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Structure of the Solar System

There’s not the smallest orb which thou behold’st
But in his motion like an angel sings,
Still quiring to the young-eyed cherubins;
Such harmony is in immortal souls;

William Shakespeare, Merchant of Venice, V, i

1.1 Introduction

It is a laudable human pursuit to try to perceive order out of the apparent ran-
domness of nature; science is, after all, an attempt to make sense of the world
around us. Moving against the background of the “fixed” stars, the regularity of
the Moon and planets demanded a dynamical explanation.

The history of astronomy is the history of a growing awareness of our posi-
tion (or lack of it) in the universe. Observing, exploring, and ultimately under-
standing our solar system is the first step towards understanding the rest of the
universe. The key discovery in this process was Newton’s formulation of the uni-
versal law of gravitation; this made sense of the orbits of planets, satellites, and
comets, and their future motion could be predicted: The Newtonian universe
was a deterministic system. The Voyager missions increased our knowledge
of the outer solar system by several orders of magnitude, and yet they would
not have been possible without knowledge of Newton’s laws and their conse-
quences. However, advances in mathematics and computer technology have
now revealed that, even though our system is deterministic, it is not necessarily
predictable. The study of nonlinear dynamics has revealed a solar system even
more intricately structured than Newton could have imagined.

In this chapter we review some of the observations that have motivated the
quest for an understanding of the dynamical structure of the solar system.
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2 1 Structure of the Solar System

1.2 The Belief in Number

The desire to perceive order in the distribution of objects in the solar system
can be traced to early Greece, although it may have had its roots in Babylonian
astronomy. Anaximander of Miletus (611–547 b.c.) claimed that the relative
distances of the stars, Moon, and Sun from the Earth were in the ratio 1:2:3
(Bernal 1969). The importance of whole numbers to members of the Pythagorean
school led them to believe that the distances of the heavenly bodies from the Earth
corresponded to a sequence of musical notes and this gave rise to the concept
of the “harmony of the spheres”. This, in turn, influenced Plato (427–347 b.c.)
whose work was to have a great effect on Johannes Kepler nearly two thousand
years later (Field 1988).

Kepler was obsessed with the belief that numbers and geometry could be
used to explain the spacing of the planetary orbits. He firmly believed in the
Copernican rather than the Ptolemaic system, but his views on planetary orbits
had foundations in numerology and astrology (Field 1988) rather than scientific
method. In the first edition of his book Mysterium Cosmographicum, Kepler
(1596) described his model of the solar system, which consisted of the six known
planets (Mercury, Venus, Earth, Mars, Jupiter, and Saturn) moving within spher-
ical shells whose inner and outer surfaces had precise separations determined by
the circumspheres and inspheres of the five regular polyhedra (cube, tetrahedron,
dodecahedron, icosahedron, and octahedron). Kepler believed that the widths
of these shells were related to the orbital eccentricities. This is illustrated in
Fig. 1.1 for the outer solar system. He also developed a similar theory to explain
the relative spacings of the newly discovered moons of Jupiter (Kepler 1610).
Between the first and second editions of Mysterium Cosmographicum, Kepler
had empirically deduced the first two of his laws of planetary motion (Kepler
1609), and the notes accompanying the second edition (Kepler 1621) make it
clear that his belief in astrology was waning (Field 1988). Although it is unlikely
that he had a literal belief in musical notes emanating from the planets, Kepler
persisted in his search for harmonic relationships between orbits.

Despite its metaphysical origins, Kepler’s geometrical model was a surpris-
ingly good fit to the available data (Field 1988). Although Kepler looked unsuc-
cessfully for simple numerical relationships between the orbital distances of the
planets, it was his fascination with numbers that ultimately led to the discovery
of his third law of motion, which relates the orbital period of a planet to its
average distance from the Sun. On 15 May 1618 he became convinced that “it is
most certain and most exact that the proportion between the periods of any two
planets is precisely three halves the proportion of the mean distances”. Kepler’s
most important legacy was not his intricate geometrical model of the spacing of
the planets, but his empirical derivation of his laws of planetary motion.
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1.3 Kepler’s Laws of Planetary Motion 3

Fig. 1.1. Kepler’s geometrical model of the relative distances of the planets. Each
planet moved within a spherical shell with inner and outer radii defined by the limiting
spheres of the regular polyhedra. For the outer solar system the orbits of Saturn, Jupiter,
and Mars are on spheres separated by a cube, a tetrahedron, and a dodecahedron.

1.3 Kepler’s Laws of Planetary Motion

Kepler (1609, 1619) derived his three laws of planetary motion using an empirical
approach. From observations, including those made by Tycho Brahe, Kepler
deduced that:

1) The planets move in ellipses with the Sun at one focus.
2) A radius vector from the Sun to a planet sweeps out equal areas in equal

times.
3) The square of the orbital period of a planet is proportional to the cube of its

semi-major axis.

The geometry implied by the first two laws is illustrated in Fig. 1.2. An ellipse
has two foci and according to the first law the Sun occupies one focus while the
other one is empty (Fig. 1.2a). In Fig. 1.2b each shaded region represents the
area swept out by a line from the Sun to an orbiting planet in equal time intervals,
and the second law states that these areas are equal. The geometry of the ellipse
will be considered further in Chapter 2.

Half the length of the long axis of the ellipse is called the semi-major axis, a
(see Fig. 1.2a). Kepler’s third law relates a to the period T of the planet’s orbit.
He deduced that T 2 ∝ a3, so that if two planets have semi-major axes a1 and
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4 1 Structure of the Solar System
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Fig. 1.2. The geometry implied by Kepler’s first two laws of planetary motion for an
eccentricity of 0.5. (a) The Sun occupies one of the two foci of the elliptical path traced
by the planet; the other focus is empty. (b) The regions A1, A2, and A3 denote equal
areas swept out in equal times by the radius vector.

a2 and periods T1 and T2, then T1/T2 = (a1/a2)
3/2, which is consistent with his

original formulation of the law.
It is important to remember that Kepler’s laws were purely empirical: He had

no physical understanding of why the planets obeyed these laws, although he
did propose a “magnetic vortex” to explain planetary orbits.

1.4 Newton’s Universal Law of Gravitation

In the seventeenth century Isaac Newton (1687) proved that a simple, inverse
square law of force gives rise to all motion in the solar system. There is good
evidence that Robert Hooke, a contemporary and rival of Newton, had proposed
the inverse square law of force before Newton (Westfall 1980) but Newton’s great
achievement was to show that Kepler’s laws of motion are a natural consequence
of this force and that the resulting motion is described by a conic section.

In scalar form, Newton proposed that the magnitude of the force F between
any two masses in the universe, m1 and m2, separated by a distance d is given by

F = Gm1m2

d2
, (1.1)

where G is the universal constant of gravitation.
In his Principia Newton (1687) also propounded his three laws of motion:

1) Bodies remain in a state of rest or uniform motion in a straight line unless
acted upon by a force.

2) The force experienced by a body is equal to the rate of change of its momen-
tum.

3) To every action there is an equal and opposite reaction.
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1.5 The Titius–Bode “Law” 5

The combination of these laws with the universal law of gravitation was to
have a profound effect on our understanding of the universe. Although Newton
“stood on the shoulders of giants” such as Copernicus, Kepler, and Galileo,
his discoveries revolutionised science in general and dynamical astronomy in
particular. By extending Newtonian gravitation to more than two bodies it was
shown that the mutual planetary interactions result in ellipses that are no longer
fixed. Instead the orbits of the planets slowly rotate or precess in space over
timescales of ∼105 y. For example, calculations based on the Newtonian model
have shown that the orbit of Mercury should currently be precessing at a rate of
531′′ century−1.

However, observations show that Mercury’s orbit is precessing at a rate that is
43′′ century−1 greater than that predicted by the Newtonian model. We now know
that Newton’s universal law of gravitation is only an approximation, albeit a very
good one, and that a better model of gravity is given by Einstein’s general theory
of relativity. Applied to the precession of Mercury’s perihelion this predicts an
additional contribution of 43′′ century−1, and the combination of the relativistic
contribution to the Newtonian model gives an agreement that is within the current
observational limitations (Roseveare 1982).

1.5 The Titius–Bode “Law”

The regularity in the spacing of the planetary orbits led to the formulation of a
simple mnemonic by Johann Titius in 1766 (Nieto 1972). Titius pointed out that
the mean distance d in astronomical units (AU) from the Sun to each of the six
known planets was well approximated by the equation

d = 0.4 + 0.3 (2i ), where i = −∞, 0, 1, 2, 4, 5. (1.2)

The “law” was soon popularised by Johann Bode and is now commonly referred
to as Bode’s law. Although the “law” had no physical foundation, Bode claimed
that an undiscovered planet orbited at the i = 3 location. The subsequent dis-
covery of the planet Uranus in 1781 at 19.18 AU (i = 6) and the first asteroid
(1) Ceres in 1801 at 2.77 AU (i = 3) were considered triumphs of the “law” (see
Table 1.1 and Nieto 1972).

Such was the success of the Titius–Bode “law” that both John Couch Adams
(1847) and Urbain Le Verrier (1847) used it as a basis for their calculations on the
predicted orbit of the eighth planet (Grosser 1979). Using i = 7 in Eq. (1.2) the
“law” predicts a semi-major axis of 38.8 AU; the planet Neptune was discovered
in 1846, but it has a semi-major axis of 30.1 AU. The breakdown of the “law”
was complete with the discovery of Pluto in 1929 at 39.4 AU compared with a
predicted distance of 77.2 AU (i = 8). Of course, it could be argued that Pluto
is too small to be considered a planet and should therefore be excluded from the
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6 1 Structure of the Solar System

Table 1.1. A comparison of the semi-major axes of the planets, including the minor
planet Ceres, with the values predicted by the Titius–Bode law.

Semi-major Titius–Bode
Planet i Axis (AU) Law (AU)

Mercury −∞ 0.39 0.4
Venus 0 0.72 0.7
Earth 1 1.00 1.0
Mars 2 1.52 1.6
Ceres 3 2.77 2.8
Jupiter 4 5.20 5.2
Saturn 5 9.54 10.0
Uranus 6 19.18 19.6
Neptune 7 30.06 38.8
Pluto 8 39.44 77.2

calculation. However, if every value of i is filled we should expect an infinite
number of planets between Mercury and Venus!

Some of the regular satellite systems of the outer planets appear to have nonran-
dom distributions because there are a number of simple numerical relationships
between their periods (see Sects. 1.6 and 1.7). In an attempt to incorporate
orbital resonances into a Titius–Bode “law”, Dermott (1972, 1973) discussed
the significance of a modified form of the law using a two-parameter, geometric
progression of orbital periods rather than orbital distances. Writing

Ti = T0 Ai , (1.3)

where the satellites are numbered in order of increasing period, Ti is the predicted
orbital period of the i th satellite, and T0 and A are arbitrary constants, Dermott
pointed out that if the possibility of “empty orbitals” is excluded from the system,
then such a relationship can only hold for the regular satellites of Uranus. Taking
the logarithm of each side of Eq. (1.3), we have

log Ti = log T0 + i log A. (1.4)

The observed data can then be fitted to this model using a standard linear regres-
sion technique where one measure of the goodness of fit is the root mean square
(rms) value, χ , of the residuals. This is given by

χ2 = 1
n

n∑

i=1

(log Ti − log T0 − i log A)2, (1.5)

where Ti is now understood to be the observed orbital period. The comparison
of the predictions with the observed data shown in Table 1.2 and Fig. 1.3 seem
remarkably favourable. Using the fitted parameters of T0 = 0.7919, A = 1.777
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1.5 The Titius–Bode “Law” 7

Table 1.2. A comparison of the observed orbital period (in days) of the large satellites of
Uranus with values calculated using a geometric progression of the form of Eq. (1.3).

Satellite i Ti (obs.) Ti (calc.)

Miranda 1 1.413 1.407
Ariel 2 2.520 2.500
Umbriel 3 4.144 4.442
Titania 4 8.706 7.893
Oberon 5 13.46 14.02

we obtain χ = 0.0247. However, it is not enough to be impressed by the
seemingly remarkable fits. We need to subject the data to a statistical test and
to calculate whether or not the value of χ is small enough to be statistically
significant. This can be addressed using a Monte Carlo approach.

Using a technique similar to that of Dermott (1972, 1973) we have generated
a series of sets of five satellites subject to certain restrictions on the distribution
of their orbital periods. The innermost satellite was always chosen to have the
observed orbital period of Miranda. The remaining periods were then generated
using the relationship

Ti+1

Ti
= L + xi (U − L) (i = 1, 2, 3, 4), (1.6)

where xi is a random number in the range 0 ≤ xi ≤ 1, and L and U (> L) represent
the fixed lower and upper limits on the ratio of successive orbital periods in the
system. For each such system of five satellites the parameters log T0 and log A
and the rms deviation χ are determined.
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Fig. 1.3. A linear, least squares fit for the orbital periods, Ti , of the five major uranian
satellites.
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8 1 Structure of the Solar System

The choice of L and U is to some extent arbitrary. For the five uranian satellites
the observed values are L = 1.546 and U = 2.101. By generating 105 sets of
five satellites with periods given by the formula in Eq. (1.6), we can determine
the number that have a value of χ < 0.0247 for these values of L and U . Hence we
estimate that the probability that the current configuration has arisen by chance
is 0.79. Thus, despite the seemingly impressive fit displayed in Table 1.2 and
Fig. 1.3, almost any distribution of periods, subject to the same constraints on L
and U , would fit into a Titius–Bode “law” equally well.

We have investigated the sensitivity of this estimate to the values of L and U
by repeating the above procedure for L = 1.0, 1.2, 1.4, and 1.6 using values of
U in the range 1.2 < U < 5. For every value of L and U we have calculated
the value of χ for each of the set of 105 systems of five satellites. In each case
we calculated the number of systems, N , for which χ < 0.0247 and hence we
estimated the probability P(χ < 0.0247) = 10−5 N for those values of L and U .
The results are shown in Fig. 1.4. It is clear that P → 1 as U → L when the
ratios of successive periods are nearly equal. However, P only becomes small
(P < 0.01) for large values of U , corresponding to widely spaced satellites.

These results suggest that the apparent regular spacing of the orbital periods
shown in Table 1.2 is not significant. There is no compelling evidence that the
uranian satellite system is obeying any relation similar to the Titius–Bode “law”,
beyond what would be expected by chance. This leads us to suggest that the “law”
as applied to other systems, including the planets themselves, is also without
significance. However, even though there are no grounds for belief in a Titius–
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Fig. 1.4. The probability P that the calculated value of the rms deviation χ is less than
the observed value of 0.0247 as a function of the upper limit U for values of the lower
limit, L = 1.0, 1.2, 1.4, and 1.6. The cross marks the value appropriate for the actual
uranian system.
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1.6 Resonance in the Solar System 9

Bode “law”, the various bodies of the solar system do exhibit some remarkable
numerical relationships and these can be shown to be dynamically significant.

1.6 Resonance in the Solar System

Our knowledge of the solar system has increased dramatically in recent years.
Although no new planets have been discovered since 1930, there have been a
number of advances in the study of the minor members of the solar system. By
the start of the twentieth century 22 planetary satellites had been discovered
and now there are known to be more than 60 satellites (see Appendix A) with
indirect evidence for the existence of others. In addition there are currently
more than 10,000 catalogued asteroid orbits and more than 500 reliable orbits
for comets. Numerous bodies have been discovered with orbits beyond that of
Pluto in the Edgeworth–Kuiper belt. Some estimates suggest that there may be
as many as 2×108 objects with radii ∼10 km in this region (Cochran et al. 1995).
Observations by the Infra-Red Astronomical Satellite (IRAS) have revealed the
presence of dust bands in the asteroid belt and dust trails associated with comets.
The study of planetary rings has also undergone radical changes; prior to 1977
it was believed that Saturn was the only ringed planet, whereas now we know
that all the giant planets possess ring systems, each with unique characteristics.

The avalanche of planetary data in recent years has provided striking confir-
mation that our solar system is a highly structured assembly of orbiting bodies,
but the structure is not as simple as Kepler’s geometrical model nor as crude
as that implied by the Titius–Bode “law”. It is Newton’s laws that are at work
and the subtle gravitational effect that determines the dynamical structure of our
solar system is the phenomenon of resonance.

In basic terms a resonance can arise when there is a simple numerical relation-
ship between frequencies or periods. The periods involved could be the rotational
and orbital periods of a single body, as in the case of spin–orbit coupling, or
perhaps the orbital periods of two or more bodies, as in the case of orbit–orbit
coupling. Other, more complicated resonant relationships are also possible. We
now know that dissipative forces are driving evolutionary processes in the solar
system and that these are connected with the origins of some of these resonances.

The most obvious example of a spin–orbit resonance is the Moon, which has an
orbital period that is equal to its rotational period, resulting in the Moon keeping
one face towards the Earth. Most of the major, natural satellites in the solar sys-
tem are in a 1:1 or synchronous spin–orbit resonance. However, other spin–orbit
states are also possible and radar observations of Mercury by Pettengill & Dyce
(1965) showed that the planet Mercury is in a 3:2 spin–orbit resonance.

In the following sections we discuss each of the subsystems of the solar system.
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10 1 Structure of the Solar System

1.6.1 The Planetary System

The orbital elements of Jupiter and Saturn are modified on a ∼900 y timescale
by a 5:2 near-resonance between their orbital periods, which French astronomers
called la grande inégalité (the great inequality). Although the two planets are
not actually in a 5:2 resonance they are sufficiently close to it for significant
perturbations to be experienced by both bodies.

The planets Neptune and Pluto are in a peculiar 3:2 orbit–orbit resonance
that maximises their separation at conjunction with the result that they avoid a
close approach. The complexity of the Neptune–Pluto resonance was discovered
and has been studied, not by a prolonged series of observations, but by direct
numerical integration of the appropriate equations of motion. This is the only
possible technique because observations of Pluto span less than a third of its
orbital period.

As well as the resonances involving their orbital periods, some of the plan-
ets are also involved in long-term or secular resonances associated with the
precession of the planetary orbits in space.

1.6.2 The Jupiter System

Perhaps the most striking example of orbit–orbit resonance occurs amongst three
of the Galilean satellites of Jupiter (see Fig. 1.5). Io is in a 2:1 resonance with
Europa, which is itself in a 2:1 resonance with Ganymede, resulting in all three
satellites being involved in a configuration known as a Laplace resonance. The
average orbital angular velocity or mean motion n in ◦d−1 is defined by n =
360/T , where T is the orbital period of the body in days. The mean motions of
Io, Europa, and Ganymede are

nI = 203.488992435◦d−1, (1.7)

Fig. 1.5. A montage of images of the Galilean satellites of Jupiter shown to the same
relative sizes. The satellites are (from left to right) Io, Europa, Ganymede, and Callisto.
Ganymede has a mean radius of 2,634 km and is the largest moon in the solar system.
The images were taken by the Galileo spacecraft. (Image courtesy of NASA/JPL.)
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