 /nTh 1 /T
.t < =
oz + Dh iz o Usds < T J, U,€ds

nrT + 1 1 {(nr+1)h
< sEds.
- nth nr+1 Ustds
Consequently, for arbitrary A > 0
Jim = / U,tds = —5h in He. (1.2.8)

In particular it follows that £ = h{}; since, from (1.2.4), Up&; = &
this implies Up&y = €7 for all b > 0. Therefore {§ is a constant
function equal to (£,1). This proves (i) in one direction.

Let now a system 5 be ergodic and let U;£ = £ for all ¢t > 0. By
(1.1.5)

(€&, n) = (&, 1)(1,n) = ((§,1)1,n),

for all n € Hc, and therefore £ = ({£,1))1 is a constant function.

(ii) Assume that the system S is ergodic and that A has no eigen-
values A # 0. We recall that this means that the spectral measure
E(-) determined by the operator A has no atoms except at 0. More-
over E({0}) = Ey is a projection operator onto constant functions
and E({A}) = 0 for all A # 0. It is enough to prove the result for
&,n € Ker Eg and for £ = 7. Let {&,} be a basis of (Ker Eo)* on
Hc. We will prove that there exists a set I of relative measure 1 such
that, for all n € N,

elim (Uin,n) = 0. (1.2.9)

Now we compute the integral

T
o [ o .
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From the equality

+oo |
&€ = [ eME@nER,
we find

weor = [ [ d0oypane s,

+oo  rtoo
- /_oo /_oo cos[(A — u)t]| E(dAENP | E(du ).
It follows that

a7 o era= [~ [ OB pgsyee paer

(1.2.10)
and, since the measure || E(-)|)? has no atoms,

) 1 T 9
Tgrng,—T—/_TKUtf,s)l dt =0

e 1

7(t) = Z 2,,1“6 ”4 I( tfna€n>l 3

n=1

Define

then 0 < y(t) < 1forallt €]~ oo, +o00[ and

1 Lt d
i — t)dt = 0.
T—l>r+r-loo 2T ,[T 7( ) 0

This implies that there exists a set I, of relative measure 1, such that
lim ~(t) = 0;

ft|—=+o0
tel

this yields (1.2.9).

Conversely, assume that a system S is weakly mixing; then it is
ergodic and therefore, by (i), 0 is a simple eigenvalue of A. If for
some real A such that A # 0 there exists £ € Hc, £ # 0, such that
Ui = M€ for t > 0, then

(U£,6) = eM€)%, (1.2.11)
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and therefore (1.1.8) cannot be true for a set I of relative measure
1. This finishes the proof of Theorem 1.2.1. ||

Let S be a continuous dynamical system.

(i) A set A € G is said to be invariant with respect to § if, for
arbitrary t € R,
Uix, = X4 P-as, (1.2.12)

or, equivalently, if for every t € R

P(,AN A) = P(4) = P(6,A). (1.2.13)

(ii) A measurable function o : Q@ — [0,27[ is said to be an angle
variable for a system S if there exists A € R such that for every

t e R,
Ui = At + a (mod 27),P-a.s. (1.2.14)

As a consequence of Theorem 1.2.1 we derive the following important
result.

Theorem 1.2.4 Let § be a continuous dynamical system.

(i) S is ergodic if and only if for any invariant set A, either
P(A)=0or P(A) = 1.

(i1) S is weakly mizing if and only if any angle variable is constant
and corresponds to A = 0.

Proof — (i) Assume that S is an ergodic system and A4 is an
invariant set. By the very definition,

1 /T
2 e Tm & _
PH(4) = fim T/O P(6,A N A)dt = P(A),
and therefore P(A4) = 0 or P(A) = 1.

To prove the converse implication assume that for a £ € H¢ and
for all t € R, U, & = £. Without any loss of generality we can assume

that £ is real valued. If £ is not a constant function then for a number
o € R the sets A = {w : {(w) > a} and A° = {w: {(w) < a} are of
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10 Chapter 1

positive P-measure. This is a contradiction since the sets A and A€
are invariant. We have in fact, for any w € Q,

if
Uixa(w) = x4 (0w) = { (1) if%::; 2 Zj

Since £(8,w) = £{(w) by hypothesis, we have U;x, = x, so that A is
invariant. This shows that £ is a constant function.

(ii) Assume that S is weakly mixing and that a is its angle vari-
able corresponding to A, then, for £ = >, we have

U = M€, forallt € R. (1.2.15)

By Theorem 1.2.1, A = 0 and £ (and thus o as well) is constant. To
show the converse implication one can assume that the system § is
ergodic. Suppose that (1.2.15) holds for some A € R and £ € Hc.
Then U;|¢| = |€|, t € R. Therefore |£| is a constant function and
we can assume that |£| = 1. Consequently £ = ' where « is a real
function with values on [0, 27[. From (1.2.15)

Uia = At + a (mod 27), P-a.s.,

and the result follows. [}

Remark 1.2.5 The content of Theorem 1.2.4 can be phrased shortly
as follows:

A system S is ergodic if and only if it has only trivial invariant
sets.

A system S is weakly mixing if and only if it has only trivial angle
variables. '
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Chapter 2

Canonical Markovian
Systems

We introduce here dynamical systems determined by Markovian tran-
sition semigroups on Polish spaces and give conditions for their con-
tinuity.

2.1 Markovian semigroups

Let us first give some notation. In all this chapter E represents a
Polish space with metric p and, for any z¢ € E,§ > 0, B(zo, §) is the
ball

B(z9,6) = {z € E: p(z,z0) < 6}.

We denote by £ = B(F) the o—field of all Borel subsets of E, and for
any I' € £, by x, the characteristic function

1 ifzel,
Xe(®) = { 0 ifz €T,
where I'¢ = E\T'.
Moreover By(E) (resp. Cy(E), UCy(E), Lip(E)) is the set of all
real (or complex) bounded Borel functions (resp. continuous and
bounded functions, uniformly continuous and bounded functions,

Lipschitz continuous functions) on E, and M (F) is the set of all
probability measures defined on (E,£).
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