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1

Spin systems and fluids

To study equilibrium statistical physics, we will start with Ising spin systems (here-
after referred to as Ising systems), because they serve as important reference systems
in understanding various phase transitions [1]–[7].1 We will then proceed to one- and
two-component fluids with short-range interaction, which are believed to be isomorphic
to Ising systems with respect to static critical behavior. We will treat equilibrium averages
of physical quantities such as the spin, number, and energy density and then show that
thermodynamic derivatives can be expressed in terms of fluctuation variances of some
density variables. Simple examples are the magnetic susceptibility in Ising systems and
the isothermal compressibility in one-component fluids expressed in terms of the corr-
elation function of the spin and density, respectively. More complex examples are the
constant-volume specific heat and the adiabatic compressibility in one- and two-component
fluids. For our purposes, as far as the thermodynamics is concerned, we need equal-time
correlations only in the long-wavelength limit. These relations have not been adequately
discussed in textbooks, and must be developed here to help us to correctly interpret various
experiments of thermodynamic derivatives. They will also be used in dynamic theories
in this book. We briefly summarize equilibrium thermodynamics in the light of these
equilibrium relations for Ising spin systems in Section 1.1, for one-component fluids in
Section 1.2, and for binary fluid mixtures in Section 1.3.

1.1 Spin models

1.1.1 Ising hamiltonian

Let each lattice point of a crystal lattice have two microscopic states. It is convenient
to introduce a spin variablesi , which assumes the values 1 or−1 at lattice pointi . The
microscopic energy of this system, called the Ising spin hamiltonian, is composed of the
exchange interaction energy and the magnetic field energy,

H{s} = Hex+ Hmag, (1.1.1)

where

Hex = −
∑
<i, j>

Jsi sj , (1.1.2)

1 References are to be found at the end of each chapter.
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4 Spin systems and fluids

Hmag= −H
∑
i

si . (1.1.3)

The interaction between different spins is short-ranged and the summation inHex is taken
over the nearest neighbor pairsi, j of the lattice points. The interaction energy between
spins is then−J if paired spins have the same sign, while it isJ for different signs. In the
caseJ > 0 the interaction is ferromagnetic, where all the spins align in one direction
at zero temperature. The magnetic fieldH is scaled appropriately such that it has the
dimension of energy. At zero magnetic field the system undergoes a second-order phase
transition at a critical temperatureTc. The hamiltonianH mimics ferromagnetic systems
with uniaxial anisotropy.
In the caseJ < 0, the interaction is antiferromagnetic, where the neighboring paired

spins tend to be antiparallel at low temperatures. Let us consider a cubic lattice, which
may be divided into two sublattices,A andB, such that each lattice point and its nearest
neighbors belong to different sublattices. Here, we define the staggered spin variablesSi
by

Si = si (i ∈ A), Si = −si (i ∈ B). (1.1.4)

Then,Hex in terms of{Si } has the positive coupling|J| and is isomorphic to the ferromag-
netic exchange hamiltonian.
The Isingmodel may also describe a phase transition of binary alloys consisting of atoms

1 and 2, such as Cu–Zn alloys. If each lattice pointi is occupied by a single atom of either
of the two species, the occupation numbersn1i andn2i satisfyn1i +n2i = 1. Vacancies and
interstitials are assumed to be nonexistent. If the nearest neighbor pairs have an interaction
energyεK L (K , L = 1,2), the hamiltonian is written as

H{n} =
∑
<i, j>

∑
K ,L

εK LnKi nL j −
∑
i

∑
K

µKnKi , (1.1.5)

whereµ1 andµ2 are the chemical potentials of the two components. From (1.1.4) we may
introduce a spin variable,

si = 2n1i − 1= 1− 2n2i , (1.1.6)

to obtain the Ising model (1.1.1) with

J = 1

4
(−ε11− ε22+ 2ε12), H = 1

2
(µ1 − µ2) − z

4
(ε11− ε22), (1.1.7)

wherez is the number of nearest neighbors with respect to each lattice point and is called
the coordination number.

1.1.2 Vector spin models

Many variations of spin models defined on lattices have been studied in the literature [8].
If the spinsi = (s1i , . . . , sni ) on each lattice point is ann-component vector, its simplest
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hamiltonian reads

H{s} = −
∑
<i, j>

Jsi · sj − H
∑
i

s1i . (1.1.8)

The first term, the exchange interaction, is assumed to be invariant with respect to rotation
in the spin space. The magnetic fieldH favors ordering of the first spin componentss1i .
The model withn = 2 is called thexymodel, and the model withn = 3 the Heisenberg
model. It is known that the static critical behavior of the three-dimensionalxy model is
isomorphic to that of4He and3He–4He mixtures near the superfluid transition, as will be
discussed later. However, there aremany cases in which there is some anisotropy in the spin
space and, if one direction is energetically favored, the model reduces to the Ising model
asymptotically close to the critical point. Such anisotropy becomes increasingly important
near the critical point (orrelevantin the terminology of renormalization group theory). As
another relevant perturbation, we may introduce a long-range interaction such as a dipolar
interaction.

1.1.3 Thermodynamics of Ising models

Each microscopic state of the Ising system is determined if all the values of spins{s} are
given. In thermal equilibrium, the probability of each microscopic state being realized is
given by the Boltzmann weight,

Peq({s}) = Z−1 exp(−βH{s}), (1.1.9)

where

β = 1/T. (1.1.10)

In this book the absolute temperature multiplied by the Boltzmann constantkB = 1.381×
10−16 erg/K is simply written asT and is called the temperature [1], soT has the dimension
of energy. The normalization factorZ in (1.1.9) is called the partition function,

Z =
∑
{s}

exp(−βH{s}), (1.1.11)

where the summation is taken over all the microscopic states. The differential form for the
logarithm lnZ becomes

d(ln Z) = −〈H〉dβ + β〈M〉dH = −〈Hex〉dβ + 〈M〉dh, (1.1.12)

where the increments are infinitesimal,

h = βH = H/T, (1.1.13)

andM is the sum of the total spins,2

M =
∑
i

si . (1.1.14)

2 In this book the quantities,H, M, N , . . . in script, are fluctuating variables (dependent on the microscopic degrees of
freedom) and not thermodynamic ones.



6 Spin systems and fluids

Hereafter〈· · ·〉 is the average over the Boltzmann distribution (1.1.9). The usual choice of
the thermodynamic potential is the free energy,

F = −T ln Z, (1.1.15)

and the independent intensive variables areT andH with

dF = −SdT− 〈M〉dH, (1.1.16)

whereS= (〈H〉 − F)/T is the entropy of the system.
We also consider the small change of the microscopic canonical distribution in (1.1.9)

for small changes,β → β + δβ andh → h + δh. Explicitly writing its dependences onβ
andh, we obtain

Peq({s};β + δβ, h + δh) = Peq({s};β, h)exp
[−δHexδβ + δMδh + · · ·], (1.1.17)

whereδHex = Hex − 〈Hex〉 andδM = M − 〈M〉. To linear order inδβ andδh, the
change of the distribution is of the form,

δPeq({s}) = Peq({s})
[−δHexδβ + δMδh + · · ·]. (1.1.18)

Therefore, the average of any physical variableA = A{s} dependent on the spin configu-
rations is altered with respect to the change (1.1.18) as

δ〈A〉 = −〈AδHex〉δβ + 〈AδM〉δh + · · · . (1.1.19)

We setA = M andHex to obtain

Vχ = ∂2 ln Z

∂h2
= ∂〈M〉

∂h
= 〈(δM)2〉, (1.1.20)

∂2 ln Z

∂β2
= −∂〈Hex〉

∂β
= 〈(δHex)

2〉, (1.1.21)

∂2 ln Z

∂h∂β
= ∂〈M〉

∂β
= −∂〈Hex〉

∂h
= −〈δMδHex〉, (1.1.22)

whereV is the volume of the system,χ is the isothermal magnetic susceptibility per unit
volume,h andβ are treated as independent variables, and use has been made of (1.1.12).
Another frequently discussed quantity is the specific heatCH at constant magnetic field
defined by3

CH = T

V

(
∂S

∂T

)
H

= 1

V

(
∂〈H〉
∂T

)
H
. (1.1.23)

Here we use−(∂〈H〉/∂β)H = (∂2 ln Z/∂β2)H to obtain

CH = 〈(δH)2〉/T2V. (1.1.24)

3 In this book all the specific heats in spin systems and fluids have the dimension of a number density.
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Namely,CH is proportional to the variance of the total energy. We also introduce the
specific heatCM at constant magnetization〈M〉 by

VCM = T

(
∂S

∂T

)
M

= VCH − T

(
∂〈M〉
∂T

)2
H

/(
∂〈M〉
∂H

)
T
. (1.1.25)

From(∂〈M〉/∂β)H = −〈δHδM〉 we obtain
CM = [〈(δH)2〉 − 〈δHδM〉2/〈(δM)2〉]/VT2, (1.1.26)

whereδHmay be replaced byδHex becauseδH−δHex = −HδM is linearly proportional
toM. It holds the inequalityCH ≥ CM . These two specific heats coincide in the disordered
phase atH = 0 where〈δHδM〉 = 0. We shall see thatCM in spin systems corresponds to
the specific heatCV at constant volume in one-component fluids.

Positivity of CM

Combinations of the variances of the form,

CAB = 〈(δA)2〉 − 〈δAδB〉2/〈(δB)2〉 ≥ 0, (1.1.27)

will frequently appear in expressions for thermodynamic derivatives. ObviouslyCAB is the
minimum value of〈(δA − xδB)2〉 = 〈(δA)2〉 − 2x〈δAδB〉 + x2〈(δB)2〉 ≥ 0 as a function
of x, so it is positive-definite unless the ratioδA/δB is a constant. Thus we haveCM > 0.

1.1.4 Spin density and energy density variables

We may define the spin density variableŝ(r) by4

ψ̂(r) =
∑
i

si δ(r − ri ), (1.1.28)

wherer i is the position vector of the lattice sitei . ThenM = ∫
drψ̂(r) is the total spin

sum in (1.1.14). Through to Chapter 5 the equilibrium equal-time correlation functions will
be considered and the time variable will be suppressed. For the deviationδψ̂ = ψ̂ − 〈ψ̂〉
of the spin density, the pair correlation is defined by

g(r − r′) = 〈δψ̂(r)δψ̂(r′)〉, (1.1.29)

which is expected to decay to zero for a distance|r − r′| much longer than a correlation
length in the thermodynamic limit (V → ∞). The Fourier transformation ofg(r) is called
the structure factor,

I (k) =
∫

drg(r)exp(i k · r), (1.1.30)

4 Hereafter, the quantities with a circumflex such asψ̂, m̂, n̂, . . . are fluctuating quantities together with those in script such as
H,A,B, . . .. However, the circumflex will be omitted from Chapter 3 onward, to avoid confusion.
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which is expected to be isotropic (or independent of the direction ofk) at long wavelengths
(ka � 1,a being the lattice constant). The susceptibility (1.1.20) is expressed as

χ =
∫

drg(r) = lim
k→0

I (k). (1.1.31)

However, in the thermodynamic limit,χ is long-range and the space integral in (1.1.31) is
divergent at the critical point. We may also introduce the exchange energy densityê(r) by

ê(r) = −
∑
<i, j>

Jsi sj δ(r − ri ). (1.1.32)

Then,
∫
drê(r) = Hex, and the (total) energy density is

êT(r) = ê(r) − H ψ̂(r), (1.1.33)

including the magnetic field energy. From (1.1.24)CH is expressed in terms of the devia-
tion δêT = êT − 〈eT〉 as

CH = T−2
∫

dr〈δêT(r + r0)δêT(r0)〉, (1.1.34)

which is independent ofr0 in the thermodynamic limit.
Hereafter, we will use the following abbreviated notation (also for fluid systems),

〈â : b̂〉 =
∫

dr〈δâ(r)δb̂(r′)〉, (1.1.35)

defined for arbitrary density variablesâ(r) andb̂(r), which are determined by the micro-
scopic degrees of freedom at the space positionr. The space correlation〈δâ(r)δb̂(r′)〉 is
taken as its thermodynamic limit, and it is assumed to decay sufficiently rapidly for large
|r − r′| ensuring the existence of the long-wavelength limit (1.1.35). Furthermore, for any
thermodynamic functiona = a(ψ,e), we may introduce a fluctuating variable by

â(r) = a +
(
∂a

∂ψ

)
e
δψ̂(r) +

(
∂a

∂e

)
ψ

δê(r), (1.1.36)

wherea is treated asa function of the thermodynamic averagesψ = 〈ψ̂〉 ande= 〈ê〉. From
(1.1.19) its incremental change for small variations,δβ = −δT/T2 andδh, is written as

δ〈â〉 = 〈â : ê〉δT
T2

+ 〈â : ψ̂〉δh + · · · . (1.1.37)

From the definition, the above quantity is equal toδa = (∂a/∂T)hδT+(∂a/∂h)Tδh. Thus,

T2
(
∂a

∂T

)
h

= 〈â : ê〉,
(
∂a

∂h

)
T

= 〈â : ψ̂〉. (1.1.38)
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The variances amonĝψ andêare expressed as

χ =
(
∂ψ

∂h

)
T

= 〈ψ̂ : ψ̂〉, T2
(
∂e

∂T

)
h

= 〈ê : ê〉,

T2
(
∂ψ

∂T

)
h

=
(
∂e

∂h

)
T

= 〈ψ̂ : ê〉. (1.1.39)

The specific heats are rewritten as

CH = 1

T2
〈êT : êT〉, CM = 1

T2

[〈ê : ê〉 − 〈ê : ψ̂〉2/〈ψ̂ : ψ̂〉]. (1.1.40)

1.1.5 Hydrodynamic fluctuations of temperature and magnetic field

In the book by Landau and Lifshitz (Ref. [1], Chap. 12), long-wavelength (or hydrody-
namic) fluctuations of the temperature and pressure are introduced for one-component
fluids. For spin systems we may also consider fluctuations of the temperature and magnetic
field around an equilibrium reference state. As special cases of (1.1.36) we define

δT̂(r) =
(
∂T

∂ψ

)
e
δψ̂(r) +

(
∂T

∂e

)
ψ

δê(r), (1.1.41)

δĥ(r) =
(
∂h

∂ψ

)
e
δψ̂(r) +

(
∂h

∂e

)
ψ

δê(r). (1.1.42)

We may regardδT̂ and δ Ĥ = Tδĥ + hδT̂ as local fluctuations superimposed on the
homogeneous temperatureT and magnetic fieldH = Th, respectively. Therefore, (1.1.38)
yields

〈ĥ : ψ̂〉 = 1

T2
〈T̂ : ê〉 = 1, 〈ĥ : ê〉 = 〈T̂ : ψ̂〉 = 0. (1.1.43)

More generally, the density variableâ in the form of (1.1.36) satisfies

〈â : T̂〉 = T2
(
∂a

∂e

)
ψ

, 〈â : ĥ〉 =
(
∂a

∂ψ

)
e
. (1.1.44)

In particular, the temperature variance reads5

〈T̂ : T̂〉 = T2/CM . (1.1.45)

The variances amongδĥ andδT̂/T constitute the inverse matrix of those amongδψ̂ and
δê/T . To write them down, it is convenient to define the determinant,

D = 1

T2

[〈ψ̂ : ψ̂〉〈ê : ê〉 − 〈ψ̂ : ê〉2] = χCM . (1.1.46)

5 In the counterpart of this relation,CM will be replaced byCV in (1.2.64) for one-component fluids and byCVX in (1.3.44)
for binary fluid mixtures.
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The elements of the inverse matrix are written as6

Vττ ≡ 1

T2
〈T̂ : T̂〉 = 1

CM
, Vhh ≡ 〈ĥ : ĥ〉 = 〈ê : ê〉/T2D,

Vhτ ≡ 1

T
〈T̂ : ĥ〉 = −〈ψ̂ : ê〉/TD. (1.1.47)

In the disordered phase withT > Tc andH = 0, we have no cross correlation〈ψ̂ : ê〉 =
0, so thatVττ = 1/CH , Vhh = 1/χ , andVhτ = 0. For other values ofT andH , there is
a nonvanishing cross correlation (Vhτ �= 0). The following dimensionless ratio represents
the degree of mixing of the two variables,

Rv = 〈ψ̂ : ê〉2/[〈ψ̂ : ψ̂〉〈ê : ê〉]

= T2
(
∂ψ

∂T

)2

h

/(
∂ψ

∂h

)
T

(
∂e

∂T

)
h
, (1.1.48)

where 0≤ Rv ≤ 1 and use has been made of (1.1.39) in the second line. From (1.1.40) we
have

CM = CH (1− Rv), (1.1.49)

for h = 0 (or for sufficiently smallh, as in the critical region). In Chapter 4 we shall see
that Rv ∼= 1/2 asT → Tc on the coexistence curve (T < Tc andh = 0) in 3D Ising
systems.
In the long-wavelength limit, the probability distribution of the gross variables,ψ̂(r)

andm̂(r), tends to be gaussian with the form exp(−βHhyd), where the fluctuations with
wavelengthsshorter than the correlation length have been coarse-grained. From (1.1.39),
(1.1.43), and (1.1.46) thehydrodynamic hamiltonianHhyd in terms of δψ̂ and δT̂ is
expressed as

Hhyd = T
∫

dr
{
1

2χ
[δψ̂(r)]2 + 1

2T2
CM [δT̂(r)]2

}
. (1.1.50)

Another expression forHhyd can also be constructed in terms ofδêandδĥ.

1.2 One-component fluids

1.2.1 Canonical ensemble

Nearly-spherical molecules, such as rare-gas atoms, may be assumed to interact via a
pairwise potentialv(r ) dependent only on the distancer between the two particles [4]–[6].
It consists of a short-range hard-core-like repulsion (r � σ ) and a long-range attraction
(r � σ ). These two behaviors may be incorporated in the Lenard-Jones potential,

v(r ) = 4ε

[(
σ

r

)12

−
(
σ

r

)6]
. (1.2.1)

6 These relations will be used in (2.2.29)–(2.2.36) for one-component fluids and in (2.3.33)–(2.3.38) for binary fluid mixtures
after setting up mapping relations between spin and fluid systems.



1.2 One-component fluids 11

This pairwise potential is characterized by the core radiusσ and the minimum−ε attained
at r = 21/6σ . In classical mechanics, the hamiltonian forN identical particles with mass
m0 is written as

H = 1

2m0

∑
i

|pi |2 +
∑
<i, j>

v(ri j ), (1.2.2)

wherepi is the momentum vector of thei th particle,ri j is the distance between the particle
pair i, j, and<i, j> denotes summation over particle pairs. The particles are confined in
a container with a fixed volumeV and the wall potential is not written explicitly in (1.2.2).
In the canonical ensembleT , V , and N are fixed, and the statistical distribution is

proportional to the Boltzmann weight as [1]–[3]

Pca(�) = 1

ZN
exp[−βH], (1.2.3)

in the 2dN-dimensional phase space� = (p1 · · ·pN, r1 · · · rN) (sometimes called the
�-space). The spatial dimensionality is written asd and may be general. The partition
function ZN of N particles for the canonical ensemble is then given by the multiple
integrations,

ZN = 1

N!(2π h̄)dN

∫
dp1 · · ·

∫
dpN

∫
dr1 · · ·

∫
drN exp(−βH)

= 1

N!λdNth

∫
dr1 · · ·

∫
drN exp(−βU), (1.2.4)

whereh̄ = 1.05457×10−27 erg s is the Planck constant. In the second line the momentum
integrations over the maxwellian distribution have been performed, where

λth = h̄(2π/m0T)
1/2 (1.2.5)

is called the thermal de Broglie wavelength, and

U =
∑
<i, j>

v(ri j ) (1.2.6)

is the potential part of the hamiltonian.
The Helmholtz free energy is given byF = −T ln ZN . The factor 1/N!(2π h̄)dN

in (1.2.4) naturally arises in the classical limit(h̄ → 0) of the quantum mechanical
partition function [2]. Physically, the factor 1/N! represents the indistinguishability be-
tween particles, which assures the extensive property of the entropy. That is, a set of
classical microscopic states obtainable only by the particle exchange,i → j and j → i ,
corresponds to a single quantum microscopic state.7 The factor 1/(2π h̄)dN is ascribed to
the uncertainty principle (�p�x ∼ 2π h̄).

7 The concept of indistinguishability is intrinsically of quantum mechanical origin as well as the uncertainty principle. It is not
necessarily required in the realm of classical statistical mechanics. Observable quantities such as the pressure are not affected
by the factor1/N!.
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1.2.2 Grand canonical ensemble

A fluid region can be in contact with a mass reservoir characterized by a chemical potential
µ as well as with a heat reservoir at a temperatureT . As an example of such a system,
we may choose an arbitrary macroscopic subsystem with a volume much smaller than the
volume of the total system. In this case we should consider the grand canonical distribution,
in which T , µ, andV are fixed and the energy and the particle number are fluctuating
quantities. To make this explicit, the particle number will be written asN and, to avoid too
many symbols, the average〈N 〉 will be denoted byN which is now a function ofT and
µ. The statistical probability of each microscopic state withN particles being realized is
given by [1]–[3]

Pgra(�) = 1

�
exp[−βH + βµN ]. (1.2.7)

The equilibrium average is written as〈· · ·〉 = ∫
d�(· · ·)Pgra(�), where∫

d� =
∑
N

1

N !(2π h̄)dN

∫
dp1 · · ·

∫
dpN

∫
dr1 · · ·

∫
drN (1.2.8)

represents the integration of the configurations in the�-space. The normalization factor or
the grand partition function� is expressed as

� =
∑
N

ZN exp(Nβµ). (1.2.9)

In this summation the contribution aroundN ∼= N = 〈N 〉 is dominant for largeN, and
the logarithm� ≡ ln� satisfies

� = ln ZN + Nβµ = pV/T, (1.2.10)

in the thermodynamic limitN → ∞. Use has been made of the fact thatG = Nµ is the
Gibbs free energy.
We may choose� as a thermodynamic potential dependent onβ and

ν = βµ = µ/T. (1.2.11)

Then, analogous to (1.1.12) for Ising systems, the differential form for� is written as
[9, 10]

d� = −〈H〉dβ + 〈N 〉dν, (1.2.12)

where

〈H〉 = 3

2
〈N 〉T + 〈U〉 (1.2.13)

is the energy consisting of the average kinetic energy and the average potential energy.
Notice that (1.2.12) may be transformed into the well-known Gibbs–Duhem relation,

dµ = 1

n
dp− sdT, (1.2.14)
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wheren = 〈N 〉/V is the average number density ands = (〈H〉 − F)/NT is the entropy
per particle.
We then find the counterparts of (1.1.20)–(1.1.22) among the thermodynamic derivatives

and the fluctuation variances ofδN = N − 〈N 〉 andδH = H − 〈H〉 as
∂2�

∂ν2
= ∂〈N 〉

∂ν
= 〈(δN )2〉, (1.2.15)

∂2�

∂β2
= −∂〈H〉

∂β
= 〈(δH)2〉, (1.2.16)

− ∂2�

∂ν∂β
= −∂〈N 〉

∂β
= ∂〈H〉

∂ν
= 〈δN δH〉, (1.2.17)

where all the quantities are regarded as functions ofβ, andν = βµ and the volumeV is
fixed.
The isothermal compressibility is expressed as

KT = 1

n

(
∂n

∂p

)
VT

= β

n2

(
∂

∂ν

〈N 〉
V

)
β

, (1.2.18)

wheren = 〈N 〉/V is the average number density and use has been made of (1.2.14). The
fluctuation variance ofδN = N − 〈N 〉 is expressed in terms ofKT as

〈(δN )2〉 = Vn2T KT (grand canonical). (1.2.19)

As forCM in (1.1.26), the constant-volume specific heatCV = (∂〈H〉/∂T)VN/V per unit
volume can be calculated in terms of the fluctuation variances as

CV = [〈(δH)2〉 − 〈δHδN 〉2/〈(δN )2〉]/VT2 (grand canonical), (1.2.20)

where use has been made of

(∂〈H〉/∂T)N = (∂〈H〉/∂T)ν + (∂〈H〉/∂N)T(∂N/∂T)ν.

Field variables and density variables

Following Griffiths and Wheeler [10] and Fisher [11], we refer toT (or β) and h in
spin systems andT (or β), p, ν, . . . in fluids asfields, which have identical values in
two coexistingphases. We refer to the spin and energy densities in spin systems and
the densities of number, energy, entropy,. . . in fluids asdensities. In spin systems, the
average spin is discontinuous between the two coexisting phases, but the average energy is
continuous. In fluids, the density variables usually have different average values in the two
coexisting phases, but can be continuous in accidental cases such as the azeotropic case
(see Section 2.3). In this book the density variables (even the entropy and concentration)
have microscopic expressions in terms of the spins or the particle positions and momenta.
Their equilibrium averages become the usual thermodynamic variables, and their equi-
librium fluctuation variances can be related to somethermodynamic derivatives in the
long-wavelength limit.
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Shift of the origin of the one-particle energy

It would also be appropriate to remark on the arbitrariness of the origin of the energy
supported by each particle. That is, let us shift the hamiltonian as

H → H + ε0N (1.2.21)

and the chemical potential fromµ to µ + ε0. Then,ε0 vanishes in the grand canonical
distribution and hencemeasurable quantities such as the pressurep should remain invariant
or independent ofε0 as long as they do not involve the origin of the one-particle energy.
We can see that the terms involvingε0 cancel in the variance combination (1.2.20), soCV

is clearly independent ofε0.

Lattice gas model

In the lattice gas model [12], particles are distributed on fixed lattice points in evaluating
the potential energy contribution to�. The lattice constanta is taken to be the hard-core
size of the pair potential, so each lattice point is supposed to be either vacant (ni = 0) or
occupied (ni = 1) by a single particle. Then� is approximated as

� =
∑
{n}

exp(−βH{n}), (1.2.22)

with

H{n} = −
∑
<i, j>

εni n j − (µ + dT ln λth)
∑
i

ni , (1.2.23)

where the summation in the first term is taken over the nearest neighbor pairs andε

represents the magnitude of the attractive part of the pair potential. Obviously, if we set
si = 2ni − 1, the above hamiltonian becomes isomorphic to the spin hamiltonian (1.1.1)
underJ = ε/4 and

H = 1

2
µ + d

2
T ln λth − 1

4
zε = 1

2
µ − d

4
T ln T + const., (1.2.24)

z being the coordination number. The pressurep in the lattice gas model is related to the
free energyFIsing of the corresponding Ising spin system by

p = −V−1FIsing+ a−d
(
H + 1

8
zε

)
. (1.2.25)

1.2.3 Thermodynamic derivatives and fluctuation variances

Analogously to the spin case (1.1.18), the grand canonical distribution functionPgra(�) in
(1.2.7) is changed against small changes,β → β + δβ andν → ν + δν, as [9]

δPgra = [−δHδβ + δN δν]Pgra, (1.2.26)
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where only the linear deviations are written. Because the choice ofβ andν as independent
field variables is not usual, we may switch to the usual choice,T andp. HereδT = −T2δβ

and

δp = nT(δν − H̄δβ), (1.2.27)

where

H̄ = µ + Ts (1.2.28)

is the enthalpy per particle and should not be confused with the magnetic field in the spin
system, ands is the entropy per particle. Then (1.2.26) is rewritten as

δPgra =
[
nδS δT

T
+ δN δp

nT

]
Pgra, (1.2.29)

where

δS = 1

nT
[δH − H̄δN ] (1.2.30)

is the space integral of the entropy density variable to be introduced in (1.2.46) below.
Thus, the thermodynamic average of any fluctuating quantityA changes as

δ〈A〉 = −〈AδH〉δβ + 〈AδN 〉δν + · · · ,

= 〈AδS〉nδT
T

+ 〈AδN 〉 δp
nT

+ · · · . (1.2.31)

Note thatδS is invariant with respect to the energy shift in (1.2.21) because the enthalpy
H̄ is also shifted byε0.
The familiar constant-pressure specific heatCp = nT(∂s/∂T)p per unit volume is

obtained fromVCp = nT limδT→0 〈δS〉/δT with δp = 0. From the second line of (1.2.31)
Cp becomes

Cp = n2〈(δS)2〉/V = 〈(δH − H̄δN )2〉/VT2 (grand canonical). (1.2.32)

In terms ofδS, the constant-volume specific heatCV is also expressed as

CV = n2
[〈(δS)2〉 − 〈δSδN 〉2/〈(δN )2〉]/V (grand canonical), (1.2.33)

which is equivalent to (1.2.20). It leads to the inequalityCp ≥ CV . Use of the
thermodynamic identityCp/CV = KT/Ks yields the adiabatic compressibilityKs =
(∂n/∂p)s/n in the form

Ks = [〈(δN )2〉 − 〈δSδN 〉2/〈(δS)2〉]/Vn2T (grand canonical). (1.2.34)

The sound velocityc is given byc = (ρKs)
−1/2, ρ = m0n being the mass density.
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1.2.4 Gaussian distribution in the long-wavelength limit

We next consider the equilibrium statistical distribution function for the macroscopic
gross variables,H andN , for one-component fluids, which we write asP(H,N ). The
entropyS(E, N) as a function ofE andN is the logarithm of the number of microscopic
configurations atH = E andN = N. It may be written as

exp[S(E, N)] =
∫

d�δ(H − E)δ(N − N), (1.2.35)

whered� is the configuration integral (1.2.8). This grouping of the microscopic states
gives

P(H,N ) = 1

�
exp[S(H,N ) − βH + νN ], (1.2.36)

with the grand canonical partition function,

� =
∫

dH
∫

dN exp[S(H,N ) − βH + νN ]. (1.2.37)

Each thermodynamic state is characterized byβ andν or by E = 〈H〉 andN = 〈N 〉. We
then expandS(H,N ) with respect to the deviationsδH = H − E andδN = N − N as

S(H,N ) = S(E, N) + βδH − νδN + (�S)2 + · · · , (1.2.38)

where(δS)2 is the bilinear part,

(�S)2 = 1

2

(
∂2S

∂E2

)
(δH)2 +

(
∂2S

∂E∂N

)
δHδN + 1

2

(
∂2S

∂N2

)
(δN )2. (1.2.39)

In the probability distribution (1.2.36) the linear terms cancel if (1.2.38) is substituted, so
the distribution becomes the following well-known gaussian form [1, 3, 7]:

P(H,N ) ∝ exp[(�S)2]. (1.2.40)

From this distribution we can re-derive (1.2.15)–(1.2.17) by using the relations,

αee ≡ V
∂2S

∂E2
= ∂β

∂e
, αnn ≡ V

∂2S

∂N2
= −∂ν

∂n
,

αen ≡ V
∂2S

∂N∂E
= ∂β

∂n
= −∂ν

∂e
, (1.2.41)

whereβ andν are regarded as functions ofn = N/V ande= E/V . The three coefficients
in (1.2.41) divided by−V constitute the inverse of the matrix whose elements are the
variances amongH andN .

Weakly inhomogeneous cases

The above result may be generalized for weakly inhomogeneous cases as follows. Let us
consider a small fluid element whose linear dimension is much longer than the correlation
length. Because the thermodynamics in the element is described by the grand canonical
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ensemble, the long-wavelength, number and energy density fluctuations,δn̂(r) andδê(r),
obey a gaussian distribution of the form (1.2.40) with

(�S)2 =
∫

dr
[
1

2
αee(δê(r))2 + αenδê(r)δn̂(r) + 1

2
αnn(δn̂(r))2

]
. (1.2.42)

Thermodynamic stability

It has been taken for granted that the probability distribution (1.2.36) is maximum for the
equilibrium values, which results in the positive-definiteness of the matrix composed of the
coefficients in (1.2.41). In thermodynamics [2, 13] this positive-definiteness (implying the
positivity ofCV , KT , etc.) follows from the thermodynamic stability of equilibrium states.
In this book, because we start with statistical–mechanical principles, their positivity is an
obvious consequence evident from their variance expressions.

1.2.5 Fluctuating space-dependent variables

The number density variablên(r) and the energy density variableê(r) have microscopic
expressions,

n̂(r) =
∑
i

δ(r − ri ), (1.2.43)

ê(r) =
∑
i

1

2m0
|pi |2δ(r − ri ) + 1

2

∑
i �= j

v(ri j )δ(r − ri ), (1.2.44)

in terms of the particle positions and momenta. As in (1.1.36) we may introduce a fluctu-
ating variable by

â(r) = a +
(
∂a

∂n

)
e
δn̂(r) +

(
∂a

∂e

)
n
δê(r), (1.2.45)

for any thermodynamic variablea given as a function of the averagesn = 〈n̂〉 ande= 〈ê〉.
The nonlinear termssuch as(∂2a/∂n2)(δn̂)2 are not included in the definition. Fromds=
(de− H̄dn)/nT the space-dependent entropy variable is introduced by

ŝ(r) = s+ 1

nT

[
δê(r) − H̄δn̂(r)

]
, (1.2.46)

whereH̄ = µ+Ts= (e+ p)/n is the enthalpy per particle. The space integral ofδŝ(r) =
ŝ(r) − s is equal toδS in (1.2.30). In terms of these density variables, the incremental
change of the grand canonical distribution in (1.2.26) and (1.2.29) is expressed as

δPgra = Pgra

∫
dr[−δê(r)δβ + δn̂(r)δν]

= Pgra

∫
dr

[
nδŝ(r)

δT

T
+ δn̂(r)

δp

nT

]
, (1.2.47)
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whereδp is the pressure deviation defined in (1.2.27). With these two expressions we may
express any thermodynamic derivatives in terms of fluctuation variances ofn̂, ê, andŝ in
the long-wavelength limit. Using the notation〈 : 〉, as in (1.1.35), we have

KT = (n2T)−1〈n̂ : n̂〉, Cp = n2〈ŝ : ŝ〉, αp = −T−1〈ŝ : n̂〉, (1.2.48)

where αp = −(∂n/∂T)p/n is the thermal expansion coefficient. From (1.2.20) and
(1.2.33) the constant-volume specific heat is expressed as

CV = T−2[〈ê : ê〉 − 〈ê : n̂〉2/〈n̂ : n̂〉]
= n2

[〈ŝ : ŝ〉 − 〈ŝ : n̂〉2/〈n̂ : n̂〉]. (1.2.49)

The first line was obtained by Schofield [see Ref. 18]. From (1.2.34) the adiabatic com-
pressibility is expressed as

Ks = (ρc2)−1 = [〈n̂ : n̂〉 − 〈n̂ : ŝ〉2/〈ŝ : ŝ〉]/n2T. (1.2.50)

These expressions are in terms of the long-wavelength limit of the correlation functions.
Hence, to their merit, they tend to unique thermodynamic limits, whether the ensemble is
canonical or grand canonical, asN,V → ∞ with a fixed densityn = N/V .
More generally, for any density variableâ in the form of (1.2.45), we obtain

〈â : ê〉 = T2
(
∂a

∂T

)
ν

, 〈â : n̂〉 = nT

(
∂a

∂p

)
T
, 〈â : ŝ〉 = 1

n
T

(
∂a

∂T

)
p
. (1.2.51)

It then follows that(
∂p

∂T

)
a

= −
(
∂a

∂T

)
p

/(
∂a

∂p

)
T

= −n2〈â : ŝ〉/〈â : n̂〉. (1.2.52)

Finally, we give some thermodynamic identities,

ρc2CV = T

(
∂p

∂T

)
s

(
∂p

∂T

)
n

= T

(
∂p

∂T

)2

s
(1− CV/Cp), (1.2.53)

CV/Cp = Ks/KT = 1−
(
∂p

∂T

)
n

/(
∂p

∂T

)
s
. (1.2.54)

These are usually proved with the Maxwell relations but can also be derived from the
variance relations (1.2.48)–(1.2.54).

1.2.6 Density correlation

In the literature [4]–[6] special attention has been paid to the radial distribution function
g(r ) defined by

n2g(|r − r′|) =
∑
i �= j

〈δ(r − ri )δ(r′ − r j )〉

= 〈n̂(r)n̂(r′)〉 − nδ(r − r′), (1.2.55)
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where the self-part (i = j ) has been subtracted andg(r ) → 1 at long distance in the
thermodynamic limit.8 The structure factor is expressed as

I (k) =
∫

drei k·r〈δn̂(r)δn̂(0)〉 = n + n2
∫

drei k·r [g(r ) − 1]. (1.2.56)

An example ofI (k) can be found in Fig. 2.3. The isothermal compressibility (1.2.18) is
expressed as

KT = (n2T)−1 lim
k→0

I (k) = (nT)−1 + T−1
∫

dr[g(r ) − 1]. (1.2.57)

The physical meaning ofg(r ) is as follows.We place a particle at the origin of the reference
frame and consider a volume elementdr at a positionr; then,ng(r )dr is the average
particle number in the volume element. In liquid theories another important quantity is
the direct correlation functionC(r ) defined by

g(r ) = C(r ) +
∫

dr′C(|r − r′|)ng(|r′|). (1.2.58)

Its Fourier transformationCk satisfies

I (k) = n/(1− nCk). (1.2.59)

Let us assume naively thatC(r ) decays more rapidly than the pair correlation functiong(r )
at long distances andCk can be expanded asCk = C0−C1k2+· · · at smallk with C1 > 0
[14]. Then, (1.2.59) yields a well-known expression called the Ornstein–Zernike form,

I (k) ∼= n/(1− nC0 + nC1k
2), (1.2.60)

at smallk. Notice thatC0 = limk→0Ck approaches ton−1 as the critical point (or the
spinodal linemore generally) is approached. The direct correlation functions for binary
mixtures will be discussed at the end of Section 1.3.

1.2.7 Hydrodynamic temperature and pressure fluctuations

As in the book by Landau and Lifshitz [1], we introduce the temperature fluctuationδT̂ as
a space-dependent variable by

δT̂(r) =
(
∂T

∂e

)
n
δê(r) +

(
∂T

∂n

)
e
δn̂(r)

= nT

CV

[
δŝ(r) + 1

n2

(
∂p

∂T

)
n
δn̂(r)

]
, (1.2.61)

where the energy densitŷe(r), the number densitŷn(r), and the entropy densitŷs(r) are
defined by (1.2.45)–(1.2.47), and use has been made of(∂s/∂n−1)T = (∂p/∂T)n. We as-
sume that these density variables consist only of the Fourier components with wavelengths

8 In a finite system, the space integral of (1.2.55) in the volumeV would becomeN(N − 1)/V , in apparent contradiction to
(1.2.57).
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much longer than any correlation lengths (q � ξ−1, near the critical point,ξ being the
correlation length). Then̂a in the form of (1.2.45) satisfies

〈â : T̂〉 = T

n

(
∂a

∂s

)
n

= T2

CV

(
∂a

∂T

)
n
. (1.2.62)

This relation gives [1]

〈n̂ : T̂〉 = 0, 〈ŝ : T̂〉 = T/n, (1.2.63)

〈T̂ : T̂〉 = T2/CV , (1.2.64)

The long-wavelength fluctuations obey a gaussian distribution∝ exp[−βHhyd]. The
hydrodynamic hamiltonian is written as

Hhyd =
∫

dr
{
CV

2T
[δT̂(r)]2 + 1

2n2KT
[δn̂(r)]2

}
, (1.2.65)

which is analogous to (1.1.50) for Ising systems.
We may also introduce a hydrodynamic pressure variableδ p̂(r) by

δ p̂(r) =
(
∂p

∂e

)
n
δê(r) +

(
∂p

∂n

)
e
δn̂(r)

= ρc2
[
1

n
δn̂(r) + n

(
∂T

∂p

)
s
δŝ(r)

]
, (1.2.66)

whereρ is the mass density and use has been made of(∂n−1/∂s)p = (∂T/∂p)s. For â(r)
in the form of (1.2.45) we obtain

〈â : p̂〉 = Tn

(
∂a

∂n

)
s

= Tρc2
(
∂a

∂p

)
s
. (1.2.67)

Substitutingâ = p̂ andT̂ yields

〈 p̂ : p̂〉 = ρc2T, (1.2.68)

〈 p̂ : T̂〉 = Tρc2
(
∂T

∂p

)
s

= T2

CV

(
∂p

∂T

)
n
. (1.2.69)

By settingâ = ŝ andn̂ we also notice

〈ŝ : p̂〉 = 0, 〈n̂ : p̂〉 = nT. (1.2.70)

TheHhyd may be rewritten in another orthogonal form,

Hhyd =
∫

dr
{

1

2ρc2
[δ p̂(r)]2 + n2T

2Cp
[δŝ(r)]2

}
. (1.2.71)

It goes without saying that(�S)2 in (1.2.42) coincides with−βHhyd.
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1.2.8 Projection onto gross variables in the hydrodynamic regime

The pressure fluctuation variableδ p̂(r) in (1.2.66) may be interpreted as theprojectionof
the microscopic stress tensor�̂αβ(r) (α, β = x, y, z) onto the gross variablesδê (or δŝ)
andδn̂.9 In the hydrodynamic regime, for any fluctuating variableâ(r) dependent on space,
the projection operatorP is defined as

Pâ(r) = 〈â〉 + Aenδê(r) + Aneδn̂(r). (1.2.72)

The two coefficientsAen andAne are determined such that the right-hand side andδâ have
the same correlations withδê andδn̂. ThenP2 = P. If â is of the form (1.2.45), we have
Pâ = â. We neglect nonlocality in (1.2.72) assuming thatδêandδn̂ consist of the Fourier
components with an upper cut-off wave number� much smaller than the inverse thermal
correlation length. The calculation of the coefficients is simplified if the above relation is
rewritten in terms ofδ p̂ andδŝ as

Pδâ(r) = Apsδ p̂(r) + Aspδŝ(r). (1.2.73)

Using〈ŝ : p̂〉 = 0, we find

Aps = 〈â : p̂〉/〈 p̂ : p̂〉, Asp = 〈â : ŝ〉/〈ŝ : ŝ〉. (1.2.74)

From (1A.11) and (1A.12) in Appendix 1A, we may derive the following variance
relations,

〈n̂ : �̂αβ〉 = nTδαβ, 〈ê : �̂αβ〉 = (e+ p)Tδαβ. (1.2.75)

Then, from the definitions of̂s in (1.2.46) andp̂ in (1.2.66) we obtain

〈ŝ : �̂αβ〉 = 0, 〈 p̂ : �̂αβ〉 = ρc2Tδαβ. (1.2.76)

Hence, we arrive at

Pδ�̂αβ(r) = δαβδ p̂(r). (1.2.77)

This leads to the inequality

ρc2 ≤ K∞ ≡
〈∑

α

�̂αα :
∑
β

�̂ββ

〉/
d2T. (1.2.78)

See (1.2.84) below forK∞ [18]. In fact, at the gas–liquid critical point the sound velocity
c goes to zero butK∞ remains finite. These are consistent with the inequality in (1.2.78).

1.2.9 Pressure, energy, and elastic moduli in terms ofg(r )

In Appendix 5E we will give the space-dependent microscopic expression for the stress
tensor�̂αβ(r). Its space integral has the following microscopic expression [5, 6],∫

dr�̂αβ(r) =
∑
i

piα piβ
m0

−
∑
<i, j>

v′(ri j )
1

ri j
xi j αxi jβ, (1.2.79)

9 As will be discussed in Chapter 5, the projection operator method has been developed in the study of irreversible processes.
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wherev′(r ) = dv(r )/dr , xiα (α = x, y, z) are the cartesian coordinates of the particle
position r i , andxi j α = xiα − xjα. The pressure is then expressed in terms of the radial
distribution functiong(r ) in (1.2.55) as

p = nT − 1

2d
J1, (1.2.80)

with

J1 =
∫

drn2g(r )r v′(r ), (1.2.81)

whered in (1.2.80) is the spatial dimensionality. In addition, the internal energy density is
expressed as

e= 〈ê〉 = d

2
nT + 1

2

∫
drn2g(r )v(r ). (1.2.82)

In an isotropic equilibrium state the variances among the stress tensor�̂αβ in the long-
wavelength limit are written as

1

T
〈�̂αβ : �̂γ δ〉 = (δαγ δβδ + δαδδβγ )G∞ + δαβδγ δ

(
K∞ − 2

d
G∞

)
. (1.2.83)

HereK∞ andG∞ are called theelastic moduliof fluids [6], [15]–[18]. Although elastic
deformations are not well defined in fluids, they were interpreted as the infinite-frequency
elastic moduli of fluids [17].10 Interestingly, they can be expressed in terms ofg(r ) as
[17, 18]

K∞ = 1

d2T

〈∑
α

�̂αα :
∑
β

�̂ββ

〉
=

(
1+ 2

d

)
nT − d − 1

2d2
J1 + 1

2d2
J2, (1.2.84)

G∞ = 1

T
〈�̂xy : �̂xy〉 = nT + 1

2d(d + 2)

[
(d + 1)J1 + J2

]
, (1.2.85)

whereJ1 is defined by (1.2.81) and

J2 =
∫

drn2g(r )r 2v′′(r ), (1.2.86)

with v′′(r ) = d2v(r )/dr2. Elimination ofJ1 andJ2 yields a general relation,

K∞ −
(
1+ 2

d

)
G∞ = 2(p− nT). (1.2.87)

It is not trivial that K∞ andG∞ can be expressed in terms of the radial distribution
function, although they involve correlations among four particles. We will present a general
theory for calculating correlation functions involving the stress tensor in Appendix 1A.
Schofield calculated more general wave number-dependent correlation functions among

10 In highly supercooled fluids, a shear modulus becomes well defined and measurable. It is smaller thanG∞ but larger than
nT. See Fig. 11.33 and its explanation in Section 11.4.




