THE RISE OF THE STANDARD MODEL

Editors Lillian Hoddeson, Laurie Brown, Michael Riordan, and Max Dresden have brought together a distinguished group of elementary particle physicists and historians of science to explore the recent history of particle physics. Based on a conference held at Stanford University, this is the third volume of a series recounting the history of particle physics and offers the most up-to-date account of the rise of the Standard Model, which explains the microstructure of the world in terms of quarks and leptons and their interactions.

Major contributors include Murray Gell-Mann, John Heilbron, Leon Lederman, Michael Redhead, Silvan Schweber, and Steven Weinberg. The wide-ranging articles explore the detailed scientific experiments, the institutional settings in which they took place, and the ways in which the many details of the puzzle fit together to account for the Standard Model.
Contents

Contributors ix
Editors’ Acknowledgments xiii
Photographs of the Symposium xvi
Abbreviations and Acronyms xxii
Mathematical Notation xxvi

Part One: Introduction
1 The Rise of the Standard Model: 1964–1979
 Laurie M. Brown, Michael Riordan, Max Dresden, and Lillian Hoddeson 3
2 Changing Attitudes and the Standard Model
 Steven Weinberg 36
3 Two Previous Standard Models
 J. L. Heilbron 45

Part Two: Quarks and Leptons
4 From the Psi to Charmed Mesons: Three Years with the
 SLAC–LBL Detector at SPEAR
 Gerson Goldhaber 57
5 The Discovery of the Tau Lepton
 Martin Perl 79
6 The Discovery of the Upsilon, Bottom Quark, and B Mesons
 Leon M. Lederman 101
Contents

7 The Discovery of CP Violation
 James Cronin 114

8 Flavor Mixing and CP Violation
 Makoto Kobayashi 137

Part Three: Toward Gauge Theories

9 The Path to Renormalizability
 Martinus Veltman 145

10 Renormalization of Gauge Theories
 Gerard ’t Hooft 179

11 Asymptotic Freedom and the Emergence of QCD
 David Gross 199

12 Quark Confinement
 Leonard Susskind 233

13 A View from the Island
 Alexander Polyakov 243

14 On the Early Days of the Renormalization Group
 Dmitrij V. Shirkov 250

Part Four: Accelerators, Detectors, and Laboratories

15 The Rise of Colliding Beams
 Burton Richter 261

16 The CERN Intersecting Storage Rings: The Leap into the Hadron Collider Era
 Kjell Johnsen 285

17 Development of Large Detectors for Colliding-Beam Experiments
 Roy Schwitters 299

18 Pure and Hybrid Detectors: Mark I and the Psi
 Peter Galison 308

19 Building Fermilab: A User’s Paradise
 Robert R. Wilson and Adrienne Kolb 338

20 Panel Session: Science Policy and the Social Structure of Big Laboratories
 Catherine Westfall 364

21 Some Sociological Consequences of High-Energy Physicists’ Development of the Standard Model
 Mark Bodnarczuk 384
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Comments on Accelerators, Detectors, and Laboratories</td>
<td>John Krige</td>
<td>394</td>
</tr>
<tr>
<td>Part Five: Electroweak Unification</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>The First Gauge Theory of the Weak Interactions</td>
<td>Sidney Bludman</td>
<td>403</td>
</tr>
<tr>
<td>24</td>
<td>The Early History of High-Energy Neutrino Physics</td>
<td>Melvin Schwartz</td>
<td>411</td>
</tr>
<tr>
<td>25</td>
<td>Gargamelle and the Discovery of Neutral Currents</td>
<td>Donald Perkins</td>
<td>428</td>
</tr>
<tr>
<td>26</td>
<td>What a Fourth Quark Can Do</td>
<td>John Iliopoulos</td>
<td>447</td>
</tr>
<tr>
<td>27</td>
<td>Weak-Electromagnetic Interference in Polarized Electron–Deuteron Scattering</td>
<td>Charles Prescott</td>
<td>459</td>
</tr>
<tr>
<td>28</td>
<td>Panel Session: Spontaneous Breaking of Symmetry</td>
<td>Laurie M. Brown, Robert Brout, Tian Yu Cao, Peter Higgs, and Yoichiro Nambu</td>
<td>478</td>
</tr>
<tr>
<td>Part Six: The Discovery of Quarks and Gluons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Early Baryon and Meson Spectroscopy Culminating in the Discovery of the Omega-Minus and Charmed Baryons</td>
<td>Nicholas Samios</td>
<td>525</td>
</tr>
<tr>
<td>30</td>
<td>Quark Models and Quark Phenomenology</td>
<td>Harry Lipkin</td>
<td>542</td>
</tr>
<tr>
<td>31</td>
<td>From the Nonrelativistic Quark Model to QCD and Back</td>
<td>Giacomo Morpurgo</td>
<td>561</td>
</tr>
<tr>
<td>32</td>
<td>Deep-Inelastic Scattering and the Discovery of Quarks</td>
<td>Jerome Friedman</td>
<td>566</td>
</tr>
<tr>
<td>33</td>
<td>Deep-Inelastic Scattering: From Current Algebra to Partons</td>
<td>James Bjorken</td>
<td>589</td>
</tr>
<tr>
<td>34</td>
<td>Hadron Jets and the Discovery of the Gluon</td>
<td>Sau Lan Wu</td>
<td>600</td>
</tr>
<tr>
<td>Part Seven: Personal Overviews</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Quarks, Color, and QCD</td>
<td>Murray Gell-Mann</td>
<td>625</td>
</tr>
</tbody>
</table>
Contents

36 The Philosopher Problem
 Paul Teller 634

37 Should We Believe in Quarks and QCD?
 Michael Redhead 637

38 A Historical Perspective on the Rise of the Standard Model
 Silvan Schweber 645

Index 685
Contributors

James Bjorken
Mail Stop 81, Stanford Linear Accelerator Center, Stanford, CA 94309

Sidney Bludman
Department of Physics, University of Pennsylvania, Philadelphia, PA 19104

Mark Bodnarczuk
Breckenridge Consultants Group, P.O. Box 7399-329, Breckenridge, CO 80424-7399

Robert Brout
Universite Libre de Bruxelles, Service de Physique Theorique, Campus Plaine CP 225, Blvd. du Triomphe, 1050 Bruxelles, Belgium

Laurie M. Brown
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60201

Tian Yu Cao
Department of Philosophy, Boston University, 745 Commonwealth Avenue, Boston, MA 02215

James Cronin
Enrico Fermi Institute, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637

Max Dresden
Mail Stop 61, Stanford Linear Accelerator Center, Stanford, CA 94309
 Contributors

Jerome Friedman
Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139

Peter Galison
Department of History of Science, Harvard University, Cambridge, MA 02138

Murray Gell–Mann
Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87505

Gerson Goldhaber
Physics Department, 50A-2160, Lawrence Berkeley Laboratory, Berkeley, CA 94720

David Gross
Department of Physics, P.O. Box 708, Jadwin Hall, Princeton, NJ 08544

J. L. Heilbron
Office of the Chancellor, University of California, Berkeley, CA 94720

Peter Higgs
Department of Physics, James Clerk Maxwell Building, The University of Edinburgh, Edinburgh EH9 3JZ, UK

Lillian Hoddeson
Department of History, Gregory Hall on Wright St., University of Illinois, Urbana, Illinois 61801

Gerard ’t Hooft
Institute for Theoretical Physics, Princetonplein 5, P.O. Box 80.006, 3508 TA Utrecht, The Netherlands

John Iliopoulos
Laboratoire de Physique Théorique, Ecole Normale Supérieure, 24 rue Lhomond, 75231 Paris, France

Kjell Johnsen
CERN, Building 584, CH-1211 Geneva 23, Switzerland

Makoto Kobayashi
Theory Group, National Laboratory for High Energy Physics, 1-1 Oho, Tsukuba-shi, Ibaraki-ken 305, Japan

Adrienne Kolb
Fermilab, Post Office Box 500, Batavia, IL 60510

John Kriige
Centre de Recherch en Histoire des Sciences, Parc de La Villette, 211, Avenue Jean Jaures, 75019 Paris, France
Contributors

Leon Lederman
Directors Office, Fermilab, Post Office Box 500, Batavia, IL 60510

Harry Lipkin
Nuclear Physics Department, Weizmann Institute of Science, Post Office Box 26, Rehovot 76100, Israel

Giacomo Morpurgo
Dipt. di Fisica, Univ. di Genova, via Dodecaneso 33, I-16146 Genova, Italy

Yoichiro Nambu
Enrico Fermi Institute, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637

Donald Perkins
Nuclear Physics Lab, University of Oxford, Keble Road, Oxford, OX1 3RH, UK

Martin Perl
Mail Stop 61, Stanford Linear Accelerator Center, Stanford, CA 94309

Alexander Polyakov
Department of Physics, Post Office Box 708, Jadwin Hall, Princeton, NJ 08544

Charles Prescott
Mail Stop 78, Stanford Linear Accelerator Center, Stanford, CA 94309

Michael Redhead
Department of History and Philosophy of Science, University of Cambridge, Free School Lane, Cambridge CB2 3RH, UK

Burton Richter
Directors Office, Stanford Linear Accelerator Center, Stanford, CA 94309

Michael Riordan
Mail Stop 80, Stanford Linear Accelerator Center, Stanford, CA 94309

Nicholas Samios
Directors Office, Building 460, Brookhaven National Laboratory, Upton, NY 11973

Melvin Schwartz
Department of Physics, Columbia University, New York, NY 10027

Silvan Schweber
Department of Physics, Brandeis University, Post Office Box 9110, Waltham, MA 02254
Contributors

Roy Schwitters
Center for Particle Physics, University of Texas, Austin, TX 78712

Dmitrij V. Shirkov
Laboratory for Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia

Leonard Susskind
Department of Physics, Stanford University, Stanford, CA 94305

Paul Teller
Department of Philosophy, University of California, Davis, CA 95616

Martinus Veltman
Department of Physics, University of Michigan, Ann Arbor, MI 48109

Steven Weinberg
Department of Physics, University of Texas, Austin, TX 78712

Catherine Westfall
Lyman Briggs School, Michigan State University, East Lansing, MI 48824

Robert R. Wilson
916 Stewart Avenue, Ithaca, NY 14850

Sau Lan Wu
EP Division, CERN, Building 32-RA05, CH-1211 Geneva 23, Switzerland
Editors’ Acknowledgments

We are deeply grateful to all the people who contributed to the success of the Third International Symposium on the History of Particle Physics. Without their efforts it would have been a much smaller and far less enjoyable gathering. Limits of space prevent us from thanking each and every one of them by name, but certain individuals deserve special recognition.

We thank laboratory directors Burton Richter and John Peoples for their strong support of this Symposium. In assembling the program, we benefited extensively from the sage advice of Barry Barish, James Bjorken, Peter Galison, Gerson Goldhaber, Sam Schweber, and Lenny Susskind, who served with us as members of the Program Committee.

In hosting the Symposium and attending to the myriad details that contributed to making it an enjoyable and successful gathering, the untiring efforts of Nina Adelman Stolar stand out from all the rest. She arranged lodging and transportation for speakers and participants, distributed the invitations and registration forms, and supervised a small army of SLAC and Fermilab staff members who supported us for the four-day event; the Symposium would not have been such a success without her contributions. Nina was ably assisted in these tasks by Juanita O’Malley, who handled communications with speakers and participants. Herbert McIntyre coordinated all the audio-visual services, while Bernie Lighthouse took care of the specific needs of individual speakers. Rene Donaldson designed and produced the Symposium program, based on period photographs of leading physicists located by Robin Chandler;
Editors’ Acknowledgments

blow-ups of these photos also graced the walls of the auditorium lobby. In addition, we wish to thank the following people for their help:

Joe Faust, for photographing Symposium speakers and participants;
Angela Gonzalez, for designing the Symposium poster and the dust jacket of this book;
Susan Grommes, Adrienne Kolb, and May West, for their gracious support and assistance during the Symposium sessions;
Jeff Machado, for catering the Symposium banquet and other social events;
Michael Peskin, for organizing and supervising scientific secretaries;
Helen Quinn, for coordinating activities for science teachers;
Pauline Wethington, for her extensive help with registration and in many other Symposium activities.

The scientific secretaries, who helped us in recording the question-and-answer sessions after the speakers’ presentations, were: Jin Dai, Rob Elia, Adam Falk, Ovid Jacob, Ross King, Amit Lath, Hung Jung Lu, Carl Schmidt, Yael Shadmi, Matthew Strassler.

In addition, the following people gave generously of their time to help us before, during, and after the Symposium: Louise Addis, Gregory Bologoff, Andrea Chan, Maura Chatwell, Doug Dupen, Bette-Jane Ferandin, Diana Gregory, Bruce Hemingway, Karen Hernandez, Sharon Ivanhoe, Donä Jones, Jeff Leiter, Cortney Lighthouse, Gina Mastrantonio, Sally McFadden, Judy Meo, Brad Moore, Neal Morrison, Rocky Nilan, Robbin Nixon, Luana Plunkett, David Price, Nader Saghafi, Allison Sato, Jennifer Simmons, Ida Stelling, Neil Strand, Noreen Sugrue, and Steve Tieber.

In preparing the manuscript for this book, the efforts of Shirley Boozer, Tonya Lillie, and Dan Lewart were invaluable. They helped us with the difficult task of converting the chapters submitted by the speakers into a uniform electronic format. With help from May West, Tonya also verified and corrected many of their references, and entered our seemingly endless editorial corrections. Terry Anderson, Kevin Johnston, and Sylvia MacBride provided quality graphic support.

We also benefited from strong financial support. A grant from the Alfred P. Sloan Foundation permitted us to bring invited speakers from all over the world to Stanford, while the National Science Foundation financed our work in editing the chapters that appear within this volume. A grant from the American Institute of Physics Center for the History of Physics allowed us to make audio recordings of the sessions. Finally,
Editors’ Acknowledgments

the U.S. Department of Energy supported this Symposium through the generous contributions – both financial and in-kind – of its national laboratories, Fermilab and SLAC, as well as from its contractor, the Universities Research Association.

To all these individuals and organizations, without whose contributions we could not have held this Symposium, we extend our deepest thanks.

Photographs of the Symposium on the following pages are by Joe Faust, and provided courtesy of SLAC.
Burton Richter helps Steven Weinberg with the microphone before his opening talk.

Peter Higgs and Donald Perkins.
David Gross, Alexander Polyakov, Gerhard 't Hooft, and Lenny Susskind chat during a coffee break.

Gross, Sam Schweber, and Harry Lipkin.
Michael Riordan and Sidney Bludman discussing the sequence of speakers.

John Heilbron and Laurie Brown.
Maurice Goldhaber, Pief Panofsky, and Bill Wallenmeyer during the panel session on Science Policy and the Sociology of Big Laboratories.

John Krige speaking during the panel session, while Mark Bodnarczuk and Robert Seidel listen.
Fermilab’s first Director, Robert R. Wilson, talks with Norman Ramsey, the first President of Universities Research Association.

Jim Cronin, Nick Samios, Maurice Goldhaber, and Alan Wattenberg.
Maurice Goldhaber greets Murray Gell-Mann at the Symposium banquet, while Lillian Hoddeson and Matt Sands look on.

Gell-Mann, Gosta Ekspong, and Nina Adelman Stolar.
Abbreviations and Acronyms

Acta Phys. Pol
Am. J. Phys.
Dokl. Akad. Nauk SSR
JETP Lett.
J. Phys.
Lett. Nuovo Cimento
Natl. Acad. Sci. USA
Nucl. Phys.
Phys. Lett.
Phys. Rev.

Acta Physica Polonica
American Journal of Physics
Annals of Physics
Annual Reviews of Nuclear and Particle Science
Communications in Mathematical Physics
Doklady Akademii Nauk SSR
Helvetica Physica Acta
Historical Studies in the Physical and Biological Sciences
Historical Studies in the Physical Sciences
Journal of Experimental and Theoretical Physics Letters
Journal of Mathematical Physics
Journal de Physique
Lettres al Nuovo Cimento
Proceedings of the National Academy of Sciences (USA)
Nuclear Physics
Physics Letters
Physics Reports
Physical Review
Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prog. Theor. Phys.</td>
<td>Progress of Theoretical Physics</td>
</tr>
<tr>
<td>Rev. Mod. Phys.</td>
<td>Reviews of Modern Physics</td>
</tr>
<tr>
<td>Z. Phys.</td>
<td>Zeitschrift für Physik</td>
</tr>
<tr>
<td>AdA</td>
<td>Anello di Accumulatione (i.e., storage ring)</td>
</tr>
<tr>
<td>ADONE</td>
<td>“big AdA”</td>
</tr>
<tr>
<td>AEC</td>
<td>Atomic Energy Commission</td>
</tr>
<tr>
<td>AGS</td>
<td>Alternating Gradient Synchrotron (at Brookhaven)</td>
</tr>
<tr>
<td>ARGUS</td>
<td>third-generation particle detector built at DORIS; also the collaboration</td>
</tr>
<tr>
<td>BCS</td>
<td>Bardeen–Cooper–Schrieffer (theory)</td>
</tr>
<tr>
<td>BEPC</td>
<td>Beijing Electron–Positron Collider</td>
</tr>
<tr>
<td>BES</td>
<td>Beijing Spectrometer at BEPC</td>
</tr>
<tr>
<td>BNL</td>
<td>Brookhaven National Laboratory</td>
</tr>
<tr>
<td>BRS</td>
<td>Becci–Rouet–Stora (invariance or transformation)</td>
</tr>
<tr>
<td>CDF</td>
<td>Collider Detector at Fermilab; also the experimental collaboration</td>
</tr>
<tr>
<td>CEA</td>
<td>Cambridge Electron Accelerator</td>
</tr>
<tr>
<td>CELLO</td>
<td>solenoidal particle detector at PETRA; also the collaboration</td>
</tr>
<tr>
<td>CERN</td>
<td>Centre European pour la Recherche Nucléaire (now known as the European Center for Particle Physics)</td>
</tr>
<tr>
<td>CESR</td>
<td>Cornell Electron Storage Ring</td>
</tr>
<tr>
<td>CKM</td>
<td>Cabibbo–Kobayashi–Maskawa (matrix)</td>
</tr>
<tr>
<td>Abbreviations and Acronyms</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>CLEO</td>
<td>solenoidal particle detector and experimental collaboration at CESR</td>
</tr>
<tr>
<td>CRT</td>
<td>cathode-ray tube</td>
</tr>
<tr>
<td>CUSB</td>
<td>Columbia University/Stony Brook detector and collaboration at CESR</td>
</tr>
<tr>
<td>CVC</td>
<td>conserved vector current (hypothesis)</td>
</tr>
<tr>
<td>DASP</td>
<td>Double-Arm Spectrometer (DESY); also the experimental collaboration</td>
</tr>
<tr>
<td>DELCO</td>
<td>Direct Electron Counter detector built at SPEAR</td>
</tr>
<tr>
<td>DESY</td>
<td>Deutsches Elektronen Synchrotron</td>
</tr>
<tr>
<td>DOE</td>
<td>Department of Energy</td>
</tr>
<tr>
<td>D0</td>
<td>large particle detector (at Fermilab); also the experimental collaboration</td>
</tr>
<tr>
<td>DORIS</td>
<td>Double-Ring Storage electron–positron collider at DESY</td>
</tr>
<tr>
<td>ERDA</td>
<td>Energy Research and Development Administration</td>
</tr>
<tr>
<td>FNAL</td>
<td>Fermi National Accelerator Laboratory (a.k.a. Fermilab)</td>
</tr>
<tr>
<td>GIM</td>
<td>Glashow–Iliopolous–Maiani (mechanism)</td>
</tr>
<tr>
<td>GWS</td>
<td>Glashow–Weinberg–Salam (model or theory)</td>
</tr>
<tr>
<td>HRS</td>
<td>large particle detector at PEP; also the experimental collaboration</td>
</tr>
<tr>
<td>ISABELLE</td>
<td>unfinished proton collider (at Brookhaven)</td>
</tr>
<tr>
<td>ISR</td>
<td>Intersecting Storage Rings (CERN)</td>
</tr>
<tr>
<td>JADE</td>
<td>solenoidal particle detector at PETRA; also the collaboration</td>
</tr>
<tr>
<td>LBL</td>
<td>Lawrence Berkeley Laboratory</td>
</tr>
<tr>
<td>LEP</td>
<td>Large Electron–Positron collider (CERN)</td>
</tr>
<tr>
<td>MAC</td>
<td>solenoidal particle detector and experimental collaboration at PEP</td>
</tr>
<tr>
<td>MARK I</td>
<td>The first SLAC–LBL particle detector at the SPEAR e^+e^- collider (SLAC)</td>
</tr>
<tr>
<td>MARK II</td>
<td>solenoidal particle detector built at SPEAR and moved to PEP (SLAC)</td>
</tr>
</tbody>
</table>
Abbreviations and Acronyms

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARK III</td>
<td>third-generation detector built at SPEAR; also the collaboration</td>
</tr>
<tr>
<td>MARK-J</td>
<td>large particle detector at PETRA; also the collaboration</td>
</tr>
<tr>
<td>MIT</td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>MURA</td>
<td>Midwestern Universities Research Association</td>
</tr>
<tr>
<td>NAL</td>
<td>National Accelerator Laboratory (renamed Fermilab)</td>
</tr>
<tr>
<td>PCAC</td>
<td>partially conserved axial current</td>
</tr>
<tr>
<td>PEP</td>
<td>Positron Electron Project (at SLAC)</td>
</tr>
<tr>
<td>PETRA</td>
<td>Positron–Electron Tandem Ring Accelerator (at DESY)</td>
</tr>
<tr>
<td>PLUTO</td>
<td>detector built at DORIS and moved to PETRA; also the collaboration</td>
</tr>
<tr>
<td>QCD</td>
<td>quantum chromodynamics</td>
</tr>
<tr>
<td>QED</td>
<td>quantum electrodynamics</td>
</tr>
<tr>
<td>SALT</td>
<td>Strategic Arms Limitations Talks</td>
</tr>
<tr>
<td>SLAC</td>
<td>Stanford Linear Accelerator Center</td>
</tr>
<tr>
<td>SPEAR</td>
<td>Stanford Positron–Electron Asymmetric Ring (at SLAC)</td>
</tr>
<tr>
<td>TASSO</td>
<td>Two-Armed Solenoidal Spectrometer at PETRA; also the collaboration</td>
</tr>
<tr>
<td>TPC</td>
<td>solenoidal particle detector at PEP; also the experimental collaboration</td>
</tr>
<tr>
<td>UA1</td>
<td>magnetic particle detector and collaboration at CERN pp collider</td>
</tr>
<tr>
<td>UA2</td>
<td>major particle detector and collaboration at CERN pp collider</td>
</tr>
<tr>
<td>URA</td>
<td>Universities Research Association</td>
</tr>
</tbody>
</table>
Mathematical Notation

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>axial-vector interaction (or current); also a scattering amplitude</td>
</tr>
<tr>
<td>A_μ</td>
<td>four-vector electromagnetic potential</td>
</tr>
<tr>
<td>$B(X \to Y)$</td>
<td>branching ratio for interaction $X \to Y$</td>
</tr>
<tr>
<td>B, B^0, B_u, B_d</td>
<td>B mesons – heavy mesons containing a bottom quark</td>
</tr>
<tr>
<td>B^+</td>
<td>baryon-matter field (in the Nagoya model); also used for B meson</td>
</tr>
<tr>
<td>BeV</td>
<td>billion electron volts (old usage, now written as GeV)</td>
</tr>
<tr>
<td>$b(\bar{b})$</td>
<td>bottom quark (antiquark); also the Yang–Mills field</td>
</tr>
<tr>
<td>C</td>
<td>charge-conjugation operator or quantum number</td>
</tr>
<tr>
<td>CP</td>
<td>charge-conjugation–parity operator or quantum number</td>
</tr>
<tr>
<td>CPT</td>
<td>charge-conjugation–parity–time-reversal operator; also a theorem</td>
</tr>
<tr>
<td>$c(\bar{c})$</td>
<td>charm quark (antiquark); also the speed of light in vacuum</td>
</tr>
<tr>
<td>D^0, D^+, D^-</td>
<td>charmed mesons – containing a charm quark and an up or down quark</td>
</tr>
<tr>
<td>D^{0*}, D^{++}</td>
<td>charmed meson resonances</td>
</tr>
<tr>
<td>$d(\bar{d})$</td>
<td>down quark (antiquark)</td>
</tr>
<tr>
<td>E</td>
<td>energy</td>
</tr>
<tr>
<td>$E^-(E^+)$</td>
<td>hypothetical electron-like heavy lepton (antilepton)</td>
</tr>
<tr>
<td>E_{cm}</td>
<td>center-of-mass energy</td>
</tr>
<tr>
<td>e, e^-</td>
<td>electron; e is also the magnitude of the electron charge</td>
</tr>
</tbody>
</table>
Mathematical Notation

\[e^+ \]
positron – the antiparticle of the electron

\[e^+e^- \]
electron-positron (as in electron-positron collisions)

\[F, F^+, F^- \]
F mesons – composed of a charm quark and a strange antiquark

\[F_{\mu\nu} \]
electromagnetic tensor

\[G_F \]
Fermi coupling constant

\[G \]
G-parity operator or quantum number

\[\text{GeV} \]
billions of electron volts, or gigaelectronvolts

\[g, g' \]
generalized coupling constants

\[I \]
isospin quantum number

\[I, I_1, I_2, I_3 \]
isospin operator

\[J \]
total angular momentum operator or quantum number

\[J \]
angular momentum operator

\[J, J/\psi \]
J or J-psi particle – a heavy neutral meson of mass 3.1 GeV

\[J^P \]
spin-parity quantum numbers (e.g., 0^+, 1^-, \ldots) of a particle

\[J^{PC} \]
spin, parity and charge-conjugation quantum numbers of a particle

\[K, K^+, K^- \]
K mesons, or kaons – mesons that contain a strange quark

\[K^* \]
kaon resonance

\[K^0, K^0_L, K^0_S \]
neutral K mesons

\[K^0_1, K^0_2 \]
neutral K mesons (now more commonly written as \(K^0_S, K^0_L \))

\[L^- (L^+) \]
hypothetical heavy lepton (antilepton)

\[\mathcal{L} \]
Lagrangian (of a system)

\[l, l^- (l^+) \]
lepton (antilepton); \(l \) is also used to denote orbital angular momentum

\[M \]
generalized mass of a subatomic particle

\[M^- (M^+) \]
hypothetical muon-like heavy lepton (antilepton)

\[\text{MeV} \]
million electron volts, or megar electron volts

\[m_x \]
mass of a subatomic particle \(x \)

\[N^* \]
nucleon resonance

\[n (\bar{n}) \]
neutron (antineutron); also the neutron current

\[P \]
parity operation or quantum number

\[P \]
quantum state with orbital angular momentum \(l = 1 \)

\[P_{\epsilon} \]
spin-1 particle (also known as \(\chi \)) produced in \(\psi \) decays
Mathematical Notation

\(P_{\mu}, P_{\nu} \)
four-momentum components of a particle

\(\vec{P}_0, \vec{P}_1, \vec{P}_2 \)
P states with third component of angular momentum
\(m = 0, 1, 2 \)

\(p_T \) or \(P_t \)
transverse momentum

\(p(\bar{p}) \)
proton (antiproton); also the proton current

\(p \) or \(P \)
particle four-momentum; \(P \) also used for probability

\(\vec{p} \)
three-vector momentum of a particle

\(Q \)
charge quantum number; also decay energy in \(K \) decays

\(q(\bar{q}) \)
generalized quark (antiquark); \(q \) also generalized charge on a particle

\(R = \sigma_{\text{had}} / \sigma_{\mu\mu} \)
ratio of hadron to muon-pair production in \(\text{e}^+\text{e}^- \) collisions

\(R = \sigma_L / \sigma_T \)
ratio of longitudinal to transverse photoabsorption in \(\text{e}^-\text{N} \) scattering

\(S \)
strangeness operator or quantum number

\(S, 1S, 2S, \ldots \)
\(S \) states of a particle system – having orbital angular momentum \(l = 0 \)

\(S \)-matrix
scattering matrix

\(\text{SU(N)} \)
special unitary group in \(N \) dimensions

\(s(\bar{s}) \)
strange quark (antiquark); also the center-of-mass energy squared

\(T \)
time-reversal operator or quantum number

\(\text{TeV} \)
trillion electron volts, or teraelectronvolts

\(t(\bar{t}) \)
top quark (antiquark)

\(U \)
“unknown” particle (e.g., the particle later called the tau lepton)

\(u(\bar{u}) \)
up quark (antiquark)

\(V \)
vector interaction (or current)

\(V \)
Cabibbo–Kobayashi–Maskawa matrix; \(V \) also used for \(V \) particle

\(V-A \)
vector minus axial-vector interaction (or current)

\(V_{ij}(V_{ij}^*) \)
\(ij \)th element (or its hermitian conjugate) of CKM matrix

\(W, W^+, W^- \)
charged vector bosons

\(W_\mu \)
charged vector-boson field

\(Z, Z^0 \)
neutral vector boson

\(Z_3, Z_S \)
transverse, longitudinal components of the neutral vector boson field
Mathematical Notation

\(\alpha \)
fine-structure constant; also \(g^2/4\pi \), where \(g \) = general coupling constant

\(\beta \)
beta particle – an electron or positron emitted in nuclear beta decay; also a parameter in Callan–Symanzik equation

\(\beta \) decay
nuclear decay by emission of a beta particle (plus a neutrino)

\(\Gamma \)
width of a resonance or interaction strength; also scattering amplitude

\(\gamma \)
photon, or gamma ray

\(\gamma_\mu, \gamma_5 \)
Dirac matrices

\(\delta \)
\(CP \)-violating phase in the Cabibbo–Kobayashi–Maskawa matrix

\(\varepsilon \)
dielectric constant (of a medium)

\(\varepsilon, \varepsilon' \)
\(CP \)-violating parameters measured in neutral kaon decays

\(\eta, \eta^0 \)
eta meson – neutral, composed of up and down quarks

\(\eta^{+}, \eta^{0} \)
eta plus-minus, eta zero zero – neutral kaon decay parameters

\(\theta, \theta^0 \)
theta mesons (now known as kaons); \(\theta \) also used for polar angle

\(\theta_c \)
Cabibbo angle

\(\theta_W \)
weak mixing angle (or Weinberg angle)

\(\theta_1, \theta_2, \theta_3 \)
mixing angles in the Cabibbo–Kobayashi–Maskawa matrix

\(\Lambda(\bar{\Lambda}) \)
lambda baryon (antibaryon); also used for QCD scaling parameter

\(\Lambda_c(\bar{\Lambda}_c) \)
charmed lambda baryon (antibaryon)

\(\mu, \mu^- (\mu^+) \)
muon (antimuon); \(\mu \) also the magnetic permeability

\(\nu(\bar{\nu}) \)
neutrino (antineutrino), of any type

\(\nu_e(\bar{\nu}_e) \)
electron neutrino (antineutrino)

\(\nu_l(\bar{\nu}_l) \)
neutrino (antineutrino) of type or lepton “flavor” \(l \)

\(\nu_\mu(\bar{\nu}_\mu) \)
muon neutrino (antineutrino)

\(\nu_\tau(\bar{\nu}_\tau) \)
tau neutrino (antineutrino)

\(\pi, \pi^+, \pi^-, \pi^0 \)
pi mesons, or pions – spin-0 mesons composed of up and down quarks

\(\rho \)
rho parameter (in deep-inelastic \(\nu-N \) scattering)

\(\rho, \rho^0, \rho^+, \rho^- \)
rho mesons – neutral and charged, composed of up and down quarks

\(\sigma \)
generalized cross section; also used for sigma model
Mathematical Notation

\(\sigma(X \rightarrow Y) \) \hspace{1cm} \text{cross section for a scattering or decay process } X \rightarrow Y

\(\sigma_{\text{had}} \) \hspace{1cm} \text{cross section for hadron production (especially in } e^+ e^- \text{ collisions)}

\(\sigma_{\mu\mu} \) \hspace{1cm} \text{cross section for muon-pair production (especially in } e^+ e^- \text{ collisions)}

\(\sigma_L \) \hspace{1cm} \text{cross section for absorption of longitudinal virtual photons}

\(\sigma_T \) \hspace{1cm} \text{cross section for absorption of transverse virtual photons}

\(\tau, \tau^- (\tau^+) \) \hspace{1cm} \text{tau (antitau) lepton; also used for particle lifetimes, tau mesons}

\(\tau_x \) \hspace{1cm} \text{mean lifetime of a subatomic particle } x

\(\Upsilon, \Upsilon', \Upsilon'' \ldots \) \hspace{1cm} \text{upsilon particles – composed of a bottom quark and its antiquark}

\(\phi \) \hspace{1cm} \text{phi meson – composed of a strange quark and its antiquark}

\(\chi \) \hspace{1cm} \text{chi particles – neutral spin-1 particles produced in decays of } \psi \text{ particles}

\(\psi, \psi' \) \hspace{1cm} \text{wave function or spinor}

\(\psi, \psi', \psi'' \) \hspace{1cm} \text{psi particles – composed of a charm quark and its antiquark}

\(\psi_1, \psi_2 \) \hspace{1cm} \text{components of a wave function or spinor}

\(\Omega^- \) \hspace{1cm} \text{omega-minus baryon – composed of three strange quarks}

\(\omega, \omega^0 \) \hspace{1cm} \text{omega meson – neutral, composed of up and down quarks}