
1

Fermi gas

The basic properties of free electron systems are introduced. Then, the many-body
effects of electron gas are discussed. The ground state energy is obtained by taking
the screening effect into account.

1.1 Metals

Metals are composed of positive ions and conduction electrons making itinerant
motion all over the crystal. A positive ion is composed of a nucleus and core
electrons bounded around it. Conduction electrons lower the kinetic energy by
making itinerant motion compared with the state bounded to a positive ion. This
point is important in metallic cohesion.

For simple metals such as Na and Al, the Hamiltonian is given by

H = Hi + He + He−i, (1.1)

Hi =
∑

i

P2
i

2M
+ 1

2

∑
i �= j

V (Ri − R j ), (1.2)

He =
∑

i

p2
i

2m
+ 1

2

∑
i �= j

e2

|r i − r j | , (1.3)

He−i =
∑

i j

v(r i − R j ). (1.4)

Here, Hi in (1.2) represents the positive ion system; we assume one kind of positive
ion with mass M . P i is the momentum of ion i and V (Ri − R j ) is the potential
between ions, which depends only on their distance. He in (1.3) is the Hamiltonian
for the electron system with electron mass m; the first and second terms denote the
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2 Fermi gas

kinetic energy and the coulomb interaction between electrons, respectively. He−i in
(1.4) represents the potential between electrons and positive ions. The Hamiltonian
combined with these terms can describe various properties including magnetism and
superconductivity. In this book we discuss mainly the second term of (1.3), electron
interaction. Owing to the coulomb interaction, electrons move so as to avoid each
other. This kind of correlated electron motion is called ‘electron correlation’.

When we are mainly interested in electron interaction, we simplify the positive
ions by replacing them with a uniform positive charge distributed over the crystal
and discuss only the term He. By this replacement, we can avoid the difficulty
arising from a periodic potential and lattice vibrations.

1.2 Free Fermi gas

An electron is a Fermi particle with a spin of 1/2. There exist 1022–1023 conduction
electrons per cubic centimetre in most metals. For simplicity, let us ignore electron
interactions among these, and also the periodic potential due to the positive ions,
and consider the system composed of free electrons. We assume a system with N
electrons in a cube of side L = �1/3. The wave-function ϕk(r ) for a free electron
with wave-vector k is given by

ϕk = 1√
�

eik·r . (1.5)

Here we take the periodic boundary condition

ϕk(x + L , y, z) = ϕk(x, y + L , z) = ϕk(x, y, z + L) = ϕk(x, y, z). (1.6)

By substituting (1.5) into (1.6), we obtain

eikx L = eiky L = eikz L = 1. (1.7)

By this condition, values of k are given by integers n1, n2 and n3 as

kx = 2πn1/L, ky = 2πn2/L, kz = 2πn3/L . (1.8)

Thus, wave-vector k corresponds to a lattice point with unit of 2π/L in the wave-
vector space.

The energy εk of a free electron with wave-vector k is given by

εk = h̄2k2

2m
= h̄2

2m

(
2π

L

)2

(n2
1 + n2

2 + n2
3). (1.9)

Let us construct the ground state composed of N free electrons. Each one-electron
state specified by wave-vector k and spin quantum number σ can be occupied
by only one electron because of the Pauli exclusion principle. In the ground state
electrons occupy the N states from the lowest energy state to the Nth lowest state.
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Free Fermi gas 3

Fig. 1.1 Fermi sphere. Each k point inside the sphere with radius kF is occupied
by one up-spin electron and one down-spin electron.

The highest occupied energy εF and wave-number kF are called the Fermi energy
and Fermi wave-number, respectively; εF and kF satisfy the relation

εF = h̄2

2m
kF

2. (1.10)

Thus, we have the ground state in which two electrons with up- and down-spins
occupy the state k within the sphere with radius kF. Since the wave-vector k is
situated at a lattice point spaced 2π/L apart, wave-vectors distribute in uniform
density (L/2π )3 = �/(2π )3. As a result, the electron number N is related to kF by

N = 2�

(2π )3

4π

3
kF

3, (1.11)

where factor 2 represents the degree of freedom arising from electron spin. From
(1.11), kF is given by electron density n = N/� as

kF = (3π2n)1/3. (1.12)

Let us calculate the number of electron states between energy E and E + �E ,
�E being an infinitesimal energy. Assuming the total number of states below energy
E as N (E), we obtain

N (E + �E) − N (E) = d N (E)

d E
�E . (1.13)

Here,

d N (E)/d E = ρ(E) (1.14)

is the energy density of states. Using (1.10) and (1.11), we obtain

ρ(E) = d N (k)

dk

dk

d E
= 2�

(2π )3
4πk2 m

h̄2k
= �km

π2h̄2 = �m

π2h̄3

√
2m E . (1.15)

The density of states for a free electron system is proportional to
√

E .
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4 Fermi gas

Now let us consider real metals. We assume n = 1022 cm−3 and obtain kF �
108 cm−1 from (1.12). The value of 1/kF is around 1 Å = 10−8 cm, corresponding
to atomic distance. Inserting this value into (1.10) and using h̄ = 1 × 10−27 erg s and
m = 9 × 10−28 g, we obtain εF � 6 × 10−12 erg � 4 eV. Since 1 eV is the energy
corresponding to 104 K, the room temperature, 300 K, is sufficiently low compared
with the Fermi temperature, TF = εF/kB. This fact is very important in understand-
ing the electronic specific heat discussed in the next section.

The level splitting of one-electron energy near the Fermi surface is given by
�ε = εF/N � 10−22 eV � 10−18kB K. As a result, electron–hole pair excitations
near the Fermi energy can be created with vanishingly small excitation energy.
These electron–hole pair excitations exist in an infinite number. Thus, the conduc-
tion electron system in the Fermi degeneracy is degenerate in the infinite num-
ber of states. In general, the degenerated states suffer a strong effect even under
small perturbations. The special nature of the Fermi surface, which can be called
‘fragility’, plays an important role in the orthogonality theorem and the theory of
superconductivity.

1.3 Electronic specific heat and Pauli susceptibility

If we apply the principle of equipartition to the free electron system to calculate
the specific heat, we obtain the following result. The internal energy W is given by

W = 3

2
NkBT, (1.16)

kB being the Boltzmann constant. The specific heat CV takes a constant value,

CV = dW

dT
= 3

2
NkB. (1.17)

This value is expected to give the same order of contributions as the lattice specific
heat around room temperature. However, in actual metals we cannot observe such
a large electronic specific heat at room temperature. This is because the room
temperature is too low compared with the Fermi temperature for the principle of
equipartition to be applicable. Only the electrons limited within the narrow width
of temperature in the vicinity of the Fermi energy contribute to the specific heat.

Now, let us calculate correctly the specific heat due to free electrons. Using the
chemical potential µ, the distribution of electrons is given by the Fermi distribution
function

f (εk) =
[

1 + exp

(
εk − µ

kBT

)]−1

. (1.18)
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Electronic specific heat and Pauli susceptibility 5

In this case the internal energy of the electron system W is given by

W = 2
∑

k

εk f (εk), (1.19)

where the factor 2 arises from spin degeneracy. Using the density of states ρ(εk)
including both spins, we obtain

W =
∫ ∞

0
ερ(ε) f (ε)dε. (1.20)

The total number of electrons N is given by

N =
∑
kσ

f (εk) =
∫ ∞

0
ρ(ε) f (ε)dε. (1.21)

This equation at T = 0 becomes

N =
∫ εF

0
ρ(ε)dε. (1.22)

Now let us consider the following integral I to accomplish the calculation at low
temperatures:

I =
∫ ∞

0
g(ε) f (ε)dε. (1.23)

Here, g(ε) is a smooth function of energy ε. Using a partial integration, we obtain

I = [G(ε) f (ε)]∞0 −
∫ ∞

0
G(ε)

∂ f

∂ε
dε, (1.24)

G(ε) =
∫ ε

0
g(ε)dε. (1.25)

The first term of (1.24) vanishes because f (∞) = 0. To calculate the second term,
we expand G(ε) around ε = µ. Writing the nth derivative of G as G(n), we obtain

G(ε) = G(µ) + (ε − µ)G ′(µ) + 1

2
(ε − µ)2G ′′(µ) + · · · (1.26)

Inserting this into (1.24), we get

I = G(µ)
∫ ∞

0

(
−∂ f

∂ε

)
dε + G ′(µ)

∫ ∞

0
(ε − µ)

(
−∂ f

∂ε

)
dε + · · ·

+ G(n)(µ)

n!

∫ ∞

0
(ε − µ)n

(
−∂ f

∂ε

)
dε + · · · (1.27)
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6 Fermi gas

The first term gives G(µ). The general terms are given by

1

n!

∫ ∞

0
(ε − µ)n

(
−∂ f

∂ε

)
dε = (kBT )n

n!

∫ ∞

−∞

zn

(ez + 1)(1 + e−z)
dz

=
{

2cn(kBT )n (n even)
0 (n odd).

(1.28)

As an example, for n = 2,

2c2 = 1

2

∫ ∞

−∞

z2dz

(ez + 1)(1 + e−z)
= π2

6
. (1.29)

As a result, I is given by

I =
∫ µ

0
g(ε)dε + π2

6
(kBT )2

[
∂g(ε)

∂ε

]
ε=µ

+ · · · (1.30)

Applying this result to (1.20) and (1.21), we obtain

W =
∫ µ

0
ερ(ε)dε + π2

6
(kBT )2

[
∂

∂ε
(ερ(ε))

]
ε=µ

+ · · · (1.31)

CV = dW

dT
= µρ(µ)

dµ

dT
+ π2

3
kB

2T

[
ρ(ε) + µ

∂ρ

∂ε

]
ε=µ

+ O(T 2)

= π2

3
kB

2ρ(εF)T + µρ(µ)

[
dµ

dT
+ π2kB

2T

3ρ(µ)

∂ρ

∂ε

]
ε=µ

= π2

3
kB

2ρ(εF)T . (1.32)

In (1.32) we have used the shift of chemical potential

µ = εF − π2

6
(kBT )2

[
∂

∂ε
log ρ(ε)

]
ε=µ

, (1.33)

which is obtained by substituting g(ε) = ρ(ε) in (1.30) and shifting µ so as to
conserve the total electron number N .

Thus, the electronic specific heat at low temperatures is proportional to the
density of states ρ(εF) on the Fermi surface and given by the T -linear term as
shown in (1.32). Equation (1.32) can be written as

CV = γ T,

γ = π2

3
kB

2ρ(εF).
(1.34)

Here, the coefficient of the specific heat γ is called the Sommerfeld constant.
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Many-body effect of electron gas 7

Let us apply a weak magnetic field H to the free electron system at low tem-
perature and obtain the expression for the Pauli susceptibility. Using a g-value
of g = 2 and the Bohr magneton µB, the Zeeman energy with spin σ is given
by gσµB H/2 = σµB H . The Zeeman energy induces the magnetization given
by �M = µB(δn↓ − δn↑) = µB

2ρ(εF)H . Thus, the magnetic susceptibility χ is
given by

χ = �M/H = µB
2ρ(εF). (1.35)

The Pauli susceptibility is proportional to the density of states ρ(εF) on the Fermi
surface; this is common to the coefficient of specific heat γ .

1.4 Many-body effect of electron gas

The effects of coulomb interaction on electron gas had been made clear in the
1950s by the efforts of many people, such as Bohm, Pines, Nozières, Gell-Mann,
Brueckner and Sawada. As shown below, initially, by a straight perturbation cal-
culation, the essential points of the problem were made clear. Then, the difficult
key problems were solved by physical considerations, creating new concepts and
developing the methods of the many-body problem. Since the history of the inves-
tigations on electron gas is instructive, we describe it here in detail as a starting
point for the many-body problem [1–6].

In order to discuss mainly the effect of electron interaction, we assume the
electron gas model in which the positive charge due to ions is replaced by a uniform
one. As a result, in this model the uniform distribution of electrons in space cancels
with the positive background to give no effect. The deviation from the uniform
distribution gives rise to the coulomb interaction among electrons. The Hamiltonian
of this system is given by He in (1.3) and is written as

He =
∑

i

pi
2

2m
+ 1

2

∑
i �= j

e2

|r i − r j | , (1.36)

where r i and pi are the position and momentum of electron i , respectively. Here
we define electron density ρ(r ) and its Fourier transform ρq :

ρ(r ) =
∑

i

δ(r − r i ) =
∑

q

ρqeiq·r , (1.37)

ρq = 1

�

∑
i

e−iq·r i = ρ−q
†. (1.38)
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8 Fermi gas

The q = 0 component of ρq, ρ0 = Ne/� = n, is the average electron density and
cancels with the uniform positive charge. Using ρq , we can write (1.36) as

He =
∑

i

pi
2

2m
+ 1

2

∑
q

Vq(�ρq
†ρq − n), (1.39)

where Vq is the Fourier transform of the coulomb interaction e2/r :

Vq = 4πe2

q2
. (1.40)

Here it is noted that since

ρq
†ρq = 1

�2

∑
i j

eiq·(r i −r j ), (1.41)

the term i = j gives n/� and (1.39) excludes the coulomb interaction with r i = r j ,
in agreement with (1.36).

To treat the coulomb interaction as a perturbation, let us represent (1.36) in the
second quantization form (see Appendix B). The coulomb integral is written by the
wave-functions ϕσ1 (r1) and ϕσ2 (r2), as

∫ ∫
dr1dr2ϕσ1

∗(r1)ϕσ2
∗(r2)

e2

|r1 − r2|ϕσ2 (r2)ϕσ1 (r1). (1.42)

By expanding the wave-function ϕσ (r ) with the plane waves as

ϕσ (r ) =
∑

k

akσ

1√
�

eik·r , (1.43)

we write the coulomb interaction as

HC = 1

�

∑
q �=0

2πe2

q2

∑
k1k2
σ1σ2

ak1+qσ1
†ak2−qσ2

†ak2σ2ak1σ1 . (1.44)

Here akσ (akσ
†) is the annihilation (creation) operator of the electron with wave-

vector k and spin σ . The summation over q in (1.44) excludes the part of q = 0
because it cancels with the positive charge.

The density fluctuation ρq is given by

ρq = 1

�

∑
kσ

ak−qσ
†akσ . (1.45)
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Many-body effect of electron gas 9

Thus, He is given in the second quantization as

He =
∑
kσ

εkakσ
†akσ + 1

2�

∑
kk′

,q �=0

σσ ′

Vqak+qσ
†ak′−qσ ′†ak′σ ′akσ , (1.46)

where εk is given by

εk = h̄2k2

2m
. (1.47)

Operators akσ
† and akσ satisfy the commutation rule for Fermi particles (see

Appendix B):
[
akσ , ak′σ ′

]
+

= [
akσ

†, ak′σ ′†
]
+ = 0,[

akσ , ak′σ ′†
]
+ = δk,k′δσ,σ ′ .

(1.48)

Now we study the effect of the coulomb interaction using the above results. First
of all, let us calculate the ground state energy by regarding the second term, the
coulomb interaction, as a perturbation on the first term, the kinetic energy. The
unperturbed state given by the first term is the Fermi sphere occupied up to kF by
two electrons with up- and down-spin. We write it as |0〉 and obtain

nkσ = 〈0|akσ
†akσ |0〉 =

{
1 (k < kF)
0 (k > kF).

(1.49)

The average kinetic energy per electron in the unperturbed state is given by

εkin = 1

Ne
〈0|

∑
kσ

εkakσ
†akσ |0〉 = 3

5
εF, (1.50)

where εF is the Fermi energy given by (1.10). The result of (1.50) is obtained from

εkin =
∫ kF

0

h̄2k2

2m
4πk2dk

/ ∫ kF

0
4πk2dk. (1.51)

Now let us introduce r0 representing electron density as

�

Ne
= 1

n
= 4π

3
r0

3. (1.52)

The radius r0 of the sphere for one electron is replaced by the dimensionless
parameter rs, which is given in units of Bohr radius as

rs = r0/aB. (1.53)
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10 Fermi gas

The Fermi energy εF is given by (1.12) as

εF = h̄2kF
2

2m
= h̄2

2m
(3π2n)2/3 =

(
9π

4

)2/3 1

rs
2

Ry. (1.54)

The unit of energy Ry corresponds to the ionization energy of atomic hydrogen:

1 Ry = me4

2h̄2 = e2

2aB
� 13.5 eV = 2.17 × 10−11 erg. (1.55)

As a final result, the average kinetic energy of (1.50) is given by

εkin = 3

5
εF � 2.21

rs
2

Ry. (1.56)

1.5 Exchange energy

The first-order perturbation term with respect to the coulomb interaction in the
ground state energy is given by

E1 = 1

�

∑
kk′
qσ

Vq

2
〈0|ak+qσ

†ak′−qσ ′†ak′σ ′akσ |0〉

= 1

�

⎧⎪⎨
⎪⎩

∑
kk′
σσ ′

Vq=0

2
nkσ nk′σ ′ +

∑
kq
σ

−Vq

2
nk+qσ nkσ

⎫⎪⎬
⎪⎭ . (1.57)

The first term corresponding to q = 0 in (1.57) cancels with the positive charge of
the background. The second term with q = k′ − k, to which only the electrons pos-
sessing parallel spins contribute, arises from the exchange integral of the coulomb
interaction and possesses a negative sign. The term denoted as Eex is given by

Eex = − 1

�

∑
kq
σ

Vq

2
nk+qσ nkσ = 2

�

∑
k1<kF
k2<kF

−2πe2

|k1 − k2|2

= −
∑

k1<kF
σ

e2

2π

{(
kF

2 − k1
2

2k1

)
log

∣∣∣∣kF + k1

kF − k1

∣∣∣∣ + kF

}
. (1.58)

Then, by integrating this over k1,

Eex = −2
�

(2π )3
e2kF

4. (1.59)
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