Phase Transition Dynamics

AKIRA ONUKI Kyoto University

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

> CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014, Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

> > http://www.cambridge.org

© A. Onuki 2002

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2002

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 10/13pt. System $LAT_EX 2_{\varepsilon}$ [DBD]

A catalogue record of this book is available from the British Library

Library of Congress Cataloguing in Publication data

Onuki, Akira. Phase transition dynamics / Akira Onuki p. cm. Includes bibliographical references and index. ISBN 0 521 57293 2 1. Phase transformations (Statistical physics). 2. Condensed matter. I. Title OC175.16.P5 O58 2002

530.4'14-dc21 2001037340

ISBN 0521572932 hardback

Contents

Preface		<i>page</i> ix	
	Part	one: Statics	1
1	Spin systems and fluids		3
	1.1	Spin models	3
	1.2	One-component fluids	10
	1.3	Binary fluid mixtures	23
	App	endix 1A Correlations with the stress tensor	30
	Refe	rences	32
2	Critical phenomena and scaling		34
	2.1	General aspects	34
	2.2	Critical phenomena in one-component fluids	45
	2.3	Critical phenomena in binary fluid mixtures	53
	2.4	⁴ He near the superfluid transition	66
	App	endix 2A Calculation in non-azeotropic cases	74
	Refe	rences	75
3	Mean field theories		78
	3.1	Landau theory	78
	3.2	Tricritical behavior	84
	3.3	Bragg–Williams approximation	90
	3.4	van der Waals theory	99
	3.5	Mean field theories for polymers and gels	104
	App	endix 3A Finite-strain theory	119
	Refe	rences	122
4	Advanced theories in statics		124
	4.1	Ginzburg–Landau–Wilson free energy	124
	4.2	Mapping onto fluids	133
	4.3	Static renormalization group theory	144
	4.4	Two-phase coexistence and surface tension	162
	4.5	Vortices in systems with a complex order parameter	173
	App	endix 4A Calculation of the critical exponent η	178
	App	endix 4B Random phase approximation for polymers	179

	Appendix 4C Renormalization group equations for <i>n</i> -component systems	180	
	Appendix 4D Calculation of a free-energy correction	181	
	Appendix 4E Calculation of the structure factors	182	
	Appendix 4F Specific heat in two-phase coexistence	183	
	References	184	
	Part two: Dynamic models and dynamics in fluids and polymers	189	
5	Dynamic models	191	
	5.1 Langevin equation for a single particle	191	
	5.2 Nonlinear Langevin equations with many variables	198	
	5.3 Simple time-dependent Ginzburg–Landau models	203	
	5.4 Linear response	211	
	Appendix 5A Derivation of the Fokker–Planck equation	217	
	Appendix 5B Projection operator method	217	
	Appendix 5C Time reversal symmetry in equilibrium time-correlation		
	functions	222	
	Appendix 5D Renormalization group calculation in purely dissipative		
	dynamics	222	
	Appendix 5E Microscopic expressions for the stress tensor and energy current	223	
	References	224	
6	Dynamics in fluids	227	
	6.1 Hydrodynamic interaction in near-critical fluids	227	
	6.2 Critical dynamics in one-component fluids	237	
	6.3 Piston effect	252	
	6.4 Supercritical fluid hydrodynamics	265	
	6.5 Critical dynamics in binary fluid mixtures	271	
	6.6 Critical dynamics near the superfluid transition	281	
	6.7 ⁴ He near the superfluid transition in heat flow	298	
	Appendix 6A Derivation of the reversible stress tensor	307	
	Appendix 6B Calculation in the mode coupling theory	308	
	Appendix 6C Steady-state distribution in heat flow	309	
	Appendix 6D Calculation of the piston effect	310	
	References	311	
7	Dynamics in polymers and gels		
	7.1 Viscoelastic binary mixtures	317	
	7.2 Dynamics in gels	335	
	7.3 Heterogeneities in the network structure	351	
	Appendix 7A Single-chain dynamics in a polymer melt	359	
	Appendix 7B Two-fluid dynamics of polymer blends	360	
	Appendix 7C Calculation of the time-correlation function	362	
	Appendix 7D Stress tensor in polymer solutions	362	

vi

	Contents	vii
	Appendix 7E Elimination of the transverse degrees of freedom Appendix 7F Calculation for weakly charged polymers Appendix 7G Surface modes of a uniaxial gel References	363 365 366 366
	Part three: Dynamics of phase changes	371
8	Phase ordering and defect dynamics8.1Phase ordering in nonconserved systems8.2Interface dynamics in nonconserved systems8.3Spinodal decomposition in conserved systems8.4Interface dynamics in conserved systems8.5Hydrodynamic interaction in fluids8.6Spinodal decomposition and boiling in one-component fluids8.7Adiabatic spinodal decomposition8.8Periodic spinodal decomposition8.9Viscoelastic spinodal decomposition in polymers and gels8.10Vortex motion and mutual frictionAppendix 8AGeneralizations and variations of the Porod lawAppendix 8BThe pair correlation function in the nonconserved caseAppendix 8DThe structure factor tail for $n = 2$ Appendix 8EDifferential geometryAppendix 8FCalculation in the Langer–Bar-on–Miller theoryAppendix 8GThe Stefan problem for a sphere and a circleAppendix 8HThe velocity and pressure close to the interfaceAppendix 8ICalculation of vortex motionReferencesStefan problem for a sphere and a circle	373 373 389 400 407 421 432 437 440 444 453 469 473 474 475 476 477 478 479 480 482
9	Nucleation9.1Droplet evolution equation9.2Birth of droplets9.3Growth of droplets9.4Nucleation in one-component fluids9.5Nucleation at very low temperatures9.6Viscoelastic nucleation in polymers9.7Intrinsic critical velocity in superfluid heliumAppendix 9A Relaxation to the steady droplet distributionAppendix 9B The nucleation rate near the critical pointAppendix 9C The asymptotic scaling functions in droplet growthAppendix 9D Moving domains in the dissipative regimeAppendix 9E Piston effect in the presence of growing droplets	488 488 499 506 518 530 533 538 543 544 545 546 547

viii	Contents		
	Appendix 9F Calculation of the quantum decay rate References	547 548	
10	Phase transition dynamics in solids		
	10.1 Phase separation in isotropic elastic theory	556	
	10.2 Phase separation in cubic solids	577	
	10.3 Order–disorder and improper martensitic phase transitions	584	
	10.4 Proper martensitic transitions	593	
	10.5 Macroscopic instability	615	
	10.6 Surface instability	622	
	Appendix 10A Elimination of the elastic field	625	
	Appendix 10B Elastic deformation around an ellipsoidal domain	629	
	Appendix 10C Analysis of the Jahn–Teller coupling	630	
	Appendix 10D Nonlocal interaction in 2D elastic theory	631	
	Appendix 10E Macroscopic modes of a sphere	632	
	Appendix 10F Surface modes on a planar surface	635	
	References	635	
11	Phase transitions of fluids in shear flow		
	11.1 Near-critical fluids in shear	642	
	11.2 Shear-induced phase separation	668	
	11.3 Complex fluids at phase transitions in shear flow	684	
	11.4 Supercooled liquids in shear flow	686	
	Appendix 11.A Correlation functions in velocity gradient		
	References	701	
Inde	ex	710	

1

Spin systems and fluids

To study equilibrium statistical physics, we will start with Ising spin systems (hereafter referred to as Ising systems), because they serve as important reference systems in understanding various phase transitions [1]-[7].¹ We will then proceed to one- and two-component fluids with short-range interaction, which are believed to be isomorphic to Ising systems with respect to static critical behavior. We will treat equilibrium averages of physical quantities such as the spin, number, and energy density and then show that thermodynamic derivatives can be expressed in terms of fluctuation variances of some density variables. Simple examples are the magnetic susceptibility in Ising systems and the isothermal compressibility in one-component fluids expressed in terms of the correlation function of the spin and density, respectively. More complex examples are the constant-volume specific heat and the adiabatic compressibility in one- and two-component fluids. For our purposes, as far as the thermodynamics is concerned, we need equal-time correlations only in the long-wavelength limit. These relations have not been adequately discussed in textbooks, and must be developed here to help us to correctly interpret various experiments of thermodynamic derivatives. They will also be used in dynamic theories in this book. We briefly summarize equilibrium thermodynamics in the light of these equilibrium relations for Ising spin systems in Section 1.1, for one-component fluids in Section 1.2, and for binary fluid mixtures in Section 1.3.

1.1 Spin models

1.1.1 Ising hamiltonian

Let each lattice point of a crystal lattice have two microscopic states. It is convenient to introduce a spin variable s_i , which assumes the values 1 or -1 at lattice point *i*. The microscopic energy of this system, called the Ising spin hamiltonian, is composed of the exchange interaction energy and the magnetic field energy,

$$\mathcal{H}\{s\} = \mathcal{H}_{ex} + \mathcal{H}_{mag}, \tag{1.1.1}$$

where

$$\mathcal{H}_{\text{ex}} = -\sum_{\langle i,j \rangle} J s_i s_j, \qquad (1.1.2)$$

¹ References are to be found at the end of each chapter.

$$\mathcal{H}_{\text{mag}} = -H \sum_{i} s_i. \tag{1.1.3}$$

The interaction between different spins is short-ranged and the summation in \mathcal{H}_{ex} is taken over the nearest neighbor pairs *i*, *j* of the lattice points. The interaction energy between spins is then -J if paired spins have the same sign, while it is *J* for different signs. In the case J > 0 the interaction is ferromagnetic, where all the spins align in one direction at zero temperature. The magnetic field *H* is scaled appropriately such that it has the dimension of energy. At zero magnetic field the system undergoes a second-order phase transition at a critical temperature T_c . The hamiltonian \mathcal{H} mimics ferromagnetic systems with uniaxial anisotropy.

In the case J < 0, the interaction is antiferromagnetic, where the neighboring paired spins tend to be antiparallel at low temperatures. Let us consider a cubic lattice, which may be divided into two sublattices, A and B, such that each lattice point and its nearest neighbors belong to different sublattices. Here, we define the staggered spin variables S_i by

$$S_i = s_i \quad (i \in A), \quad S_i = -s_i \quad (i \in B).$$
 (1.1.4)

Then, \mathcal{H}_{ex} in terms of $\{S_i\}$ has the positive coupling |J| and is isomorphic to the ferromagnetic exchange hamiltonian.

The Ising model may also describe a phase transition of binary alloys consisting of atoms 1 and 2, such as Cu–Zn alloys. If each lattice point *i* is occupied by a single atom of either of the two species, the occupation numbers n_{1i} and n_{2i} satisfy $n_{1i} + n_{2i} = 1$. Vacancies and interstitials are assumed to be nonexistent. If the nearest neighbor pairs have an interaction energy ϵ_{KL} (K, L = 1, 2), the hamiltonian is written as

$$\mathcal{H}\{n\} = \sum_{\langle i,j \rangle } \sum_{K,L} \epsilon_{KL} n_{Ki} n_{Lj} - \sum_{i} \sum_{K} \mu_{K} n_{Ki}, \qquad (1.1.5)$$

where μ_1 and μ_2 are the chemical potentials of the two components. From (1.1.4) we may introduce a spin variable,

$$s_i = 2n_{1i} - 1 = 1 - 2n_{2i}, \tag{1.1.6}$$

to obtain the Ising model (1.1.1) with

$$J = \frac{1}{4}(-\epsilon_{11} - \epsilon_{22} + 2\epsilon_{12}), \qquad H = \frac{1}{2}(\mu_1 - \mu_2) - \frac{z}{4}(\epsilon_{11} - \epsilon_{22}), \qquad (1.1.7)$$

where z is the number of nearest neighbors with respect to each lattice point and is called the coordination number.

1.1.2 Vector spin models

Many variations of spin models defined on lattices have been studied in the literature [8]. If the spin $s_i = (s_{1i}, ..., s_{ni})$ on each lattice point is an *n*-component vector, its simplest

hamiltonian reads

$$\mathcal{H}\{s\} = -\sum_{\langle i,j \rangle} Js_i \cdot s_j - H\sum_i s_{1i}.$$
(1.1.8)

The first term, the exchange interaction, is assumed to be invariant with respect to rotation in the spin space. The magnetic field H favors ordering of the first spin components s_{1i} . The model with n = 2 is called the xy model, and the model with n = 3 the Heisenberg model. It is known that the static critical behavior of the three-dimensional xy model is isomorphic to that of ⁴He and ³He–⁴He mixtures near the superfluid transition, as will be discussed later. However, there are many cases in which there is some anisotropy in the spin space and, if one direction is energetically favored, the model reduces to the Ising model asymptotically close to the critical point. Such anisotropy becomes increasingly important near the critical point (or *relevant* in the terminology of renormalization group theory). As another relevant perturbation, we may introduce a long-range interaction such as a dipolar interaction.

1.1.3 Thermodynamics of Ising models

Each microscopic state of the Ising system is determined if all the values of spins $\{s\}$ are given. In thermal equilibrium, the probability of each microscopic state being realized is given by the Boltzmann weight,

$$P_{\rm eq}(\{s\}) = Z^{-1} \exp(-\beta \mathcal{H}\{s\}), \qquad (1.1.9)$$

where

$$\beta = 1/T. \tag{1.1.10}$$

In this book the absolute temperature multiplied by the Boltzmann constant $k_{\rm B} = 1.381 \times 10^{-16}$ erg/K is simply written as *T* and is called the temperature [1], so *T* has the dimension of energy. The normalization factor *Z* in (1.1.9) is called the partition function,

$$Z = \sum_{\{s\}} \exp(-\beta \mathcal{H}\{s\}), \qquad (1.1.11)$$

where the summation is taken over all the microscopic states. The differential form for the logarithm $\ln Z$ becomes

$$d(\ln Z) = -\langle \mathcal{H} \rangle d\beta + \beta \langle \mathcal{M} \rangle dH = -\langle \mathcal{H}_{ex} \rangle d\beta + \langle \mathcal{M} \rangle dh, \qquad (1.1.12)$$

where the increments are infinitesimal,

$$h = \beta H = H/T, \tag{1.1.13}$$

and \mathcal{M} is the sum of the total spins,²

$$\mathcal{M} = \sum_{i} s_i. \tag{1.1.14}$$

² In this book the quantities, H, M, N, ... in script, are fluctuating variables (dependent on the microscopic degrees of freedom) and not thermodynamic ones.

Hereafter $\langle \cdots \rangle$ is the average over the Boltzmann distribution (1.1.9). The usual choice of the thermodynamic potential is the free energy,

$$F = -T\ln Z, \tag{1.1.15}$$

and the independent intensive variables are T and H with

$$dF = -SdT - \langle \mathcal{M} \rangle dH, \qquad (1.1.16)$$

where $S = (\langle \mathcal{H} \rangle - F)/T$ is the entropy of the system.

We also consider the small change of the microscopic canonical distribution in (1.1.9) for small changes, $\beta \rightarrow \beta + \delta\beta$ and $h \rightarrow h + \delta h$. Explicitly writing its dependences on β and h, we obtain

$$P_{\rm eq}(\{s\}; \beta + \delta\beta, h + \deltah) = P_{\rm eq}(\{s\}; \beta, h) \exp\left[-\delta\mathcal{H}_{\rm ex}\delta\beta + \delta\mathcal{M}\delta h + \cdots\right], \quad (1.1.17)$$

where $\delta \mathcal{H}_{ex} = \mathcal{H}_{ex} - \langle \mathcal{H}_{ex} \rangle$ and $\delta \mathcal{M} = \mathcal{M} - \langle \mathcal{M} \rangle$. To linear order in $\delta \beta$ and δh , the change of the distribution is of the form,

$$\delta P_{\rm eq}(\{s\}) = P_{\rm eq}(\{s\}) \Big[-\delta \mathcal{H}_{\rm ex} \delta \beta + \delta \mathcal{M} \delta h + \cdots \Big].$$
(1.1.18)

Therefore, the average of any physical variable $A = A\{s\}$ dependent on the spin configurations is altered with respect to the change (1.1.18) as

$$\delta \langle \mathcal{A} \rangle = -\langle \mathcal{A} \delta \mathcal{H}_{\text{ex}} \rangle \delta \beta + \langle \mathcal{A} \delta \mathcal{M} \rangle \delta h + \cdots .$$
(1.1.19)

We set $\mathcal{A} = \mathcal{M}$ and \mathcal{H}_{ex} to obtain

$$V\chi = \frac{\partial^2 \ln Z}{\partial h^2} = \frac{\partial \langle \mathcal{M} \rangle}{\partial h} = \langle (\delta \mathcal{M})^2 \rangle, \qquad (1.1.20)$$

$$\frac{\partial^2 \ln Z}{\partial \beta^2} = -\frac{\partial \langle \mathcal{H}_{\text{ex}} \rangle}{\partial \beta} = \langle (\delta \mathcal{H}_{\text{ex}})^2 \rangle, \qquad (1.1.21)$$

$$\frac{\partial^2 \ln Z}{\partial h \partial \beta} = \frac{\partial \langle M \rangle}{\partial \beta} = -\frac{\partial \langle \mathcal{H}_{\text{ex}} \rangle}{\partial h} = -\langle \delta \mathcal{M} \delta \mathcal{H}_{\text{ex}} \rangle, \qquad (1.1.22)$$

where V is the volume of the system, χ is the isothermal magnetic susceptibility per unit volume, *h* and β are treated as independent variables, and use has been made of (1.1.12). Another frequently discussed quantity is the specific heat C_H at constant magnetic field defined by³

$$C_H = \frac{T}{V} \left(\frac{\partial S}{\partial T} \right)_H = \frac{1}{V} \left(\frac{\partial \langle \mathcal{H} \rangle}{\partial T} \right)_H.$$
(1.1.23)

Here we use $-(\partial \langle \mathcal{H} \rangle / \partial \beta)_H = (\partial^2 \ln Z / \partial \beta^2)_H$ to obtain

$$C_H = \langle (\delta \mathcal{H})^2 \rangle / T^2 V. \tag{1.1.24}$$

³ In this book all the specific heats in spin systems and fluids have the dimension of a number density.

1.1 Spin models

Namely, C_H is proportional to the variance of the total energy. We also introduce the specific heat C_M at constant magnetization $\langle \mathcal{M} \rangle$ by

$$VC_M = T\left(\frac{\partial S}{\partial T}\right)_M = VC_H - T\left(\frac{\partial \langle \mathcal{M} \rangle}{\partial T}\right)_H^2 / \left(\frac{\partial \langle \mathcal{M} \rangle}{\partial H}\right)_T.$$
 (1.1.25)

From $(\partial \langle \mathcal{M} \rangle / \partial \beta)_H = - \langle \delta \mathcal{H} \delta \mathcal{M} \rangle$ we obtain

$$C_M = \left[\langle (\delta \mathcal{H})^2 \rangle - \langle \delta \mathcal{H} \delta \mathcal{M} \rangle^2 / \langle (\delta \mathcal{M})^2 \rangle \right] / VT^2, \qquad (1.1.26)$$

where $\delta \mathcal{H}$ may be replaced by $\delta \mathcal{H}_{ex}$ because $\delta \mathcal{H} - \delta \mathcal{H}_{ex} = -H \delta \mathcal{M}$ is linearly proportional to \mathcal{M} . It holds the inequality $C_H \ge C_M$. These two specific heats coincide in the disordered phase at H = 0 where $\langle \delta \mathcal{H} \delta \mathcal{M} \rangle = 0$. We shall see that C_M in spin systems corresponds to the specific heat C_V at constant volume in one-component fluids.

Positivity of C_M

Combinations of the variances of the form,

$$C_{AB} = \langle (\delta \mathcal{A})^2 \rangle - \langle \delta \mathcal{A} \delta \mathcal{B} \rangle^2 / \langle (\delta \mathcal{B})^2 \rangle \ge 0, \qquad (1.1.27)$$

will frequently appear in expressions for thermodynamic derivatives. Obviously C_{AB} is the minimum value of $\langle (\delta A - x \delta B)^2 \rangle = \langle (\delta A)^2 \rangle - 2x \langle \delta A \delta B \rangle + x^2 \langle (\delta B)^2 \rangle \ge 0$ as a function of *x*, so it is positive-definite unless the ratio $\delta A / \delta B$ is a constant. Thus we have $C_M > 0$.

1.1.4 Spin density and energy density variables

We may define the spin density variable $\hat{s}(\mathbf{r})$ by⁴

$$\hat{\psi}(\mathbf{r}) = \sum_{i} s_i \delta(\mathbf{r} - \mathbf{r}_i), \qquad (1.1.28)$$

where \mathbf{r}_i is the position vector of the lattice site *i*. Then $\mathcal{M} = \int d\mathbf{r} \hat{\psi}(\mathbf{r})$ is the total spin sum in (1.1.14). Through to Chapter 5 the equilibrium equal-time correlation functions will be considered and the time variable will be suppressed. For the deviation $\delta \hat{\psi} = \hat{\psi} - \langle \hat{\psi} \rangle$ of the spin density, the pair correlation is defined by

$$g(\mathbf{r} - \mathbf{r}') = \langle \delta \hat{\psi}(\mathbf{r}) \delta \hat{\psi}(\mathbf{r}') \rangle, \qquad (1.1.29)$$

which is expected to decay to zero for a distance $|\mathbf{r} - \mathbf{r}'|$ much longer than a correlation length in the thermodynamic limit $(V \to \infty)$. The Fourier transformation of $g(\mathbf{r})$ is called the structure factor,

$$I(\mathbf{k}) = \int d\mathbf{r}g(\mathbf{r}) \exp(i\mathbf{k} \cdot \mathbf{r}), \qquad (1.1.30)$$

⁴ Hereafter, the quantities with a circumflex such as ψ̂, m̂, n̂,... are fluctuating quantities together with those in script such as *H*, *A*, *B*,... However, the circumflex will be omitted from Chapter 3 onward, to avoid confusion.

which is expected to be isotropic (or independent of the direction of k) at long wavelengths ($ka \ll 1$, a being the lattice constant). The susceptibility (1.1.20) is expressed as

$$\chi = \int d\mathbf{r}g(\mathbf{r}) = \lim_{k \to 0} I(k).$$
(1.1.31)

However, in the thermodynamic limit, χ is long-range and the space integral in (1.1.31) is divergent at the critical point. We may also introduce the exchange energy density $\hat{e}(\mathbf{r})$ by

$$\hat{e}(\mathbf{r}) = -\sum_{\langle i,j \rangle} J s_i s_j \delta(\mathbf{r} - \mathbf{r}_i).$$
(1.1.32)

Then, $\int d\mathbf{r} \hat{e}(\mathbf{r}) = \mathcal{H}_{ex}$, and the (total) energy density is

$$\hat{e}_{\rm T}(\mathbf{r}) = \hat{e}(\mathbf{r}) - H\hat{\psi}(\mathbf{r}),$$
 (1.1.33)

including the magnetic field energy. From (1.1.24) C_H is expressed in terms of the deviation $\delta \hat{e}_T = \hat{e}_T - \langle e_T \rangle$ as

$$C_H = T^{-2} \int d\mathbf{r} \langle \delta \hat{e}_{\mathrm{T}}(\mathbf{r} + \mathbf{r}_0) \delta \hat{e}_{\mathrm{T}}(\mathbf{r}_0) \rangle, \qquad (1.1.34)$$

which is independent of r_0 in the thermodynamic limit.

Hereafter, we will use the following abbreviated notation (also for fluid systems),

$$\langle \hat{a} : \hat{b} \rangle = \int d\mathbf{r} \langle \delta \hat{a}(\mathbf{r}) \delta \hat{b}(\mathbf{r}') \rangle, \qquad (1.1.35)$$

defined for arbitrary density variables $\hat{a}(\mathbf{r})$ and $\hat{b}(\mathbf{r})$, which are determined by the microscopic degrees of freedom at the space position \mathbf{r} . The space correlation $\langle \delta \hat{a}(\mathbf{r}) \delta \hat{b}(\mathbf{r}') \rangle$ is taken as its thermodynamic limit, and it is assumed to decay sufficiently rapidly for large $|\mathbf{r} - \mathbf{r}'|$ ensuring the existence of the long-wavelength limit (1.1.35). Furthermore, for any thermodynamic function $a = a(\psi, e)$, we may introduce a fluctuating variable by

$$\hat{a}(\mathbf{r}) = a + \left(\frac{\partial a}{\partial \psi}\right)_e \delta \hat{\psi}(\mathbf{r}) + \left(\frac{\partial a}{\partial e}\right)_\psi \delta \hat{e}(\mathbf{r}), \qquad (1.1.36)$$

where *a* is treated as a function of the thermodynamic averages $\psi = \langle \hat{\psi} \rangle$ and $e = \langle \hat{e} \rangle$. From (1.1.19) its incremental change for small variations, $\delta \beta = -\delta T/T^2$ and δh , is written as

$$\delta\langle \hat{a}\rangle = \langle \hat{a}: \hat{e}\rangle \frac{\delta T}{T^2} + \langle \hat{a}: \hat{\psi}\rangle \delta h + \cdots.$$
(1.1.37)

From the definition, the above quantity is equal to $\delta a = (\partial a/\partial T)_h \delta T + (\partial a/\partial h)_T \delta h$. Thus,

$$T^{2}\left(\frac{\partial a}{\partial T}\right)_{h} = \langle \hat{a} : \hat{e} \rangle, \quad \left(\frac{\partial a}{\partial h}\right)_{T} = \langle \hat{a} : \hat{\psi} \rangle. \tag{1.1.38}$$

1.1 Spin models

The variances among $\hat{\psi}$ and \hat{e} are expressed as

$$\chi = \left(\frac{\partial\psi}{\partial h}\right)_{T} = \langle\hat{\psi}:\hat{\psi}\rangle, \quad T^{2}\left(\frac{\partial e}{\partial T}\right)_{h} = \langle\hat{e}:\hat{e}\rangle,$$
$$T^{2}\left(\frac{\partial\psi}{\partial T}\right)_{h} = \left(\frac{\partial e}{\partial h}\right)_{T} = \langle\hat{\psi}:\hat{e}\rangle. \tag{1.1.39}$$

The specific heats are rewritten as

$$C_H = \frac{1}{T^2} \langle \hat{e}_{\mathrm{T}} : \hat{e}_{\mathrm{T}} \rangle, \quad C_M = \frac{1}{T^2} \big[\langle \hat{e} : \hat{e} \rangle - \langle \hat{e} : \hat{\psi} \rangle^2 / \langle \hat{\psi} : \hat{\psi} \rangle \big]. \tag{1.1.40}$$

1.1.5 Hydrodynamic fluctuations of temperature and magnetic field

In the book by Landau and Lifshitz (Ref. [1], Chap. 12), long-wavelength (or hydrodynamic) fluctuations of the temperature and pressure are introduced for one-component fluids. For spin systems we may also consider fluctuations of the temperature and magnetic field around an equilibrium reference state. As special cases of (1.1.36) we define

$$\delta \hat{T}(\mathbf{r}) = \left(\frac{\partial T}{\partial \psi}\right)_{e} \delta \hat{\psi}(\mathbf{r}) + \left(\frac{\partial T}{\partial e}\right)_{\psi} \delta \hat{e}(\mathbf{r}), \qquad (1.1.41)$$

$$\delta \hat{h}(\mathbf{r}) = \left(\frac{\partial h}{\partial \psi}\right)_{e} \delta \hat{\psi}(\mathbf{r}) + \left(\frac{\partial h}{\partial e}\right)_{\psi} \delta \hat{e}(\mathbf{r}).$$
(1.1.42)

We may regard $\delta \hat{T}$ and $\delta \hat{H} = T\delta \hat{h} + h\delta \hat{T}$ as local fluctuations superimposed on the homogeneous temperature *T* and magnetic field H = Th, respectively. Therefore, (1.1.38) yields

$$\langle \hat{h} : \hat{\psi} \rangle = \frac{1}{T^2} \langle \hat{T} : \hat{e} \rangle = 1, \quad \langle \hat{h} : \hat{e} \rangle = \langle \hat{T} : \hat{\psi} \rangle = 0.$$
(1.1.43)

More generally, the density variable \hat{a} in the form of (1.1.36) satisfies

$$\langle \hat{a}:\hat{T}\rangle = T^2 \left(\frac{\partial a}{\partial e}\right)_{\psi}, \quad \langle \hat{a}:\hat{h}\rangle = \left(\frac{\partial a}{\partial \psi}\right)_{e}.$$
 (1.1.44)

In particular, the temperature variance reads⁵

$$\langle \hat{T} : \hat{T} \rangle = T^2 / C_M. \tag{1.1.45}$$

The variances among $\delta \hat{h}$ and $\delta \hat{T}/T$ constitute the inverse matrix of those among $\delta \hat{\psi}$ and $\delta \hat{e}/T$. To write them down, it is convenient to define the determinant,

$$\mathcal{D} = \frac{1}{T^2} \Big[\langle \hat{\psi} : \hat{\psi} \rangle \langle \hat{e} : \hat{e} \rangle - \langle \hat{\psi} : \hat{e} \rangle^2 \Big] = \chi C_M.$$
(1.1.46)

⁵ In the counterpart of this relation, C_M will be replaced by C_V in (1.2.64) for one-component fluids and by C_{VX} in (1.3.44) for binary fluid mixtures.

The elements of the inverse matrix are written as⁶

$$V_{\tau\tau} \equiv \frac{1}{T^2} \langle \hat{T} : \hat{T} \rangle = \frac{1}{C_M}, \quad V_{hh} \equiv \langle \hat{h} : \hat{h} \rangle = \langle \hat{e} : \hat{e} \rangle / T^2 \mathcal{D},$$
$$V_{h\tau} \equiv \frac{1}{T} \langle \hat{T} : \hat{h} \rangle = -\langle \hat{\psi} : \hat{e} \rangle / T \mathcal{D}.$$
(1.1.47)

In the disordered phase with $T > T_c$ and H = 0, we have no cross correlation $\langle \hat{\psi} : \hat{e} \rangle = 0$, so that $V_{\tau\tau} = 1/C_H$, $V_{hh} = 1/\chi$, and $V_{h\tau} = 0$. For other values of T and H, there is a nonvanishing cross correlation ($V_{h\tau} \neq 0$). The following dimensionless ratio represents the degree of mixing of the two variables,

$$R_{v} = \langle \hat{\psi} : \hat{e} \rangle^{2} / [\langle \hat{\psi} : \hat{\psi} \rangle \langle \hat{e} : \hat{e} \rangle]$$

$$= T^{2} \left(\frac{\partial \psi}{\partial T} \right)_{h}^{2} / \left(\frac{\partial \psi}{\partial h} \right)_{T} \left(\frac{\partial e}{\partial T} \right)_{h},$$
(1.1.48)

where $0 \le R_v \le 1$ and use has been made of (1.1.39) in the second line. From (1.1.40) we have

$$C_M = C_H (1 - R_v),$$
 (1.1.49)

for h = 0 (or for sufficiently small h, as in the critical region). In Chapter 4 we shall see that $R_v \cong 1/2$ as $T \to T_c$ on the coexistence curve ($T < T_c$ and h = 0) in 3D Ising systems.

In the long-wavelength limit, the probability distribution of the gross variables, $\hat{\psi}(\mathbf{r})$ and $\hat{m}(\mathbf{r})$, tends to be gaussian with the form $\exp(-\beta \mathcal{H}_{hyd})$, where the fluctuations with wavelengths shorter than the correlation length have been coarse-grained. From (1.1.39), (1.1.43), and (1.1.46) the *hydrodynamic hamiltonian* \mathcal{H}_{hyd} in terms of $\delta \hat{\psi}$ and $\delta \hat{T}$ is expressed as

$$\mathcal{H}_{\text{hyd}} = T \int d\mathbf{r} \bigg\{ \frac{1}{2\chi} [\delta \hat{\psi}(\mathbf{r})]^2 + \frac{1}{2T^2} C_M [\delta \hat{T}(\mathbf{r})]^2 \bigg\}.$$
 (1.1.50)

Another expression for \mathcal{H}_{hvd} can also be constructed in terms of $\delta \hat{e}$ and $\delta \hat{h}$.

1.2 One-component fluids

1.2.1 Canonical ensemble

Nearly-spherical molecules, such as rare-gas atoms, may be assumed to interact via a pairwise potential v(r) dependent only on the distance *r* between the two particles [4]–[6]. It consists of a short-range hard-core-like repulsion ($r \leq \sigma$) and a long-range attraction ($r \geq \sigma$). These two behaviors may be incorporated in the Lenard-Jones potential,

$$v(r) = 4\epsilon \left[\left(\frac{\sigma}{r}\right)^{12} - \left(\frac{\sigma}{r}\right)^6 \right].$$
(1.2.1)

10

⁶ These relations will be used in (2.2.29)–(2.2.36) for one-component fluids and in (2.3.33)–(2.3.38) for binary fluid mixtures after setting up mapping relations between spin and fluid systems.

This pairwise potential is characterized by the core radius σ and the minimum $-\epsilon$ attained at $r = 2^{1/6}\sigma$. In classical mechanics, the hamiltonian for N identical particles with mass m_0 is written as

$$\mathcal{H} = \frac{1}{2m_0} \sum_{i} |\mathbf{p}_i|^2 + \sum_{\langle i,j \rangle} v(r_{ij}), \qquad (1.2.2)$$

where p_i is the momentum vector of the *i*th particle, r_{ij} is the distance between the particle pair *i*, *j*, and $\langle i, j \rangle$ denotes summation over particle pairs. The particles are confined in a container with a fixed volume *V* and the wall potential is not written explicitly in (1.2.2).

In the canonical ensemble T, V, and N are fixed, and the statistical distribution is proportional to the Boltzmann weight as [1]–[3]

$$P_{\rm ca}(\Gamma) = \frac{1}{Z_N} \exp[-\beta \mathcal{H}], \qquad (1.2.3)$$

in the 2dN-dimensional phase space $\Gamma = (\mathbf{p}_1 \cdots \mathbf{p}_N, \mathbf{r}_1 \cdots \mathbf{r}_N)$ (sometimes called the Γ -space). The spatial dimensionality is written as d and may be general. The partition function Z_N of N particles for the canonical ensemble is then given by the multiple integrations,

$$Z_N = \frac{1}{N!(2\pi\hbar)^{dN}} \int d\mathbf{p}_1 \cdots \int d\mathbf{p}_N \int d\mathbf{r}_1 \cdots \int d\mathbf{r}_N \exp(-\beta\mathcal{H})$$

= $\frac{1}{N!\lambda_{\text{th}}^{dN}} \int d\mathbf{r}_1 \cdots \int d\mathbf{r}_N \exp(-\beta\mathcal{U}),$ (1.2.4)

where $\hbar = 1.05457 \times 10^{-27}$ erg s is the Planck constant. In the second line the momentum integrations over the maxwellian distribution have been performed, where

$$\lambda_{\rm th} = \hbar (2\pi/m_0 T)^{1/2} \tag{1.2.5}$$

is called the thermal de Broglie wavelength, and

$$\mathcal{U} = \sum_{\langle i,j \rangle} v(r_{ij}) \tag{1.2.6}$$

is the potential part of the hamiltonian.

The Helmholtz free energy is given by $F = -T \ln Z_N$. The factor $1/N!(2\pi\hbar)^{dN}$ in (1.2.4) naturally arises in the classical limit ($\hbar \rightarrow 0$) of the quantum mechanical partition function [2]. Physically, the factor 1/N! represents the indistinguishability between particles, which assures the extensive property of the entropy. That is, a set of classical microscopic states obtainable only by the particle exchange, $i \rightarrow j$ and $j \rightarrow i$, corresponds to a single quantum microscopic state.⁷ The factor $1/(2\pi\hbar)^{dN}$ is ascribed to the uncertainty principle ($\Delta p \Delta x \sim 2\pi\hbar$).

⁷ The concept of indistinguishability is intrinsically of quantum mechanical origin as well as the uncertainty principle. It is not necessarily required in the realm of classical statistical mechanics. Observable quantities such as the pressure are not affected by the factor 1/N!.

1.2.2 Grand canonical ensemble

A fluid region can be in contact with a mass reservoir characterized by a chemical potential μ as well as with a heat reservoir at a temperature *T*. As an example of such a system, we may choose an arbitrary macroscopic subsystem with a volume much smaller than the volume of the total system. In this case we should consider the grand canonical distribution, in which *T*, μ , and *V* are fixed and the energy and the particle number are fluctuating quantities. To make this explicit, the particle number will be written as \mathcal{N} and, to avoid too many symbols, the average $\langle \mathcal{N} \rangle$ will be denoted by *N* which is now a function of *T* and μ . The statistical probability of each microscopic state with \mathcal{N} particles being realized is given by [1]–[3]

$$P_{\rm gra}(\Gamma) = \frac{1}{\Xi} \exp[-\beta \mathcal{H} + \beta \mu \mathcal{N}]. \qquad (1.2.7)$$

The equilibrium average is written as $\langle \cdots \rangle = \int d\Gamma(\cdots) P_{\text{gra}}(\Gamma)$, where

$$\int d\Gamma = \sum_{\mathcal{N}} \frac{1}{\mathcal{N}! (2\pi\hbar)^{d\mathcal{N}}} \int d\mathbf{p}_1 \cdots \int d\mathbf{p}_{\mathcal{N}} \int d\mathbf{r}_1 \cdots \int d\mathbf{r}_{\mathcal{N}}$$
(1.2.8)

represents the integration of the configurations in the Γ -space. The normalization factor or the grand partition function Ξ is expressed as

$$\Xi = \sum_{\mathcal{N}} Z_{\mathcal{N}} \exp(\mathcal{N}\beta\mu).$$
(1.2.9)

In this summation the contribution around $\mathcal{N} \cong N = \langle \mathcal{N} \rangle$ is dominant for large *N*, and the logarithm $\Omega \equiv \ln \Xi$ satisfies

$$\Omega = \ln Z_N + N\beta\mu = pV/T, \qquad (1.2.10)$$

in the thermodynamic limit $N \to \infty$. Use has been made of the fact that $G = N\mu$ is the Gibbs free energy.

We may choose Ω as a thermodynamic potential dependent on β and

$$\nu = \beta \mu = \mu / T. \tag{1.2.11}$$

Then, analogous to (1.1.12) for Ising systems, the differential form for Ω is written as [9, 10]

$$d\Omega = -\langle \mathcal{H} \rangle d\beta + \langle \mathcal{N} \rangle d\nu, \qquad (1.2.12)$$

where

$$\langle \mathcal{H} \rangle = \frac{3}{2} \langle \mathcal{N} \rangle T + \langle \mathcal{U} \rangle$$
 (1.2.13)

is the energy consisting of the average kinetic energy and the average potential energy. Notice that (1.2.12) may be transformed into the well-known Gibbs–Duhem relation,

$$d\mu = \frac{1}{n}dp - sdT, \qquad (1.2.14)$$

where $n = \langle N \rangle / V$ is the average number density and $s = (\langle H \rangle - F) / NT$ is the entropy per particle.

We then find the counterparts of (1.1.20)–(1.1.22) among the thermodynamic derivatives and the fluctuation variances of $\delta N = N - \langle N \rangle$ and $\delta H = H - \langle H \rangle$ as

$$\frac{\partial^2 \Omega}{\partial \nu^2} = \frac{\partial \langle \mathcal{N} \rangle}{\partial \nu} = \langle (\delta \mathcal{N})^2 \rangle, \qquad (1.2.15)$$

$$\frac{\partial^2 \Omega}{\partial \beta^2} = -\frac{\partial \langle \mathcal{H} \rangle}{\partial \beta} = \langle (\delta \mathcal{H})^2 \rangle, \qquad (1.2.16)$$

$$-\frac{\partial^2 \Omega}{\partial \nu \partial \beta} = -\frac{\partial \langle \mathcal{N} \rangle}{\partial \beta} = \frac{\partial \langle \mathcal{H} \rangle}{\partial \nu} = \langle \delta \mathcal{N} \delta \mathcal{H} \rangle, \qquad (1.2.17)$$

where all the quantities are regarded as functions of β , and $\nu = \beta \mu$ and the volume V is fixed.

The isothermal compressibility is expressed as

$$K_T = \frac{1}{n} \left(\frac{\partial n}{\partial p} \right)_{VT} = \frac{\beta}{n^2} \left(\frac{\partial}{\partial \nu} \frac{\langle \mathcal{N} \rangle}{V} \right)_{\beta}, \qquad (1.2.18)$$

where $n = \langle N \rangle / V$ is the average number density and use has been made of (1.2.14). The fluctuation variance of $\delta N = N - \langle N \rangle$ is expressed in terms of K_T as

$$\langle (\delta \mathcal{N})^2 \rangle = V n^2 T K_T$$
 (grand canonical). (1.2.19)

As for C_M in (1.1.26), the constant-volume specific heat $C_V = (\partial \langle \mathcal{H} \rangle / \partial T)_{VN} / V$ per unit volume can be calculated in terms of the fluctuation variances as

$$C_V = \left[\langle (\delta \mathcal{H})^2 \rangle - \langle \delta \mathcal{H} \delta \mathcal{N} \rangle^2 / \langle (\delta \mathcal{N})^2 \rangle \right] / VT^2 \quad \text{(grand canonical)}, \tag{1.2.20}$$

where use has been made of

$$(\partial \langle \mathcal{H} \rangle / \partial T)_N = (\partial \langle \mathcal{H} \rangle / \partial T)_{\nu} + (\partial \langle \mathcal{H} \rangle / \partial N)_{\mathrm{T}} (\partial N / \partial T)_{\nu}.$$

Field variables and density variables

Following Griffiths and Wheeler [10] and Fisher [11], we refer to T (or β) and h in spin systems and T (or β), p, v, \ldots in fluids as *fields*, which have identical values in two coexisting phases. We refer to the spin and energy densities in spin systems and the densities of number, energy, entropy, ... in fluids as *densities*. In spin systems, the average spin is discontinuous between the two coexisting phases, but the average energy is continuous. In fluids, the density variables usually have different average values in the two coexisting phases, but can be continuous in accidental cases such as the azeotropic case (see Section 2.3). In this book the density variables (even the entropy and concentration) have microscopic expressions in terms of the spins or the particle positions and momenta. Their equilibrium averages become the usual thermodynamic variables, and their equilibrium fluctuation variances can be related to some thermodynamic derivatives in the long-wavelength limit.

Shift of the origin of the one-particle energy

It would also be appropriate to remark on the arbitrariness of the origin of the energy supported by each particle. That is, let us shift the hamiltonian as

$$\mathcal{H} \to \mathcal{H} + \epsilon_0 \mathcal{N}$$
 (1.2.21)

and the chemical potential from μ to $\mu + \epsilon_0$. Then, ϵ_0 vanishes in the grand canonical distribution and hence measurable quantities such as the pressure *p* should remain invariant or independent of ϵ_0 as long as they do not involve the origin of the one-particle energy. We can see that the terms involving ϵ_0 cancel in the variance combination (1.2.20), so C_V is clearly independent of ϵ_0 .

Lattice gas model

In the lattice gas model [12], particles are distributed on fixed lattice points in evaluating the potential energy contribution to Ξ . The lattice constant *a* is taken to be the hard-core size of the pair potential, so each lattice point is supposed to be either vacant ($n_i = 0$) or occupied ($n_i = 1$) by a single particle. Then Ξ is approximated as

$$\Xi = \sum_{\{n\}} \exp(-\beta \mathcal{H}\{n\}), \qquad (1.2.22)$$

with

$$\mathcal{H}\{n\} = -\sum_{\langle i,j \rangle} \epsilon n_i n_j - (\mu + dT \ln \lambda_{\text{th}}) \sum_i n_i, \qquad (1.2.23)$$

where the summation in the first term is taken over the nearest neighbor pairs and ϵ represents the magnitude of the attractive part of the pair potential. Obviously, if we set $s_i = 2n_i - 1$, the above hamiltonian becomes isomorphic to the spin hamiltonian (1.1.1) under $J = \epsilon/4$ and

$$H = \frac{1}{2}\mu + \frac{d}{2}T\ln\lambda_{\rm th} - \frac{1}{4}z\epsilon = \frac{1}{2}\mu - \frac{d}{4}T\ln T + {\rm const.}, \qquad (1.2.24)$$

z being the coordination number. The pressure p in the lattice gas model is related to the free energy F_{Ising} of the corresponding Ising spin system by

$$p = -V^{-1}F_{\text{Ising}} + a^{-d} \left(H + \frac{1}{8} z\epsilon \right).$$
 (1.2.25)

1.2.3 Thermodynamic derivatives and fluctuation variances

Analogously to the spin case (1.1.18), the grand canonical distribution function $P_{\text{gra}}(\Gamma)$ in (1.2.7) is changed against small changes, $\beta \rightarrow \beta + \delta\beta$ and $\nu \rightarrow \nu + \delta\nu$, as [9]

$$\delta P_{\rm gra} = \left[-\delta \mathcal{H}\delta\beta + \delta \mathcal{N}\delta\nu\right] P_{\rm gra},\tag{1.2.26}$$

15

where only the linear deviations are written. Because the choice of β and ν as independent field variables is not usual, we may switch to the usual choice, T and p. Here $\delta T = -T^2 \delta \beta$ and

$$\delta p = nT(\delta v - \bar{H}\delta\beta), \qquad (1.2.27)$$

where

$$\bar{H} = \mu + Ts \tag{1.2.28}$$

is the enthalpy per particle and should not be confused with the magnetic field in the spin system, and s is the entropy per particle. Then (1.2.26) is rewritten as

$$\delta P_{\rm gra} = \left[n \delta S \frac{\delta T}{T} + \delta \mathcal{N} \frac{\delta p}{nT} \right] P_{\rm gra}, \qquad (1.2.29)$$

where

$$\delta S = \frac{1}{nT} [\delta \mathcal{H} - \bar{H} \delta \mathcal{N}] \tag{1.2.30}$$

is the space integral of the entropy density variable to be introduced in (1.2.46) below. Thus, the thermodynamic average of any fluctuating quantity A changes as

$$\delta \langle \mathcal{A} \rangle = -\langle \mathcal{A} \delta \mathcal{H} \rangle \delta \beta + \langle \mathcal{A} \delta \mathcal{N} \rangle \delta \nu + \cdots,$$

= $\langle \mathcal{A} \delta \mathcal{S} \rangle n \frac{\delta T}{T} + \langle \mathcal{A} \delta \mathcal{N} \rangle \frac{\delta p}{nT} + \cdots.$ (1.2.31)

Note that δS is invariant with respect to the energy shift in (1.2.21) because the enthalpy \overline{H} is also shifted by ϵ_0 .

The familiar constant-pressure specific heat $C_p = nT(\partial s/\partial T)_p$ per unit volume is obtained from $VC_p = nT \lim_{\delta T \to 0} \langle \delta S \rangle / \delta T$ with $\delta p = 0$. From the second line of (1.2.31) C_p becomes

$$C_p = n^2 \langle (\delta S)^2 \rangle / V = \langle (\delta \mathcal{H} - \bar{H} \delta \mathcal{N})^2 \rangle / V T^2 \quad \text{(grand canonical)}. \tag{1.2.32}$$

In terms of δS , the constant-volume specific heat C_V is also expressed as

$$C_V = n^2 [\langle (\delta S)^2 \rangle - \langle \delta S \delta N \rangle^2 / \langle (\delta N)^2 \rangle] / V \quad \text{(grand canonical)}, \tag{1.2.33}$$

which is equivalent to (1.2.20). It leads to the inequality $C_p \ge C_V$. Use of the thermodynamic identity $C_p/C_V = K_T/K_s$ yields the adiabatic compressibility $K_s = (\partial n/\partial p)_s/n$ in the form

$$K_s = \left[\langle (\delta \mathcal{N})^2 \rangle - \langle \delta \mathcal{S} \delta \mathcal{N} \rangle^2 / \langle (\delta \mathcal{S})^2 \rangle \right] / V n^2 T \quad \text{(grand canonical)}. \tag{1.2.34}$$

The sound velocity c is given by $c = (\rho K_s)^{-1/2}$, $\rho = m_0 n$ being the mass density.

1.2.4 Gaussian distribution in the long-wavelength limit

We next consider the equilibrium statistical distribution function for the macroscopic gross variables, \mathcal{H} and \mathcal{N} , for one-component fluids, which we write as $P(\mathcal{H}, \mathcal{N})$. The entropy S(E, N) as a function of *E* and *N* is the logarithm of the number of microscopic configurations at $\mathcal{H} = E$ and $\mathcal{N} = N$. It may be written as

$$\exp[S(E, N)] = \int d\Gamma \delta(\mathcal{H} - E)\delta(\mathcal{N} - N), \qquad (1.2.35)$$

where $d\Gamma$ is the configuration integral (1.2.8). This grouping of the microscopic states gives

$$P(\mathcal{H}, \mathcal{N}) = \frac{1}{\Xi} \exp[S(\mathcal{H}, \mathcal{N}) - \beta \mathcal{H} + \nu \mathcal{N}], \qquad (1.2.36)$$

with the grand canonical partition function,

$$\Xi = \int d\mathcal{H} \int d\mathcal{N} \exp[S(\mathcal{H}, \mathcal{N}) - \beta \mathcal{H} + \nu \mathcal{N}]. \qquad (1.2.37)$$

Each thermodynamic state is characterized by β and ν or by $E = \langle \mathcal{H} \rangle$ and $N = \langle \mathcal{N} \rangle$. We then expand $S(\mathcal{H}, \mathcal{N})$ with respect to the deviations $\delta \mathcal{H} = \mathcal{H} - E$ and $\delta \mathcal{N} = \mathcal{N} - N$ as

$$S(\mathcal{H}, \mathcal{N}) = S(E, N) + \beta \delta \mathcal{H} - \nu \delta \mathcal{N} + (\Delta S)_2 + \cdots, \qquad (1.2.38)$$

where $(\delta S)_2$ is the bilinear part,

$$(\Delta S)_2 = \frac{1}{2} \left(\frac{\partial^2 S}{\partial E^2} \right) (\delta \mathcal{H})^2 + \left(\frac{\partial^2 S}{\partial E \partial N} \right) \delta \mathcal{H} \delta \mathcal{N} + \frac{1}{2} \left(\frac{\partial^2 S}{\partial N^2} \right) (\delta \mathcal{N})^2.$$
(1.2.39)

In the probability distribution (1.2.36) the linear terms cancel if (1.2.38) is substituted, so the distribution becomes the following well-known gaussian form [1, 3, 7]:

$$P(\mathcal{H}, \mathcal{N}) \propto \exp[(\Delta S)_2].$$
 (1.2.40)

From this distribution we can re-derive (1.2.15)-(1.2.17) by using the relations,

$$\alpha_{ee} \equiv V \frac{\partial^2 S}{\partial E^2} = \frac{\partial \beta}{\partial e}, \quad \alpha_{nn} \equiv V \frac{\partial^2 S}{\partial N^2} = -\frac{\partial \nu}{\partial n},$$

$$\alpha_{en} \equiv V \frac{\partial^2 S}{\partial N \partial E} = \frac{\partial \beta}{\partial n} = -\frac{\partial \nu}{\partial e}, \quad (1.2.41)$$

where β and ν are regarded as functions of n = N/V and e = E/V. The three coefficients in (1.2.41) divided by -V constitute the inverse of the matrix whose elements are the variances among \mathcal{H} and \mathcal{N} .

Weakly inhomogeneous cases

The above result may be generalized for weakly inhomogeneous cases as follows. Let us consider a small fluid element whose linear dimension is much longer than the correlation length. Because the thermodynamics in the element is described by the grand canonical

ensemble, the long-wavelength, number and energy density fluctuations, $\delta \hat{n}(\mathbf{r})$ and $\delta \hat{e}(\mathbf{r})$, obey a gaussian distribution of the form (1.2.40) with

$$(\Delta S)_2 = \int d\mathbf{r} \left[\frac{1}{2} \alpha_{ee} (\delta \hat{e}(\mathbf{r}))^2 + \alpha_{en} \delta \hat{e}(\mathbf{r}) \delta \hat{n}(\mathbf{r}) + \frac{1}{2} \alpha_{nn} (\delta \hat{n}(\mathbf{r}))^2 \right].$$
(1.2.42)

Thermodynamic stability

It has been taken for granted that the probability distribution (1.2.36) is maximum for the equilibrium values, which results in the positive-definiteness of the matrix composed of the coefficients in (1.2.41). In thermodynamics [2, 13] this positive-definiteness (implying the positivity of C_V , K_T , etc.) follows from the thermodynamic stability of equilibrium states. In this book, because we start with statistical-mechanical principles, their positivity is an obvious consequence evident from their variance expressions.

1.2.5 Fluctuating space-dependent variables

The number density variable $\hat{n}(\mathbf{r})$ and the energy density variable $\hat{e}(\mathbf{r})$ have microscopic expressions,

$$\hat{n}(\mathbf{r}) = \sum_{i} \delta(\mathbf{r} - \mathbf{r}_{i}), \qquad (1.2.43)$$

$$\hat{e}(\mathbf{r}) = \sum_{i} \frac{1}{2m_0} |\mathbf{p}_i|^2 \delta(\mathbf{r} - \mathbf{r}_i) + \frac{1}{2} \sum_{i \neq j} v(r_{ij}) \delta(\mathbf{r} - \mathbf{r}_i), \qquad (1.2.44)$$

in terms of the particle positions and momenta. As in (1.1.36) we may introduce a fluctuating variable by

$$\hat{a}(\mathbf{r}) = a + \left(\frac{\partial a}{\partial n}\right)_{e} \delta \hat{n}(\mathbf{r}) + \left(\frac{\partial a}{\partial e}\right)_{n} \delta \hat{e}(\mathbf{r}), \qquad (1.2.45)$$

for any thermodynamic variable *a* given as a function of the averages $n = \langle \hat{n} \rangle$ and $e = \langle \hat{e} \rangle$. The nonlinear terms such as $(\partial^2 a / \partial n^2) (\delta \hat{n})^2$ are not included in the definition. From $ds = (de - \bar{H}dn)/nT$ the space-dependent entropy variable is introduced by

$$\hat{s}(\mathbf{r}) = s + \frac{1}{nT} \left[\delta \hat{e}(\mathbf{r}) - \bar{H} \delta \hat{n}(\mathbf{r}) \right], \qquad (1.2.46)$$

where $\bar{H} = \mu + Ts = (e + p)/n$ is the enthalpy per particle. The space integral of $\delta \hat{s}(\mathbf{r}) = \hat{s}(\mathbf{r}) - s$ is equal to δS in (1.2.30). In terms of these density variables, the incremental change of the grand canonical distribution in (1.2.26) and (1.2.29) is expressed as

$$\delta P_{\text{gra}} = P_{\text{gra}} \int d\mathbf{r} [-\delta \hat{e}(\mathbf{r})\delta\beta + \delta \hat{n}(\mathbf{r})\delta\nu]$$

= $P_{\text{gra}} \int d\mathbf{r} \bigg[n\delta \hat{s}(\mathbf{r})\frac{\delta T}{T} + \delta \hat{n}(\mathbf{r})\frac{\delta p}{nT} \bigg],$ (1.2.47)

where δp is the pressure deviation defined in (1.2.27). With these two expressions we may express any thermodynamic derivatives in terms of fluctuation variances of \hat{n} , \hat{e} , and \hat{s} in the long-wavelength limit. Using the notation $\langle : \rangle$, as in (1.1.35), we have

$$K_T = (n^2 T)^{-1} \langle \hat{n} : \hat{n} \rangle, \quad C_p = n^2 \langle \hat{s} : \hat{s} \rangle, \quad \alpha_p = -T^{-1} \langle \hat{s} : \hat{n} \rangle, \quad (1.2.48)$$

where $\alpha_p = -(\partial n/\partial T)_p/n$ is the thermal expansion coefficient. From (1.2.20) and (1.2.33) the constant-volume specific heat is expressed as

$$C_V = T^{-2} [\langle \hat{e} : \hat{e} \rangle - \langle \hat{e} : \hat{n} \rangle^2 / \langle \hat{n} : \hat{n} \rangle]$$

= $n^2 [\langle \hat{s} : \hat{s} \rangle - \langle \hat{s} : \hat{n} \rangle^2 / \langle \hat{n} : \hat{n} \rangle].$ (1.2.49)

The first line was obtained by Schofield [see Ref. 18]. From (1.2.34) the adiabatic compressibility is expressed as

$$K_{s} = (\rho c^{2})^{-1} = \left[\langle \hat{n} : \hat{n} \rangle - \langle \hat{n} : \hat{s} \rangle^{2} / \langle \hat{s} : \hat{s} \rangle \right] / n^{2} T.$$
(1.2.50)

These expressions are in terms of the long-wavelength limit of the correlation functions. Hence, to their merit, they tend to unique thermodynamic limits, whether the ensemble is canonical or grand canonical, as $N, V \rightarrow \infty$ with a fixed density n = N/V.

More generally, for any density variable \hat{a} in the form of (1.2.45), we obtain

$$\langle \hat{a}:\hat{e}\rangle = T^2 \left(\frac{\partial a}{\partial T}\right)_{\nu}, \quad \langle \hat{a}:\hat{n}\rangle = nT \left(\frac{\partial a}{\partial p}\right)_T, \quad \langle \hat{a}:\hat{s}\rangle = \frac{1}{n}T \left(\frac{\partial a}{\partial T}\right)_p. \quad (1.2.51)$$

It then follows that

$$\left(\frac{\partial p}{\partial T}\right)_{a} = -\left(\frac{\partial a}{\partial T}\right)_{p} / \left(\frac{\partial a}{\partial p}\right)_{T} = -n^{2} \langle \hat{a} : \hat{s} \rangle / \langle \hat{a} : \hat{n} \rangle.$$
(1.2.52)

Finally, we give some thermodynamic identities,

$$\rho c^2 C_V = T \left(\frac{\partial p}{\partial T}\right)_s \left(\frac{\partial p}{\partial T}\right)_n = T \left(\frac{\partial p}{\partial T}\right)_s^2 (1 - C_V / C_p), \qquad (1.2.53)$$

$$C_V/C_p = K_s/K_T = 1 - \left(\frac{\partial p}{\partial T}\right)_n \bigg/ \left(\frac{\partial p}{\partial T}\right)_s.$$
 (1.2.54)

These are usually proved with the Maxwell relations but can also be derived from the variance relations (1.2.48)–(1.2.54).

1.2.6 Density correlation

In the literature [4]–[6] special attention has been paid to the radial distribution function g(r) defined by

$$n^{2}g(|\mathbf{r} - \mathbf{r}'|) = \sum_{i \neq j} \langle \delta(\mathbf{r} - \mathbf{r}_{i}) \delta(\mathbf{r}' - \mathbf{r}_{j}) \rangle$$
$$= \langle \hat{n}(\mathbf{r}) \hat{n}(\mathbf{r}') \rangle - n \delta(\mathbf{r} - \mathbf{r}'), \qquad (1.2.55)$$

where the self-part (i = j) has been subtracted and $g(r) \rightarrow 1$ at long distance in the thermodynamic limit.⁸ The structure factor is expressed as

$$I(k) = \int d\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} \langle \delta \hat{n}(\mathbf{r}) \delta \hat{n}(\mathbf{0}) \rangle = n + n^2 \int d\mathbf{r} e^{i\mathbf{k}\cdot\mathbf{r}} [g(r) - 1].$$
(1.2.56)

An example of I(k) can be found in Fig. 2.3. The isothermal compressibility (1.2.18) is expressed as

$$K_T = (n^2 T)^{-1} \lim_{k \to 0} I(k) = (nT)^{-1} + T^{-1} \int d\mathbf{r}[g(r) - 1].$$
(1.2.57)

The physical meaning of g(r) is as follows. We place a particle at the origin of the reference frame and consider a volume element dr at a position r; then, ng(r)dr is the average particle number in the volume element. In liquid theories another important quantity is the direct correlation function C(r) defined by

$$g(r) = C(r) + \int d\mathbf{r}' C(|\mathbf{r} - \mathbf{r}'|) n g(|\mathbf{r}'|).$$
 (1.2.58)

Its Fourier transformation C_k satisfies

$$I(k) = n/(1 - nC_k).$$
(1.2.59)

Let us assume naively that C(r) decays more rapidly than the pair correlation function g(r) at long distances and C_k can be expanded as $C_k = C_0 - C_1 k^2 + \cdots$ at small k with $C_1 > 0$ [14]. Then, (1.2.59) yields a well-known expression called the Ornstein–Zernike form,

$$I(k) \cong n/(1 - nC_0 + nC_1k^2), \qquad (1.2.60)$$

at small k. Notice that $C_0 = \lim_{k\to 0} C_k$ approaches to n^{-1} as the critical point (or the *spinodal line* more generally) is approached. The direct correlation functions for binary mixtures will be discussed at the end of Section 1.3.

1.2.7 Hydrodynamic temperature and pressure fluctuations

As in the book by Landau and Lifshitz [1], we introduce the temperature fluctuation $\delta \hat{T}$ as a space-dependent variable by

$$\delta \hat{T}(\mathbf{r}) = \left(\frac{\partial T}{\partial e}\right)_{n} \delta \hat{e}(\mathbf{r}) + \left(\frac{\partial T}{\partial n}\right)_{e} \delta \hat{n}(\mathbf{r})$$
$$= \frac{nT}{C_{V}} \left[\delta \hat{s}(\mathbf{r}) + \frac{1}{n^{2}} \left(\frac{\partial p}{\partial T}\right)_{n} \delta \hat{n}(\mathbf{r})\right], \qquad (1.2.61)$$

where the energy density $\hat{e}(\mathbf{r})$, the number density $\hat{n}(\mathbf{r})$, and the entropy density $\hat{s}(\mathbf{r})$ are defined by (1.2.45)–(1.2.47), and use has been made of $(\partial s/\partial n^{-1})_{\rm T} = (\partial p/\partial T)_n$. We assume that these density variables consist only of the Fourier components with wavelengths

⁸ In a finite system, the space integral of (1.2.55) in the volume V would become N(N-1)/V, in apparent contradiction to (1.2.57).

much longer than any correlation lengths ($q \ll \xi^{-1}$, near the critical point, ξ being the correlation length). Then \hat{a} in the form of (1.2.45) satisfies

$$\langle \hat{a} : \hat{T} \rangle = \frac{T}{n} \left(\frac{\partial a}{\partial s} \right)_n = \frac{T^2}{C_V} \left(\frac{\partial a}{\partial T} \right)_n.$$
 (1.2.62)

This relation gives [1]

$$\langle \hat{n} : \hat{T} \rangle = 0, \quad \langle \hat{s} : \hat{T} \rangle = T/n,$$
 (1.2.63)

$$\langle \hat{T} : \hat{T} \rangle = T^2 / C_V, \qquad (1.2.64)$$

The long-wavelength fluctuations obey a gaussian distribution $\propto \exp[-\beta \mathcal{H}_{hyd}]$. The hydrodynamic hamiltonian is written as

$$\mathcal{H}_{\text{hyd}} = \int d\mathbf{r} \bigg\{ \frac{C_V}{2T} [\delta \hat{T}(\mathbf{r})]^2 + \frac{1}{2n^2 K_T} [\delta \hat{n}(\mathbf{r})]^2 \bigg\}, \qquad (1.2.65)$$

which is analogous to (1.1.50) for Ising systems.

We may also introduce a hydrodynamic pressure variable $\delta \hat{p}(\mathbf{r})$ by

$$\delta \hat{p}(\mathbf{r}) = \left(\frac{\partial p}{\partial e}\right)_{n} \delta \hat{e}(\mathbf{r}) + \left(\frac{\partial p}{\partial n}\right)_{e} \delta \hat{n}(\mathbf{r})$$
$$= \rho c^{2} \left[\frac{1}{n} \delta \hat{n}(\mathbf{r}) + n \left(\frac{\partial T}{\partial p}\right)_{s} \delta \hat{s}(\mathbf{r})\right], \qquad (1.2.66)$$

where ρ is the mass density and use has been made of $(\partial n^{-1}/\partial s)_p = (\partial T/\partial p)_s$. For $\hat{a}(\mathbf{r})$ in the form of (1.2.45) we obtain

$$\langle \hat{a} : \hat{p} \rangle = Tn \left(\frac{\partial a}{\partial n} \right)_s = T\rho c^2 \left(\frac{\partial a}{\partial p} \right)_s.$$
 (1.2.67)

Substituting $\hat{a} = \hat{p}$ and \hat{T} yields

$$\langle \hat{p} : \hat{p} \rangle = \rho c^2 T, \qquad (1.2.68)$$

$$\langle \hat{p} : \hat{T} \rangle = T \rho c^2 \left(\frac{\partial T}{\partial p} \right)_s = \frac{T^2}{C_V} \left(\frac{\partial p}{\partial T} \right)_n.$$
 (1.2.69)

By setting $\hat{a} = \hat{s}$ and \hat{n} we also notice

$$\langle \hat{s} : \hat{p} \rangle = 0, \quad \langle \hat{n} : \hat{p} \rangle = nT.$$
 (1.2.70)

The \mathcal{H}_{hyd} may be rewritten in another orthogonal form,

$$\mathcal{H}_{\text{hyd}} = \int d\mathbf{r} \bigg\{ \frac{1}{2\rho c^2} [\delta \hat{p}(\mathbf{r})]^2 + \frac{n^2 T}{2C_p} [\delta \hat{s}(\mathbf{r})]^2 \bigg\}.$$
 (1.2.71)

It goes without saying that $(\Delta S)_2$ in (1.2.42) coincides with $-\beta \mathcal{H}_{hyd}$.

1.2.8 Projection onto gross variables in the hydrodynamic regime

The pressure fluctuation variable $\delta \hat{p}(\mathbf{r})$ in (1.2.66) may be interpreted as the *projection* of the microscopic stress tensor $\hat{\Pi}_{\alpha\beta}(\mathbf{r})$ ($\alpha, \beta = x, y, z$) onto the gross variables $\delta \hat{e}$ (or $\delta \hat{s}$) and $\delta \hat{n}$.⁹ In the hydrodynamic regime, for any fluctuating variable $\hat{a}(\mathbf{r})$ dependent on space, the projection operator \mathcal{P} is defined as

$$\mathcal{P}\hat{a}(\mathbf{r}) = \langle \hat{a} \rangle + A_{en}\delta\hat{e}(\mathbf{r}) + A_{ne}\delta\hat{n}(\mathbf{r}).$$
(1.2.72)

The two coefficients A_{en} and A_{ne} are determined such that the right-hand side and $\delta \hat{a}$ have the same correlations with $\delta \hat{e}$ and $\delta \hat{n}$. Then $\mathcal{P}^2 = \mathcal{P}$. If \hat{a} is of the form (1.2.45), we have $\mathcal{P}\hat{a} = \hat{a}$. We neglect nonlocality in (1.2.72) assuming that $\delta \hat{e}$ and $\delta \hat{n}$ consist of the Fourier components with an upper cut-off wave number Λ much smaller than the inverse thermal correlation length. The calculation of the coefficients is simplified if the above relation is rewritten in terms of $\delta \hat{p}$ and $\delta \hat{s}$ as

$$\mathcal{P}\delta\hat{a}(\mathbf{r}) = A_{ps}\delta\hat{p}(\mathbf{r}) + A_{sp}\delta\hat{s}(\mathbf{r}).$$
(1.2.73)

Using $\langle \hat{s} : \hat{p} \rangle = 0$, we find

$$A_{ps} = \langle \hat{a} : \hat{p} \rangle / \langle \hat{p} : \hat{p} \rangle, \quad A_{sp} = \langle \hat{a} : \hat{s} \rangle / \langle \hat{s} : \hat{s} \rangle.$$
(1.2.74)

From (1A.11) and (1A.12) in Appendix 1A, we may derive the following variance relations,

$$\langle \hat{n} : \hat{\Pi}_{\alpha\beta} \rangle = nT\delta_{\alpha\beta}, \quad \langle \hat{e} : \hat{\Pi}_{\alpha\beta} \rangle = (e+p)T\delta_{\alpha\beta}.$$
 (1.2.75)

Then, from the definitions of \hat{s} in (1.2.46) and \hat{p} in (1.2.66) we obtain

$$\langle \hat{s} : \hat{\Pi}_{\alpha\beta} \rangle = 0, \quad \langle \hat{p} : \hat{\Pi}_{\alpha\beta} \rangle = \rho c^2 T \delta_{\alpha\beta}.$$
 (1.2.76)

Hence, we arrive at

$$\mathcal{P}\delta\Pi_{\alpha\beta}(\mathbf{r}) = \delta_{\alpha\beta}\delta\hat{p}(\mathbf{r}). \tag{1.2.77}$$

This leads to the inequality

$$\rho c^2 \le K_\infty \equiv \left\langle \sum_{\alpha} \hat{\Pi}_{\alpha\alpha} : \sum_{\beta} \hat{\Pi}_{\beta\beta} \right\rangle / d^2 T.$$
(1.2.78)

See (1.2.84) below for K_{∞} [18]. In fact, at the gas–liquid critical point the sound velocity c goes to zero but K_{∞} remains finite. These are consistent with the inequality in (1.2.78).

1.2.9 Pressure, energy, and elastic moduli in terms of g(r)

In Appendix 5E we will give the space-dependent microscopic expression for the stress tensor $\hat{\Pi}_{\alpha\beta}(\mathbf{r})$. Its space integral has the following microscopic expression [5, 6],

$$\int d\mathbf{r} \hat{\Pi}_{\alpha\beta}(\mathbf{r}) = \sum_{i} \frac{p_{i\alpha} p_{i\beta}}{m_0} - \sum_{\langle i,j \rangle} v'(r_{ij}) \frac{1}{r_{ij}} x_{ij\alpha} x_{ij\beta}, \qquad (1.2.79)$$

⁹ As will be discussed in Chapter 5, the projection operator method has been developed in the study of irreversible processes.

where v'(r) = dv(r)/dr, $x_{i\alpha}$ ($\alpha = x, y, z$) are the cartesian coordinates of the particle position \mathbf{r}_i , and $x_{ij\alpha} = x_{i\alpha} - x_{j\alpha}$. The pressure is then expressed in terms of the radial distribution function g(r) in (1.2.55) as

$$p = nT - \frac{1}{2d}J_1, \tag{1.2.80}$$

with

$$J_1 = \int d\mathbf{r} n^2 g(r) r v'(r), \qquad (1.2.81)$$

where d in (1.2.80) is the spatial dimensionality. In addition, the internal energy density is expressed as

$$e = \langle \hat{e} \rangle = \frac{d}{2}nT + \frac{1}{2}\int d\mathbf{r}n^2g(r)v(r). \qquad (1.2.82)$$

In an isotropic equilibrium state the variances among the stress tensor $\hat{\Pi}_{\alpha\beta}$ in the longwavelength limit are written as

$$\frac{1}{T}\langle \hat{\Pi}_{\alpha\beta} : \hat{\Pi}_{\gamma\delta} \rangle = (\delta_{\alpha\gamma}\delta_{\beta\delta} + \delta_{\alpha\delta}\delta_{\beta\gamma})G_{\infty} + \delta_{\alpha\beta}\delta_{\gamma\delta} \left(K_{\infty} - \frac{2}{d}G_{\infty}\right).$$
(1.2.83)

Here K_{∞} and G_{∞} are called the *elastic moduli* of fluids [6], [15]–[18]. Although elastic deformations are not well defined in fluids, they were interpreted as the infinite-frequency elastic moduli of fluids [17].¹⁰ Interestingly, they can be expressed in terms of g(r) as [17, 18]

$$K_{\infty} = \frac{1}{d^2 T} \left\langle \sum_{\alpha} \hat{\Pi}_{\alpha \alpha} : \sum_{\beta} \hat{\Pi}_{\beta \beta} \right\rangle = \left(1 + \frac{2}{d} \right) n T - \frac{d - 1}{2d^2} J_1 + \frac{1}{2d^2} J_2, \qquad (1.2.84)$$

$$G_{\infty} = \frac{1}{T} \langle \hat{\Pi}_{xy} : \hat{\Pi}_{xy} \rangle = nT + \frac{1}{2d(d+2)} [(d+1)J_1 + J_2], \qquad (1.2.85)$$

where J_1 is defined by (1.2.81) and

$$J_2 = \int d\mathbf{r} n^2 g(r) r^2 v''(r), \qquad (1.2.86)$$

with $v''(r) = d^2 v(r)/dr^2$. Elimination of J_1 and J_2 yields a general relation,

$$K_{\infty} - \left(1 + \frac{2}{d}\right)G_{\infty} = 2(p - nT).$$
 (1.2.87)

It is not trivial that K_{∞} and G_{∞} can be expressed in terms of the radial distribution function, although they involve correlations among four particles. We will present a general theory for calculating correlation functions involving the stress tensor in Appendix 1A.

Schofield calculated more general wave number-dependent correlation functions among

22

¹⁰ In highly supercooled fluids, a shear modulus becomes well defined and measurable. It is smaller than G_{∞} but larger than nT. See Fig. 11.33 and its explanation in Section 11.4.