LONDON MATHEMATICAL SOCIETY LECTURE NOTE SERIES

Managing Editor: Professor J.W.S. Cassels, Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB, England

The titles below are available from booksellers, or, in case of difficulty, from Cambridge University Press.

34 Representation theory of Lie groups, M.F. ATIYAH et al
36 p-adic analysis: a short course on recent work, N. KOBILITZ
59 Commutator calculus and groups of homotopy classes, H.J. BAUES
69 Applicable differential geometry, M. CRAMPIN & F.A.E. PIRANI
76 Several complex variables and complex manifolds II, M.J. FIELD
69 Representation theory, L.M. GELFAND et al
76 Spectral theory of linear differential operators and comparison algebras, H.O. CORDES
77 Isolated singular points on complete intersections, E.J.N. LOOIJENGA
83 Homogeneous structures on Riemannian manifolds, F. TRICERRI & L. VANHECKE
84 Topological topics, I.M. JAMES (ed)
86 Surveys in set theory, A.R.D. MATHIAS (ed)
88 pP-Z ring theory, C. FAITH & S. PAGE
89 An F-space sampler, N.J. KALTON, N.T. PECK & J.W. ROBERTS
90 Polytopes and symmetry, S.A. ROBERTSON
92 Representation of rings over skew fields, A.H. SCHOFIELD
93 Aspects of topology, I.M. JAMES & E.H. KRONHEIMER (eds)
94 Representation of general linear groups, G.D. JAMES
95 Low-dimensional topology 1982, R.A. FENN (ed)
96 Diophantine equations over function fields, R.C. MASON
97 Varieties of constructive mathematics, D.S. BRIDGES & F. RICHMAN
98 Localization in Noetherian rings, A.V. JATEGAONKAR
99 Methods of differential geometry in algebraic topology, M. KAROUBI & C. LERUSTE
101 Stopping time techniques for analysts and probabilists, L. EGGHE
102 Elliptic structures on 3-manifolds, C.B. THOMAS
105 A local spectral theory for closed operators, I. ERDELYI & WANG SHENGWANG
107 Compactification of Siegel moduli schemes, C.-L. CHAI
109 Diophantine analysis, J. LOXTON & A. VAN DER POORTEN (eds)
110 An introduction to surreal numbers, H. GONSHOR
111 Lectures on the asymptotic theory of ideals, D. REES
114 Lectures on Bochner-Riesz means, K.M. DAVIS & Y.C. CHANG
115 An introduction to independence for analysts, H.G. DALES & W.H. WOODIN
118 Representations of algebras, P.J. WEBB (ed)
119 Skew linear groups, M. SHIRVANI & B. WEHRFUTZ
123 Triangulated categories in the representation theory of finite-dimensional algebras, D. HAPPEL
123 Proceedings of Groups - St Andrews 1985, E. ROBERTSON & C. CAMPELL (eds)
124 Non-classical continuum mechanics, R.J. KNOPS & A.A. LACEY (eds)
126 Descriptive set theory and the structure of sets of uniqueness, A.S. KECHRIS & A. LOUVEAU
127 The subgroup structure of the finite classical groups, P.B. KLEIDMAN & M.W. LIEBECK
130 Model theory and modules, M. PREST
131 Algebraic, extremal & metric combinatorics, M-M. DEZA, P. FRANKL & I.G. ROSENBERG (eds)
132 Whitehead groups of finite groups, ROBERT OLIVER
133 Linear algebraic monoids, MOHAN S. PUTCHA
134 Number theory and dynamical systems, M. DOBSON & J. VICKERS (eds)
136 Operator algebras and applications, 1. D. EVANS & M. TAKESAKI (eds)
136 Operator algebras and applications, 2. D. EVANS & M. TAKESAKI (eds)
137 Analysis at Urbana, I. E. BERKSON, T. PECK, & J. UHL (eds)
138 Analysis at Urbana, II. E. BERKSON, T. PECK, & J. UHL (eds)
139 Advances in homotopy theory, S. SALAMON, B. STEER & W. SUTHERLAND (eds)
140 Geometric aspects of Banach spaces, E.M. PEINADOR & A. RODES (eds)
141 Surveys in combinatorics 1989, J. SIEMENS (ed)
144 Introduction to uniform spaces, I.M. JAMES
145 Homological questions in local algebra, JAN R. STROOKER
146 Coarse-Macaulay modules over Cohen-Macaulay rings, Y. YOSHINO
148 Helices and vector bundles, A.N. RUDAKOV et al
149 Solitons, nonlinear evolution equations and inverse scattering, M. ABLowitz & P. CLARKSON
150 Geometry of low-dimensional manifolds 1. S. DONALDSON & C.B. THOMAS (eds)
150 Geometry of low-dimensional manifolds 2. S. DONALDSON & C.B. THOMAS (eds)
152 Oligomorphic permutation groups, P. CAMERON
153 L-functions and arithmetic, J. COATES & M.J. TAYLOR (eds)
154 Number theory and cryptography, J. LOXTON (ed)
155 Classification theorems of polarized varieties, TAKAO FUJITA
156 Twistor theory in mathematics and physics, T.N. BAILEY & R.J. BASTON (eds)
157 Geometry of Banach spaces, P.F.X. MÜLLER & W. SCHACHERMAYER (eds)
158 Geometry of Banach spaces, 1. C.M. CAMPBELL & E.F. ROBERTSON (eds)
159 Groups St Andrews 1989 volume 1. C.M. CAMPBELL & E.F. ROBERTSON (eds)
160 Groups St Andrews 1989 volume 2. C.M. CAMPBELL & E.F. ROBERTSON (eds)
161 Lectures on block theory, BURKHARD KÜLHAMMER
The Descriptive Set Theory of Polish Group Actions

Howard Becker
University of South Carolina

Alexander S. Kechris
California Institute of Technology
CONTENTS

PREFACE vii

INTRODUCTION viii

0. DESCRIPTIVE SET THEORY 1

1. POLISH GROUPS 3
 1.1 Metrizable groups 3
 1.2 Polish groups 3
 1.3 Examples 7
 1.4 Universal Polish groups 7
 1.5 Some facts about the symmetric group S_∞ 8
 1.6 Standard Borel and Polishable groups 11

2. ACTIONS OF POLISH GROUPS 13
 2.1 G-spaces 13
 2.2 Polish G-spaces 14
 2.3 Borel G-spaces 17
 2.4 Examples 20
 2.5 The logic actions 22
 2.6 Universal actions 22
 2.7 Universal actions for closed subgroups of S_∞ 28

3. EQUIVALENCE RELATIONS 33
 3.1 Generalities 33
 3.2 Equivalence relations induced by actions 34
 3.3 The Silver Dichotomy 34
 3.4 The Glimm-Effros Dichotomy 35
 3.5 Universal equivalence relations 41

4. INVARIANT MEASURES
 AND PARADOXICAL DECOMPOSITIONS 44
 4.1 Tarski’s Theorem 44
 4.2 Countable decompositions 44
 4.3 Nadkarni’s Theorem 45
 4.4 Proof of 4.2.1 46
 4.5 Sketch of proof of Nadkarni’s Theorem 47
 4.6 Concluding remarks and problems 52
Contents

5. BETTER TOPOLOGIES 53
 5.1 Finer topologies and Borel sets 53
 5.2 Topological realization of Borel G-spaces 58
 5.3 Topological realization of definable G-spaces 67
 5.4 Finer topologies on G-spaces 71

6. MODEL THEORY AND THE VAUGHT CONJECTURE 82
 6.1 Background on the Vaught Conjecture 82
 6.2 The Topological Vaught Conjecture 87
 6.3 Atomic models 96

7. ACTIONS WITH BOREL ORBIT EQUIVALENCE RELATIONS 98
 7.1 Characterizations 98
 7.2 Some effective considerations 103
 7.3 Decompositions 104
 7.4 Tame groups 108
 7.5 Normalizers 110

8. DEFINABLE CARDINALITY 116
 8.1 Orbit cardinality 116
 8.2 Orbit cardinality for specific groups 119

References 122
Index 132
PREFACE

This book contains the results of the research of the authors in the foundations of the theory of definable actions of Polish groups and the associated orbit equivalence relations. It is addressed to graduate students and researchers in this area as well as to mathematicians in other fields, whose work comes in contact with this subject.

The reader will also find some new theorems which are attributed to someone other than the authors. Many people have helped in one way or another to improve this book: by allowing us to include these new theorems; by simplifying some of our proofs; by bringing to our attention some work we were unaware of; or by reading earlier versions of this book — or parts of it — and suggesting improvements in the exposition. We thank all of them: G. Cherlin, W. Comfort, R. Dougherty, G. Hjorth, A. Louveau, M. Megrelishvili, M. G. Nadkarni, R. Sami, S. Solecki, S. Thomas, and an anonymous referee.

The authors would also like to acknowledge the financial support of the National Science Foundation, through grants DMS-9206922 and DMS-9317509, and the help of the Mathematics Department at Caltech in the preparation of this book. We particularly thank J. Cassidy for typing the manuscript.

Howard Becker
Columbia, SC

Alexander S. Kechris
Pasadena, CA

November 1995
INTRODUCTION

A Polish space (group) is a separable, completely metrizable topological space (group). This book is about actions of Polish groups, in connection with – or from the point of view of – the subject of descriptive set theory. Descriptive set theory is the study of definable sets and functions in Polish spaces. The basic classes of definable sets are the classes of Borel, analytic and co-analytic sets, and these certainly constitute the main topic of the book, but at times we also consider other classes of definable sets.

The structure of Borel actions of Polish locally compact, i.e., second countable locally compact, topological groups has long been studied in ergodic theory, operator algebras and group representation theory. See, for example, Auslander–Moore [66], Feldman–Hahn–Moore [78], Glimm [61], Kechris [92a], Mackey [57, 62, 89], Moore [82], Ramsay [82, 85], Sinai [89], Varadarajan [63], Vershik–Fedorov [87], Zimmer [84] for a sample of this work. This is closely related to the subject matter of this book. More recently, there has been increasing interest in an extension of the above: studying the structure of Borel actions of arbitrary, not necessarily locally compact, Polish groups. Such groups are ubiquitous in mathematics, most often as groups of symmetries of mathematical structures, e.g., the symmetric group S_∞ on a countably infinite set, the group of homeomorphisms $H(X)$ of a compact metrizable space X, the unitary group $U(H)$ of a separable infinite dimensional Hilbert space H, groups of automorphisms of standard measure spaces, diffeomorphism groups, etc. The nonexistence of Haar measure for such groups makes their study quite challenging and requires the development of new methods, one of which is the use of Baire Category techniques.

One area where Borel actions of nonlocally compact groups occur, particularly of the symmetric group S_∞ and its closed subgroups, is in mathematical logic. Of particular importance is the Vaught Conjecture, a well-known open problem in logic, and the Topological Vaught Conjecture (see Becker [94], Burgess–Miller [75], Lascar [85], Miller [77], Sami [94], Steel [78], Vaught [74]). This falls within the more general framework of invariant descriptive set theory, introduced by Vaught [74] and motivated, to a large extent, by mathematical logic. If the term “invariant descriptive set theory” is interpreted in a broad enough fashion, then this is a book on invariant descriptive set theory. However, our perspective is somewhat
Introduction

ix

different from that of traditional invariant descriptive set theory.

Another place where such actions arise is in the ergodic theory and unitary group representation theory of nonlocally compact groups (see, e.g., Olshanski [82], Vershik [74]). Finally, such actions occur in the theory of operator algebras; see, in particular, Effros [65], [81], two papers motivated by some basic problems in that field which have also played an important role in our work as well.

This book contains a number of results about actions of general Polish groups, some of which are new even in the locally compact case. We will not attempt to describe in detail the contents of the book in this introduction. We do, however, wish to summarize the major themes that we are studying here and the main results related to each of them.

One theme is that of changing the topology on the space being acted upon. One of the main results here is that for a Borel action of a Polish group \(G \) on a Polish space \(X \), there is a new Polish topology on \(X \) having the same Borel structure such that the action becomes now continuous in the new topology. Equivalently, every Borel action on a Polish space is Borel isomorphic to a continuous one. This answers a question of Ramsay [85], who raised it in the case of locally compact \(G \), and Miller [77]. It was known classically for countable (discrete) groups and was proved recently for \(G = \mathbb{R} \) in Wagh [88].

Another result along these lines is that for any continuous action of a Polish group \(G \) on a Polish space \(X \) and any invariant Borel set \(B \subseteq X \), there is a new finer Polish topology on \(X \) (which therefore has the same Borel structure) in which \(B \) is now clopen and the action remains continuous. This result was known for countable groups and for \(S_\infty \).

A second theme is that of universal actions. We establish the existence of universal actions for any given Polish group, and, moreover, we show that the universal action can be taken to be a continuous action on a compact Polish space. This extends a result of Mackey [62] and Varadarajan [63] for the locally compact case.

These first two themes appear in \(\S 5 \) and \(\S 2 \), respectively. There are several applications of these results to various topics. A classical theorem of Tarski asserts that for any action of a group \(G \) on a set \(X \), there is a \(G \)-invariant finitely additive probability measure on \(X \) iff there is no \(G \)-paradoxical decomposition of \(X \). The problem has been raised (see, e.g., Wagon [93] for the history of this problem) whether there is an analog of Tarski’s Theorem for countably additive probability measures. We establish in \(\S 4 \), using also some recent work of Nekkani [90], the following analog: for a Borel action of a Polish group on a Polish space, there is a \(G \)-invariant
Introduction

probability Borel measure if there is no countable G-paradoxical Borel decomposition of X. In view of known counterexamples, this appears to be an optimal analog of Tarski’s Theorem.

In another direction, we show in §6 that various forms of the Topological Vaught Conjecture, originally proposed by Miller (see Rogers et al. [80], p. 484) turn out to be equivalent. One form is that in a continuous action of a Polish group on a Polish space there are either countably many or perfectly many orbits. Other forms assert the same conclusion for Borel actions or continuous actions restricted to Borel invariant sets. We also show in §6 that the Topological Vaught Conjecture for the symmetric group S_∞ is equivalent to the usual model theoretic Vaught Conjecture for the language $L_{\omega_1\omega}$ (which asserts that any sentence in this language has either countably many or perfectly many countable models, up to isomorphism.) Both the Vaught Conjecture (even for first-order theories) and the Topological Vaught Conjecture are of course still open.

A third theme is that of the logic actions. These are particular continuous actions by the group S_∞ on codes for countable L-structures, where the orbit equivalence relation is isomorphism. The logic actions serve three purposes: as a means of applying the study of group actions to questions in model theory; as motivation for generalizing concepts and theorems from model theory (that is, from logic actions) to other actions; and, as we show in §2, as concrete examples of the universal S_∞-action.

The fourth theme is that of dichotomies for the orbit space, that is, theorems to the effect that the orbit space is either “small” or else contains a copy of some specific “large” set. The Vaught Conjecture asserts such a dichotomy, and, indeed, that conjecture is what motivated quite a bit of the research in this book. Other important dichotomies, discussed in §3, are the Silver dichotomy and the Glimm–Effros type dichotomies.

The fifth theme is that of descriptive complexity for the orbit equivalence relation induced by a Borel action of a Polish group on a Polish space. In general such an equivalence relation is analytic but not Borel. We show though in §7 that the space acted upon can be canonically decomposed into an \aleph_1 sequence of invariant Borel sets on which the orbit equivalence is Borel and this sequence is cofinal among such invariant Borel sets. Finally, we characterize the Borelness of the orbit equivalence relation in terms of the complexity of the stabilizer function (from points in the space to closed subgroups of the Polish group): It is Borel iff the stabilizer function is Borel.

The sixth and final theme is that of the “definable cardinality” of the orbit space of an action. This is related to some of the earlier themes, as for example that of dichotomies, and is developed in more detail in §8.
Introduction

Some of the results contained here first appeared, without complete proofs, in the research announcement Becker–Kechris [93]. (In our research announcement we stated that we did not know whether the universal action can always be taken to be a continuous action on a compact space; as pointed out above, this has now been solved.) Some of them have also been previously announced in Becker [94] and Kechris [94].

This book contains a fair amount of background material – definitions and known theorems, sometimes with proofs, sometimes without. These preliminaries are introduced when needed, and so are scattered throughout the book. In particular, most of §1 and of the first halves of §2, 3 survey the basic facts about Polish groups, actions of Polish groups, and the induced equivalence relations, respectively, that are needed in the sequel.