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1

Spin systems and fluids

To study equilibrium statistical physics, we will start with Ising spin systems (here-
after referred to as Ising systems), because they serve as important reference systems
in understanding various phase transitions [1]4[¥)Me will then proceed to one- and
two-component fluids with short-range interaction, which are believed to be isomorphic
to Ising systems with respect to static critical behavior. We will treat equilibrium averages
of physical quantities such as the spin, number, and energy density and then show that
thermodynamic derivatives can be expressed in terms of fluctuation variances of some
density variables. Simple examples are the magnetic susceptibility in Ising systems and
the isothermal compressibility in one-component fluids expressed in terms of the corr-
elation function of the spin and density, respectively. More complex examples are the
constant-volume specific heat and the adiabatic compressibility in one- and two-component
fluids. For our purposes, as far as the thermodynamics is concerned, we need equal-time
correlations only in the long-wavelength limit. These relations have not been adequately
discussed in textbooks, and must be developed here to help us to correctly interpret various
experiments of thermodynamic derivatives. They will also be used in dynamic theories
in this book. We briefly summarize equilibrium thermodynamics in the light of these
equilibrium relations for Ising spin systems in Section 1.1, for one-component fluids in
Section 1.2, and for binary fluid mixtures in Section 1.3.

1.1 Spin models
1.1.1 Ising hamiltonian

Let each lattice point of a crystal lattice have two microscopic states. It is convenient
to introduce a spin variablg, which assumes the values 1-ed at lattice pointi. The
microscopic energy of this system, called the Ising spin hamiltonian, is composed of the
exchange interaction energy and the magnetic field energy,

H{s} = Hex + Hmag (1.1.2)
where
Hex=— Y JSsj, (1.1.2)
<i,j>

1 References are to be found at the end of each chapter.
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Hmag=—H > _s. (1.1.3)
i

The interaction between different spins is short-ranged and the summatfityy ia taken

over the nearest neighbor paitsj of the lattice points. The interaction energy between
spins is then-J if paired spins have the same sign, while itlior different signs. In the

caseJ > O the interaction is ferromagnetic, where all the spins align in one direction

at zero temperature. The magnetic fiefdis scaled appropriately such that it has the
dimension of energy. At zero magnetic field the system undergoes a second-order phase
transition at a critical temperatuiie. The hamiltoniartY mimics ferromagnetic systems

with uniaxial anisotropy.

In the case] < 0, the interaction is antiferromagnetic, where the neighboring paired
spins tend to be antiparallel at low temperatures. Let us consider a cubic lattice, which
may be divided into two sublattices, and B, such that each lattice point and its nearest
neighbors belong to different sublattices. Here, we define the staggered spin vagables
by

S=s (€A, S=-s (ieb). (1.1.4)

Then,Heyx in terms of{ S } has the positive couplingl| and is isomorphic to the ferromag-
netic exchange hamiltonian.

The Ising model may also describe a phase transition of binary alloys consisting of atoms
1 and 2, such as Cu-Zn alloys. If each lattice poistoccupied by a single atom of either
of the two species, the occupation numbegsandny; satisfyny; +ng = 1. Vacancies and
interstitials are assumed to be nonexistent. If the nearest neighbor pairs have an interaction
energyek L (K, L = 1, 2), the hamiltonian is written as

H{n} = Z ZGKLnKinLj — ZZuKnKi, (1.1.5)
i K

<i,j>K,L

wherew1 andu, are the chemical potentials of the two components. From (1.1.4) we may
introduce a spin variable,

S =2n; —1=1-2ny, (1.1.6)

to obtain the Ising model (1.1.1) with

1 1 z
J= Z(_Gll — €22 + 2€12), H= E(Hl — n2) — 1(611 — €22), (1.1.7)

wherez is the number of nearest neighbors with respect to each lattice point and is called
the coordination number.

1.1.2 Vector spin models

Many variations of spin models defined on lattices have been studied in the literature [8].
If the sping = (sii, ..., Shi) on each lattice point is am-component vector, its simplest
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hamiltonian reads

Hisf=— ) Js-si—H) si. (1.1.8)

<i,j> i

The first term, the exchange interaction, is assumed to be invariant with respect to rotation
in the spin space. The magnetic figttfavors ordering of the first spin componessis.
The model withn = 2 is called thexy model, and the model with = 3 the Heisenberg
model. It is known that the static critical behavior of the three-dimensiggahodel is
isomorphic to that ofHe and®He-*He mixtures near the superfluid transition, as will be
discussed later. However, there are many cases in which there is some anisotropy in the spin
space and, if one direction is energetically favored, the model reduces to the Ising model
asymptotically close to the critical point. Such anisotropy becomes increasingly important
near the critical point (orelevantin the terminology of renormalization group theory). As
another relevant perturbation, we may introduce a long-range interaction such as a dipolar
interaction.

1.1.3 Thermodynamics of Ising models

Each microscopic state of the Ising system is determined if all the values of{spiae
given. In thermal equilibrium, the probability of each microscopic state being realized is
given by the Boltzmann weight,

Peq({s) = Zexp(—BH(s}), (1.1.9)

where
p=1/T. (1.1.10)
In this book the absolute temperature multiplied by the Boltzmann corigiant1.381 x

1016 erg/K is simply written ag and is called the temperature [1], Eas the dimension
of energy. The normalization fact@ in (1.1.9) is called the partition function,

Z=Y exp(—pHIs). (1.1.11)
{s}
where the summation is taken over all the microscopic states. The differential form for the
logarithm InZ becomes

d(nZ2) = —(H)dB + B(M)dH = —(Hex)dB + (M)dh, (1.1.12)
where the increments are infinitesimal,
h=AH=H/T, (1.1.13)

andM is the sum of the total spirfs,
M= Zs. (1.1.14)
i

2 In this book the quantitiesH, M, N, ... in script, are fluctuating variables (dependent on the microscopic degrees of
freedom) and not thermodynamic ones.
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Hereafter( - -) is the average over the Boltzmann distribution (1.1.9). The usual choice of
the thermodynamic potential is the free energy,

F=-Tihz, (1.1.15)
and the independent intensive variablesB@ndH with
dF = —-SdT— (M)dH, (1.1.16)

whereS = ((H) — F)/T is the entropy of the system.

We also consider the small change of the microscopic canonical distribution in (1.1.9)
for small changes8 — B + 88 andh — h + §h. Explicitly writing its dependences gf
andh, we obtain

Peq({S); B + 8B, h + 8h) = Peg({S): B, h) exp[—6HexdB + SMsh +---],  (1.1.17)

wheredHex = Hex — (Hex) anddM = M — (M). To linear order insg andésh, the
change of the distribution is of the form,

8Peq({S}) = Peq({sh[—6HexdB + SMsh +---]. (1.1.18)

Therefore, the average of any physical variadlle- A{s} dependent on the spin configu-
rations is altered with respect to the change (1.1.18) as

8(A) = —(ASHex)8B + (ASM)Sh 4 - - . (1.1.19)
We setd = M andHex to obtain

Vy = 8?%2 = %\h@ = ((6M)?), (1.1.20)

823';22 = —8%”) = ((6Hen?), (1.1.21)

a;:gﬁz _ 3;’;') _ —3?;” — (S M Hey), (1.1.22)

whereV is the wlume of the systemy is the isothermal magnetic susceptibility per unit
volume,h andg are treated as independent variables, and use has been made of (1.1.12).
Another frequently discussed quantity is the specific I@atat constant magnetic field

defined by
LT[9S\ _ 1(a
cu=T(2) Z2 (1) w1z

Here we use-(3(H)/3B)n = (3%In Z/3p%)H to obtain
Ch = ((8H)?)/T?V. (1.1.24)

3 In this book all the specific heats in spin systems and fluids have the dimension of a number density.
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Namely, Cy is proportional to the variance of the total energy. We also introduce the
specific heaCy, at constant magnetizatidi1) by

__[8S\ M)\ /[ (d(M)

From (3(M)/3B)n = —(§HSM) we obtain
Cm = [((6H)?) — (SHEM)?/((6M)A)]/V T2, (1.1.26)

whered’H may be replaced byHex becauséH —Hex = —HSM is linearly proportional

to M. It holds the inequalitCy > Cu. These two specific heats coincide in the disordered
phase aH = 0 where(§Hé M) = 0. We shall see thay, in spin systems corresponds to
the specific heaty at constant volume in one-component fluids.

Positivity of Gy
Combinations of the variances of the form,
Cag = ((8A4)%) — (8A8B)%/((8B)?) = O, (1.1.27)

will frequently appear in expressions for thermodynamic derivatives. Obvi@ghyis the
minimum \alue of (8.4 — x88)2) = ((8.4)2) — 2x(8.A8B) + x2((88)2) > 0 as a function
of X, so it is positive-definite unless the rafigl/5 B is a constant. Thus we ha@y, > 0.

1.1.4 Spin density and energy density variables
We may define the spin density variaie) by*

Y =) s8(r—rp), (1.1.28)
i

wherer; is the position vector of the lattice site Then M = fdn/}(r) is the total spin
sumin (1.1.14). Through to Chapter 5 the equilibrium equal-time correlation functions will
be considered and the time variable will be suppressed. For the devigitien s — (/)

of the spin density, the pair correlation is defined by

g(r —r'y = 8y N8y (1)), (1.1.29)

which is expected to decay to zero for a distafrce r’| much longer than a correlation
length in the thermodynamic limiM — o). The Fourier transformation a@f(r) is called
the structure factor,

I (k) = /drg(r) expik-r), (2.1.30)

4 Hereafter, the quantities with a circumflex suchjash, A, . .. are fluctuating quantities together with those in script such as
H, A, B, .... However, the circumflex will be omitted from Chapter 3 onward, to avoid confusion.
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which is expected to be isotropic (or independent of the directidg) af long wavelengths
(ka « 1, a being the lattice constant). The susceptibility (1.1.20) is expressed as

X = /drg(r) = lligwol (k). (2.1.31)

However, in the thermodynamic limig, is long-range and the space integral in (1.1.31) is
divergent at the critical point. We may also introduce the exchange energy démgiby

& =— > Jssi8(r—rp). (1.1.32)

<i,j>
Then, [ dré(r) = Hex, and the (total) energy density is
ér(r) = &(r) — Hyr (), (1.1.33)

including the magnetic field energy. From (1.1.24) is expressed in terms of the devia-
tion 8ér = ér — (er) as

Cy = T‘Z/dr<8ér(r+ro)8ér(ro)>, (1.1.34)

which is independent af in the thermodynamic limit.
Hereafter, we will use the following abbreviated notation (also for fluid systems),

a:p) = /dr(éé(r)aﬁ(r’)), (1.1.35)

defined for arbitrary density variablésr) andb(r), which are determined by the micro-
scopic degrees of freedom at the space positicfhe space correlatioa(r)sb(r’)) is
taken as its thermodynamic limit, and it is assumed to decay sufficiently rapidly for large
[r — r’| ensuring the existence of the long-wavelength limit (1.1.35). Furthermore, for any
thermodynamic functioa = a(y, €), we may introduce a fluctuating variable by

Al oa A oa N
arny=a+ (Wl&p(r) + <£>¢8e(r), (1.1.36)

~

wherea is treated aa function of the thermodynamic averages= (y/) ande = (é). From
(1.1.19) its incremental change for small variatioigs= —3T/T2 andsh, is written as

s(a)=(a:8)— + (a:y)sh+---. (1.1.37)

From the definition, the above quantity is equaléo= (da/dT)ndT 4 (da/ah)téh. Thus,

202 _ 4.4 gay . -
T <8T)h_(a.e>, (3h>T_(a.l//). (1.1.38)
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The variances among andé are expressed as

() gy () e
X = (ah>T—<1/f-1/f>, T(8T>h_<e' ),

29V _(28) _ . a
() < (%)~ e 1139)
The specific heats are rewritten as
1, . 1., . A A
Ch = —(ér:ér), Cu=—5[(€:8 —@: 9%/ )] (1.1.40)

1.1.5 Hydrodynamic fluctuations of temperature and magnetic field

In the book by Landau and Lifshitz (Ref. [1], Chap. 12), long-wavelength (or hydrody-
namic) fluctuations of the temperature and pressure are introduced for one-component
fluids. For spin systems we may also consider fluctuations of the temperature and magnetic
field around an equilibrium reference state. As special cases of (1.1.36) we define

. AT\ - aT\ .

sT(r) = (Wlw(r) + <%>wae(r), (1.1.41)
. ahy - ahy .

shr) = (wl&p(r) + (8_e>w8e(r)' (1.1.42)

We may regardT andsH = Tsh + hsT as local fluctuations superimposed on the
homogeneous temperatufeand magnetic fieldH = T h, respectively. Therefore, (1.1.38)
yields

.. 1 . . A oA
(h:W)zﬁ(T =1 (h:&=(T:¢y)=0. (1.1.43)
More generally, the density variabkdein the form of (1.1.36) satisfies
N Ja A fda
a:T)=T2%— a:hy=(—). 1.1.44
@:m <8e)w’ @:h (aw)e ( )

In particular, the temperature variance réads
(T:T)=T?/Cw. (1.1.45)

The variances amongh andsT /T constitute the inverse matrix of those amanl and
5€/T. To write them down, it is convenient to define the determinant,

1. ~ . N
D=5 :y)e: 8 - () : 82 = xCwu. (1.1.46)

5 Inthe counterpart of this relatioy, will be replaced byCy in (1.2.64) for one-component fluids and Byx in (1.3.44)
for binary fluid mixtures.
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The elements of the inverse matrix are writtef as

Ver = —(T:T)==", Vin=(h:h)=(&:8/T?D,

Vie = —(T:h)y=—(y:8/TD. (1.1.47)

In the disordered phase with > T, andH = 0, we have no cross correlation : &) =
0, sothatV;; = 1/Cq, Vhn = 1/x, andVy, = 0. For other values of andH, there is
a nonvanishing cross correlatioviy¢ # 0). The following dimensionless ratio represents
the degree of mixing of the two variables,

R = (¥:8%/[(:v)e:e]

2
_ TZ(%) /(%) <E) (1.1.48)
N ACTACIIA

where 0< R, < 1 and use has been made of (1.1.39) in the second line. From (1.1.40) we
have

Cm =CH(l—Ry), (1.1.49)

for h = 0 (or for sufficiently smalh, as in the critical region). In Chapter 4 we shall see
thatR, = 1/2 asT — T on the coexistence curvd (< T andh = 0) in 3D Ising
systems.

In the long-wavelength limit, the probability distribution of the gross variabjes)
andri(r), tends to be gaussian with the form éxBHnhyq), where the fluctuations with
wavelengthshorter than the correlation length have been coarse-grained. From (1.1.39),
(1.1.43), and (1.1.46) thhydrodynamic hamiltoniartnyq in terms of 8y and 8T is
expressed as

1 . 1 .
Hiya =T / dr{z[aw(r)]z + ﬁcm[aT(r)]Z}. (1.1.50)

Another expression fdkhyq can also be constructed in termsséfandsh.

1.2 One-component fluids
1.2.1 Canonical ensemble
Nearly-spherical molecules, such as rare-gas atoms, may be assumed to interact via a
pairwise potential (r) dependent only on the distancéetween the two particles [4]-[6].
It consists of a short-range hard-core-like repulsiony o) and a long-range attraction
(r 2 o). These two behaviors may be incorporated in the Lenard-Jones potential,

o={(7) - ()]

6 These relations will be used in (2.2.29)—(2.2.36) for one-component fluids and in (2.3.33)—(2.3.38) for binary fluid mixtures
after setting up mapping relations between spin and fluid systems.
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This pairwise potential is characterized by the core radiasd the minimum-¢ attained
atr = 2484 In classical mechanics, the hamiltonian féridentical particles with mass
Mg is written as

1 12 o
M=o 2.: Ipi 1>+ §> G 1.2.2)
wherep; is the momentum vector of théh particleri;j is the distance between the particle
pairi, j, and<i, j> denotes summation over particle pairs. The particles are confined in
a container with a fixed volumé and the wall potential is not written explicitly in (1.2.2).

In the canonical ensemblg, V, and N are fixed, and the statistical distribution is
proportional to the Boltzmann weight as [1]-[3]

Pea(l) = Zi exp[-B8H], (1.2.3)
N
in the 21 N-dimensional phase spade = (p1---pN,f1---rn) (Sometimes called the
I'-space). The spatial dimensionality is writtendasind may be general. The partition
function Zy of N particles for the canonical ensemble is then given by the multiple
integrations,

1
ZIN = Ni@eh)iN 27.[h)dl\|/dp1"'/de/drl"'/drN exp(—pH)
1
= W/dnm/dm exp(—pU), (1.2.4)

whereh = 1.054 57x 1027 erg s is the Planck constant. In the second line the momentum
integrations over the maxwellian distribution have been performed, where

Ath = h(2r/meT)Y/? (1.2.5)
is called the thermal de Broglie wavelength, and

U=y (i) (1.2.6)
<i,j>

is the potential part of the hamiltonian.

The Helmholtz free energy is given by = —TInZy. The factor ¥N!(2rh)dN
in (1.2.4) naturally arises in the classical linfh — 0) of the quantum mechanical
partition function [2]. Physically, the factor/N! represents the indistinguishability be-
tween particles, which assures the extensive property of the entropy. That is, a set of
classical microscopic states obtainable only by the particle exchangej andj — i,
corresponds to a single quantum microscopic staftee factor J(27h)4N is ascribed to
the uncertainty principleApAx ~ 2xh).
7 The concept of indistinguishability is intrinsically of quantum mechanical origin as well as the uncertainty principle. It is not

necessarily required in the realm of classical statistical mechanics. Observable quantities such as the pressure are not affected
by the factorl/N!.
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1.2.2 Grand canonical ensemble

A fluid region can be in contact with a mass reservoir characterized by a chemical potential
wn as well as with a heat reservoir at a temperafliréAs an example of such a system,

we may choose an arbitrary macroscopic subsystem with a volume much smaller than the
volume of the total system. In this case we should consider the grand canonical distribution,
in which T, u, andV are fixed and the energy and the particle number are fluctuating
guantities. To make this explicit, the particle number will be writteWaand, to avoid too

many symbols, the averadd/) will be denoted byN which is now a function off and

w. The statistical probability of each microscopic state whftparticles being realized is
given by [1]-[3]

= expl—BH + BuN]. 1.2.7)

=
=

Pgra(r) =

The equilibrium average is written &s -) = [ dI'(- - -) Pgra(I"), Where

1
/dr:;W/dpl---/dp/\//drl---/dw (1.2.8)

represents the integration of the configurations inltkepace. The normalization factor or
the grand partition functiof® is expressed as

E=) ZyexpNpw). (1.2.9)
N
In this summation the contribution around = N = (N/) is dominant for largeN, and
the logarithmQ = In E satisfies
Q=1InZn+ NBu = pV/T, (1.2.10)

in the thermodynamic limiN — oo. Use has been made of the fact tliat= N is the
Gibbs free energy.
We may choos& as a thermodynamic potential dependenpand

v=Bu=nu/T. (1.2.11)

Then, analogous to (1.1.12) for Ising systems, the differential forntfas written as
[9, 10]

dQ = —(H)dB + (N)dv, (1.2.12)
where
(H) = g(N)T +U) (1.2.13)

is the energy consisting of the average kinetic energy and the average potential energy.
Notice that (1.2.12) may be transformed into the well-known Gibbs—Duhem relation,

1
du = ﬁdp— sdT, (1.2.14)
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wheren = (N)/V is the average number density ame: ((H) — F)/NT is the entropy
per particle.

We then find the counterparts of (1.1.20)—(1.1.22) among the thermodynamic derivatives
and the fluctuation variances &8 = N — (N) andé’H = H — (H) as

?Q  oN) 2
57 =5, = (B9, (1.2.15)
QM) 5
952 = e = M) (1.2.16)
P?Q  AN)  AH)
T R A T (SNSH), (1.2.17)

where all the quantities are regarded as function8,&ndv = g and the volume/ is
fixed.
The isothermal compressibility is expressed as

1/on\ B[N
o= (3) =y, R

wheren = (N)/V is the average number density and use has been made of (1.2.14). The
fluctuation variance N = N — (N) is expressed in terms ¢fr as

((6N)?) = VT Kt (grand canonical (1.2.19)

As for Cy in (1.1.26), the constant-volume specific h€gt = (d(H)/dT)yn/V per unit
volume can be calculated in terms of the fluctuation variances as

Cv = [((8H)?) — (SHSN)?/((BN)?)]/V T?  (grand canonical (1.2.20)
where use has been made of

(0(H)/0T)N = (0(H)/0T)y + (3(H)/ON)T(IN/OT),.

Field variables and density variables

Following Griffiths and Wheeler [10] and Fisher [11], we referTo(or ) andh in

spin systems and (or 8), p,v, ... in fluids asfields which have identical values in

two coexistingphases. We refer to the spin and energy densities in spin systems and
the densities of number, energy, entropy,in fluids asdensities In spin systems, the
average spin is discontinuous between the two coexisting phases, but the average energy is
continuous. In fluids, the density variables usually have different average values in the two
coexisting phases, but can be continuous in accidental cases such as the azeotropic case
(see Section 2.3). In this book the density variables (even the entropy and concentration)
have microscopic expressions in terms of the spins or the particle positions and momenta.
Their equilibrium averages become the usual thermodynamic variables, and their equi-
librium fluctuation variances can be related to sotmermodynamic derivatives in the
long-wavelength limit.
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Shift of the origin of the one-particle energy

It would also be appropriate to remark on the arbitrariness of the origin of the energy
supported by each particle. That is, let us shift the hamiltonian as

H — H + eoN (1.2.21)

and the chemical potential from to i + €g. Then,ep vanishes in the grand canonical
distribution and hence measurable quantities such as the pressiuoeld remain invariant

or independent ofp as long as they do not involve the origin of the one-particle energy.
We can see that the terms involviggcancel in the variance combination (1.2.20)Gp

is clearly independent eb.

Lattice gas model

In the lattice gas model [12], particles are distributed on fixed lattice points in evaluating
the potential energy contribution ®. The lattice constard is taken to be the hard-core
size of the pair potential, so each lattice point is supposed to be either vacantQ) or
occupied ; = 1) by a single particle. TheE is approximated as

E=) exp(—pHn)), (1.2.22)
)
with
Hiny=— > eninj — (u+dTInkn) Y ni, (1.2.23)
<i,j> i

where the summation in the first term is taken over the nearest neighbor paiks and
represents the magnitude of the attractive part of the pair potential. Obviously, if we set
s = 2n; — 1, the above hamiltonian becomes isomorphic to the spin hamiltonian (1.1.1)
underJ = ¢/4 and

1 d 1 1 d
H=- —TInAth— -2e = = — =T InT + const, 1.2.24
ZM—I— > th 2 € ZM 4 + ( )

z being the coordination number. The presspri@ the lattice gas model is related to the
free energyFsing Of the corresponding Ising spin system by

1
p= —V_1F|sing + a_d (H + éZE). (1225)

1.2.3 Thermodynamic derivatives and fluctuation variances

Analogously to the spin case (1.1.18), the grand canonical distribution furlegigi) in
(1.2.7) is changed against small changes; 8 + 88 andv — v + §v, as [9]
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where only the linear deviations are written. Because the choieaoflv as independent
field variables is not usual, we may switch to the usual chdiamdp. HeresT = —T258
and

sp=nT(Sv — H8B), (1.2.27)
where
H=upn+Ts (1.2.28)

is the enthalpy per particle and should not be confused with the magnetic field in the spin
system, and is the entropy per particle. Then (1.2.26) is rewritten as

3T sp
where
1 _
8S = ﬁ[87—[ — HSN] (1.2.30)

is the space integral of the entropy density variable to be introduced in (1.2.46) below.
Thus, the thermodynamic average of any fluctuating quastichanges as

8(A) = —(ASH)SB + (ASN)Sv + - -,
_ 8T sp

Note thatsS is invariant with respect to the energy shift in (1.2.21) because the enthalpy
H is also shifted by.

The familiar constant-pressure specific h€gt = nT(3s/dT)p per unit volume is
obtained fromV Cp = nT limst_.0 (§S)/8T with §p = 0. From the second line of (1.2.31)
Cp becomes

Cp = n?((88)%)/V = ((8H — H8N)?)/VT? (grand canonical (1.2.32)
In terms ofs§S, the constant-volume specific héay is also expressed as
Cv = N?[{(68)3) — (8S8N)2/((6A)%)]/V  (grand canonical (1.2.33)

which is equivalent to (1.2.20). It leads to the inequally > Cy. Use of the
thermodynamic identityCp/Cy = K7 /Ks yields the adiabatic compressibilitgs =
(dn/ap)s/n in the form

Ks = [((BA)?) — (8S8N)?/((88)%)]/Vr®T  (grand canonical (1.2.34)

The sound velocitg is given byc = (pKs)~%/2, p = mgn being the mass density.
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1.2.4 Gaussian distribution in the long-wavelength limit

We next consider the equilibrium statistical distribution function for the macroscopic
gross variablesH and .\, for one-component fluids, which we write &+, ). The
entropyS(E, N) as a function ofe andN is the logarithm of the number of microscopic
configurations at{ = E and A\ = N. It may be written as

exp[S(E, N)] = /dI‘S(H —E)§(V — N), (1.2.35)

wheredT is the configuration integral (1.2.8). This grouping of the microscopic states
gives

1
PH,N) = = exp[S(H, N) — BH + vN], (1.2.36)
with the grand canonical partition function,
E= /dH/d/\/exp[S(H,N) — BH + vN]. (1.2.37)

Each thermodynamic state is characterizegglandv or by E = (H) andN = (N). We
then expand(H, \) with respect to the deviatiod${ = H — E andSN =N — N as

S(H,N) = S(E, N) + BSH — v6N + (AS)2 + - - -, (1.2.38)
where(8S); is the bilinear part,
1/9%s 2 %S 1/9°S 2
(AS)2 = 5(@>(8H) + (8E8N>8H8N+ §(W>(8N) . (1.2.39)

In the probability distribution (1.2.36) the linear terms cancel if (1.2.38) is substituted, so
the distribution becomes the following well-known gaussian form [1, 3, 7]:

P(H,N) x exp[(AS)7]. (1.2.40)
From this distribution we can re-derive (1.2.15)—(1.2.17) by using the relations,
%S 9B 92s v
Oee EV@:a—e, annEVW:—%’
s 9 3
den = = —'B == (1.2.41)

INOE ~ on o€’
whereg andv are regarded as functionsmt= N/V ande = E/V. The three coefficients

in (1.2.41) divided by—V constitute the inverse of the matrix whose elements are the
variances among{ and.\V.

Weakly inhomogeneous cases

The above result may be generalized for weakly inhomogeneous cases as follows. Let us
consider a small fluid element whose linear dimension is much longer than the correlation
length. Because the thermodynamics in the element is described by the grand canonical
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ensemble, the long-wavelength, number and energy density fluctuatfansandsé(r),
obey a gaussian distribution of the form (1.2.40) with

1 1

Thermodynamic stability

It has been taken for granted that the probability distribution (1.2.36) is maximum for the
equilibrium values, which results in the positive-definiteness of the matrix composed of the
coefficients in (1.2.41). In thermodynamics [2, 13] this positive-definiteness (implying the
positivity of Cy, K, etc.) follows from the thermodynamic stability of equilibrium states.

In this book, because we start with statistical-mechanical principles, their positivity is an
obvious consequence evident from their variance expressions.

1.2.5 Fluctuating space-dependent variables

The number density variabfigr) and the energy density varialbdér) have microscopic
expressions,

A =Y 8 —ri), (1.2.43)
i
] 1, 1
&(r) = Z 2—molpi| =)+ ;u(r”)a(r —ri), (1.2.44)

in terms of the particle positions and momenta. As in (1.1.36) we may introduce a fluctu-
ating variable by

A jJay\ . oa\ .
arn=a+ <%)ean(r) + (g)nae(r), (1.2.45)

for any thermodynamic variabkegiven as a function of the averages= (i) ande = ().
The nonlinear termsuch agd2a,/an?) ()2 are not included in the definition. Frods =
(de— Hdn)/nT the space-dependent entropy variable is introduced by

Sr)=s+ %[aé(r) — HsAMn], (1.2.46)
whereH = 1 +Ts= (e+ p)/nis the enthalpy per particle. The space integraldgf) =

8(r) — sis equal todS in (1.2.30). In terms of these density variables, the incremental
change of the grand canonical distribution in (1.2.26) and (1.2.29) is expressed as

8T )
Pgra/ dr[nSs(r)? +8n(r)%], (1.2.47)
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wheredp is the pressure deviation defined in (1.2.27). With these two expressions we may
express any thermodynamic derivatives in terms of fluctuation varianagstpaind$ in
the long-wavelength limit. Using the notatién ), as in (1.1.35), we have

Kr=@0?T)"HA:A), Cp=n%3:98), ap=-T H5:n), (1.2.48)
whereap, = —(9n/dT)p/n is the thermal expansion coefficient. From (1.2.20) and
(1.2.33) the constant-volume specific heat is expressed as

Cv = T2[(e:&) —(&:M?/(A:n)]
= n?[(8:8) — (§:M)2/(A:M)]. (1.2.49)

The first line was obtained by Schofield [see Ref. 18]. From (1.2.34) the adiabatic com-
pressibility is expressed as

Ks= (oc® "t =[(A:A) — (A:§)?/(5:9)]/nT. (1.2.50)
These expressions are in terms of the long-wavelength limit of the correlation functions.
Hence, to their merit, they tend to unique thermodynamic limits, whether the ensemble is

canonical or grand canonical, &s V — oo with a fixed densityn = N/ V.
More generally, for any density variakden the form of (1.2.45), we obtain

N -5 PR —y Ao 1[0
a:é=T (8T>v’ (a.n)_nT(ap)T, (a.s)_nT<8T>p. (1.2.51)

It then follows that

ap _ E a_a L n2/A A /A A
<B_T)a_ <8T>p/(ap>T =-—n<@a:>s)/@&:n) (1.2.52)
Finally, we give some thermodynamic identities,
ap\ ( 9p op\?
2cy=T(=)(=) =T(—=) a-cy/C 1.2.53
petv APACIA ot ), (L= Cv/Co): ( )
_ _1_ (2P P
Cv/Cp=Ks/Kr =1 <8T )n/(aT )s. (1.2.54)

These are usually proved with the Maxwell relations but can also be deniged the
variance relations (1.2.48)—(1.2.54).

1.2.6 Density correlation
In the literature [4]-[6] special attention has been paid to the radial distribution function
g(r) defined by
nPg(r—r') = Y (0 -8’ —rj)
i#]
= (AMOAT)) = nd(r —T1"), (1.2.55)
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where the self-parti(= j) has been subtracted agd) — 1 at long distance in the
thermodynamic limi€ The structure factor is expressed as

I (k) = /drék'f(aﬁ(r)aﬁ(o» =n+ nZ/dreik'r[g(r) —1J. (1.2.56)

An example ofl (k) can be found in Fig. 2.3. The isothermal compressibility (1.2.18) is
expressed as

Kt = (nzT)‘lllimOI (k) = (nT)_1+T‘1fdr[g(r) —1]. (1.2.57)

The physical meaning af(r) is as follows. We place a particle at the origin of the reference
frame and consider a volume elemaeaitat a positionr; then, ng(r)dr is the average
particle number in the volume element. In liquid theories another important quantity is
the direct correlation functio@ (r) defined by

g(r) = C(r) +/dr/C(|r —r'Png(r’). (1.2.58)
Its Fourier transformatio@y satisfies
I (k) =n/(1—nCy). (1.2.59)

Let us assume naively th@l(r ) decays more rapidly than the pair correlation functign
at long distances ar@ can be expanded & = Co— C1k?+ - - - at smallk with C; > 0
[14]. Then, (1.2.59) yields a well-known expression called the Ornstein—Zernike form,

I (K) = n/(1—nCy+ nCik?), (1.2.60)

at smallk. Notice thatCy = limk_.oCk approaches ta—! as the critical point (or the
spinodal linemore generally) is approached. The direct correlation functions for binary
mixtures will be discussed at the end of Section 1.3.

1.2.7 Hydrodynamic temperature and pressure fluctuations
As in the book by Landau and Lifshitz [1], we introduce the temperature fluctuéiicrs

a space-dependent variable by
oT Se(r) + Al SA(r)
Je /, an /¢

nTl. . 1/0p\ .
o [(Ss(r) + 5 (a—T>n5n(r)}, (1.2.61)

sT ()

where the energy densig(r), the number densitfi(r), and the entropy densi(r) are
defined by (1.2.45)—(1.2.47), and use has been macispdn—1)t = (9p/dT)n. We as-
sume that these density variables consist only of the Fourier components with wavelengths

8 In a finite system, the space integral of (1.2.55) in the voldmwould becomeN (N — 1)/V, in apparent contradiction to
(1.2.57).
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much longer than any correlation lengtits « &1, near the critical pointé being the
correlation length). Theé in the form of (1.2.45) satisfies

.. T/da T2 [ da
a:Ty=—(—) ==—(—=). 1.2.62
a ) n <8S)n Cv <8T )n ( )
This relation gives [1]
@:Ty=0 (8:T)=T/n, (1.2.63)
(T:T)y=T?/Cy, (1.2.64)

The long-wavelength fluctuations obey a gaussian distributiorexp[—Hhyd]. The
hydrodynamic hamiltonian is written as

1
2n? Kt

Hiyd = /dr{ %[af(r)]z + [aﬁ(r)]z}, (1.2.65)

which is analogous to (1.1.50) for Ising systems.
We may also introduce a hydrodynamic pressure variéple) by

5o = () serr + (PP s
8P(r) = (8e>n89(r) + <an)eén(r)
o of1 oT\
= pC [n(Sn(r) + n<—ap)sas(r)], (1.2.66)

wherep is the mass density and use has been matd&mfl/as)p = (0T /0p)s. Fora(r)
in the form of (1.2.45) we obtain

9a 9a
A:p)=Tn[— | =Tpc?( —). 1.2.67
P ”<an>s pe (ap>s (1.267)

Substitutingd = p andT yields

(p: p) = pc?T, (1.2.68)

. aT T2 [ ap
H:T)y=T c2<—> =—<—> ) 1.2.69
(p:T) P o).\t ). ( )

By settingd = § andn we also notice

A

(8:p)=0, (A:p)=nT. (1.2.70)
TheHnyg may be rewritten in another orthogonal form,
1 n’T

= [ dr{ =—[8p(N]* + -=—[85(N1?}. 1.2.71

= [ ar| glapo + G- tosoe (1271)

It goes without saying thatA S); in (1.2.42) coincides with- 8 Hhyg.
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1.2.8 Projection onto gross variables in the hydrodynamic regime

The pressure fluctuation variabi@(r) in (1.2.66) may be interpreted as thmjectionof
the microscopic stress tensﬁcxﬁ(r) (@, B = X, Y, z) onto the gross variablex® (or 58)
andsn.? In the hydrodynamic regime, for any fluctuating variafi{e) dependent on space,
the projection operatdP is defined as

PAr) = (&) + Aende(r) + AnedNA(r). (1.2.72)

The two coefficient#en and Ane are determined such that the right-hand side&nidave

the same correlations witté andsn. ThenP? = P. If & is of the form (1.2.45), we have
Péa = a. We neglect nonlocality in (1.2.72) assuming thé@andsh consist of the Fourier
components with an upper cut-off wave numbemuch smaller than the inverse thermal
correlation length. The calculation of the coefficients is simplified if the above relation is
rewritten in terms of p andés as

Pa(r) = ApsS P(r) + AspdS(r). (1.2.73)
Using(5: p) = 0, we find
Aps=(a:p)/(P: D), Asp=1(a:8)/(5:9). (1.2.74)

From (1A.11) and (1A.12) in Appendix 1A, we may derive the following variance
relations,

(A Tlup) = NT8up, (&1 Tlap) = (€+ P)T 8. (1.2.75)
Then, from the definitions &fin (1.2.46) andp in (1.2.66) we obtain
(8:Tlap) =0, (P:Tlap) = pC°Typ. (1.2.76)

Hence, we arrive at
P8Tap(r) = 84p8 PU1). (1.2.77)
This leads to the inequality

pC% < Koo = <Z Moo Y ﬁﬁﬁ>/d2T. (1.2.78)
@ p

See (1.2.84) below foK » [18]. In fact, at the gas—liquid critical point the sound velocity
c goes to zero buK ., remains finite. These are consistent with the inequality in (1.2.78).

1.2.9 Pressure, energy, and elastic moduli in termsgaf)

In Appendix 5E we will give the space-dependent microscopic expression for the stress
tensorﬁaﬂ(r). Its space integral has the following microscopic expression [5, 6],

. Pia P PN
/drl’Iaﬂ(r) = Z Im—olﬂ - Z v (rij)axijaxijﬂ, (1.2.79)

i <i,j>

9 As will be discussed in Chapter 5, the projection operator method has been developed in the study of irreversible processes.
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wherev'(r) = du(r)/dr, X, (¢ = X, Y, z) are the cartesian coordinates of the particle
positionrj, andxjj« = Xi« — Xjo. The pressure is then expressed in terms of the radial
distribution functiong(r) in (1.2.55) as

1
=nT — — 1.2.
p=n d J1, (1.2.80)
with
= /drnzg(r)rv’(r), (1.2.81)

whered in (1.2.80) is the spatial dimensionality. In addition, the internal energy density is
expressed as
.. d 1 2
e= (6 = EnT + > / drn“g(r)v(r). (1.2.82)
In an isotropic equilibrium state the variances among the stress télra,gdn the long-
wavelength limit are written as
1.

N 2
?(Haﬂ cIys) = (8aydps + 50165,5;/)(500 + 5aﬁ5y8<Koo — aGoo). (1.2.83)

Here Ko, and G, are called theslastic moduliof fluids [6], [15]-[18]. Although elastic
deformations are not well defined in fluids, they were interpreted as the infinite-frequency
elastic moduli of fluids [17]° Interestingly, they can be expressed in termgyaf) as

[17, 18]

1 N . 2 d-1 1
Ko = —5= Mo : Mgg)=(14+ = InNT — —5- + == I, 1.2.84

1

Goo = ?mxy ‘Tlyy) =nT + Wiz)[(d + DI+ 1. (1.2.85)
whereJ; is defined by (1.2.81) and
b= /drnzg(r)rzv”(r), (1.2.86)
with v (r) = d2v(r)/dr2. Elimination of J; and J, yields a general relation,
Koo — <1+ §>Goo =2(p—nT). (1.2.87)

It is not trivial that K, and G, can be expressed in terms of the radial distribution

function, although they involve correlations among four particles. We will present a general

theory for calculating correlation functions involving the stress tensor in Appendix 1A.
Schofield calculated more general wave number-dependent correlation functions among

10 | highly supercooled fluids, a shear modulus becomes well defined and measurable. It is smalBythahlarger than
nT. See Fig. 11.33 and its explanation in Section 11.4.





