Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceleration</td>
<td>445</td>
</tr>
<tr>
<td>Active state of stress</td>
<td></td>
</tr>
<tr>
<td>in a bin</td>
<td>69, 187, 190</td>
</tr>
<tr>
<td>in a hopper</td>
<td>127, 133</td>
</tr>
<tr>
<td>Added mass force</td>
<td>36</td>
</tr>
<tr>
<td>Adhesion</td>
<td>16, 59</td>
</tr>
<tr>
<td>Aerated granular material</td>
<td>40</td>
</tr>
<tr>
<td>Ageing</td>
<td>17</td>
</tr>
<tr>
<td>Alternating tensor</td>
<td>407</td>
</tr>
<tr>
<td>Alternative boundary condition for a free interface</td>
<td>362</td>
</tr>
<tr>
<td>Angle</td>
<td></td>
</tr>
<tr>
<td>of dilation</td>
<td>95, 111</td>
</tr>
<tr>
<td>of internal friction</td>
<td>61, 65, 82</td>
</tr>
<tr>
<td>of repose</td>
<td>1, 166</td>
</tr>
<tr>
<td>of stability</td>
<td>48</td>
</tr>
<tr>
<td>of wall friction</td>
<td>59, 131</td>
</tr>
<tr>
<td>Angular acceleration</td>
<td>447</td>
</tr>
<tr>
<td>Angular momentum balance</td>
<td></td>
</tr>
<tr>
<td>for a continuum</td>
<td>29, 34</td>
</tr>
<tr>
<td>for a spherical particle</td>
<td>23</td>
</tr>
<tr>
<td>for a rigid body</td>
<td>43</td>
</tr>
<tr>
<td>Anisotropic material</td>
<td>62, 63</td>
</tr>
<tr>
<td>Anisotropy of the microstructure</td>
<td>325</td>
</tr>
<tr>
<td>Effect of on the constitutive relations</td>
<td>326</td>
</tr>
<tr>
<td>Arc length</td>
<td>212, 421</td>
</tr>
<tr>
<td>Arching</td>
<td>17, 112</td>
</tr>
<tr>
<td>Asperity</td>
<td>18</td>
</tr>
<tr>
<td>Associated flow rule</td>
<td></td>
</tr>
<tr>
<td>for the extended von Mises yield condition</td>
<td>241</td>
</tr>
<tr>
<td>for plane flow</td>
<td>92, 100</td>
</tr>
<tr>
<td>for three-dimensional flow</td>
<td>226</td>
</tr>
<tr>
<td>Asymptotic fields</td>
<td>164, 205</td>
</tr>
<tr>
<td>Axial segregation</td>
<td>11</td>
</tr>
<tr>
<td>Axisymmetric hopper</td>
<td>116</td>
</tr>
<tr>
<td>Balance law</td>
<td>29</td>
</tr>
<tr>
<td>Ball mill</td>
<td>26</td>
</tr>
<tr>
<td>Basis vector</td>
<td>403</td>
</tr>
<tr>
<td>Basset force</td>
<td>36</td>
</tr>
<tr>
<td>Batch discharge</td>
<td></td>
</tr>
<tr>
<td>from a bin</td>
<td>253, 254, 276</td>
</tr>
<tr>
<td>from a hopper</td>
<td>51, 162</td>
</tr>
<tr>
<td>Beverloo correlation</td>
<td>117</td>
</tr>
<tr>
<td>Bin</td>
<td>5</td>
</tr>
<tr>
<td>Cylindrical</td>
<td>253, 256</td>
</tr>
<tr>
<td>Of rectangular cross section</td>
<td>178</td>
</tr>
<tr>
<td>Body force</td>
<td>33</td>
</tr>
<tr>
<td>Boltzmann equation</td>
<td>297</td>
</tr>
<tr>
<td>at O(K)</td>
<td>314</td>
</tr>
<tr>
<td>at O(ε),</td>
<td>322</td>
</tr>
<tr>
<td>for rough particles</td>
<td>379</td>
</tr>
<tr>
<td>for smooth particles</td>
<td>299</td>
</tr>
<tr>
<td>Bond number, modified</td>
<td>15, 42</td>
</tr>
<tr>
<td>Boundary conditions</td>
<td></td>
</tr>
<tr>
<td>Alternative, at a free interface</td>
<td>362</td>
</tr>
<tr>
<td>at a free interface</td>
<td>355</td>
</tr>
<tr>
<td>for the frictional-kinetic model</td>
<td>395, 396</td>
</tr>
<tr>
<td>From the high-density heuristic theory</td>
<td>332</td>
</tr>
<tr>
<td>At the hopper exit</td>
<td>129, 152</td>
</tr>
<tr>
<td>Along a hopper wall</td>
<td>134</td>
</tr>
<tr>
<td>From the kinetic theory</td>
<td>332</td>
</tr>
<tr>
<td>For rapid flow, at solid walls</td>
<td>331</td>
</tr>
<tr>
<td>Brennen–Pearce solution</td>
<td>134</td>
</tr>
<tr>
<td>Bulk</td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>19</td>
</tr>
<tr>
<td>Solid</td>
<td>1</td>
</tr>
<tr>
<td>Bulk viscosity in rapid flow</td>
<td>320, 323, 389, 391</td>
</tr>
<tr>
<td>Bunker</td>
<td>5</td>
</tr>
<tr>
<td>Buoyancy</td>
<td></td>
</tr>
<tr>
<td>For a single particle</td>
<td>13</td>
</tr>
<tr>
<td>For a suspension</td>
<td>39</td>
</tr>
<tr>
<td>Capillary force</td>
<td>14</td>
</tr>
<tr>
<td>Cartesian tensor notation</td>
<td>407</td>
</tr>
<tr>
<td>Cellular automata</td>
<td>28</td>
</tr>
<tr>
<td>Center of mass</td>
<td>44</td>
</tr>
<tr>
<td>Centrifugal force</td>
<td>448</td>
</tr>
<tr>
<td>Change of frame</td>
<td>440, 443</td>
</tr>
<tr>
<td>Chapman–Enskog expansion</td>
<td>307, 309</td>
</tr>
<tr>
<td>Characteristic</td>
<td>143, 420</td>
</tr>
<tr>
<td>Equation</td>
<td>64</td>
</tr>
<tr>
<td>Chute</td>
<td>5, 26</td>
</tr>
<tr>
<td>Smooth and rough</td>
<td>352, 353</td>
</tr>
</tbody>
</table>
chute flow, 349
analysis using frictional-kinetic model, 396
analysis using high-density heuristic theory, 356
analysis using kinetic theory, 359
dense and loose entry conditions, 351
experimental observations of, 351
Clausius–Duhem inequality, 29, 92
clay, 17, 76
compression and extension tests, 223, 224
isotropic compression of, 222
yield surface for, 110
couxiality condition
in cylindrical coordinates, 126
data related to, 88–90
for plane flow, 87
in spherical coordinates, 260
proof of, 434
coefficient
of earth pressure at rest, 60, 69
of kinetic friction, 59, 72
of static friction, 58, 72
coefficient of restitution, 288
occurrence of, in the constitutive relations, 323
for particle–wall collisions, 333, 334
cofactor, 417
cohesion, 16, 58, 61
cohesionless material, 17, 240
cohesive material, 16, 17, 244
collisional contribution to, the stress, flux of fluctuational energy. See streaming and collisional contribution
column
matrix, 403
vector, 403
compaction, 73
branch of the yield locus, 78
compatibility condition, 186, 420–421
compressible flow, 154, 203
compression test, triaxial, 223
condensation, of moisture, 18
configuration, of a body, 30
conical hopper, 117
yield condition, 267
conservation law, 430
constitutive equation, 29
for an isotropic material, 435
constitutive relations for rapid flow
in the high-density heuristic theory, 291
in the kinetic theory for rough particles, 389, 390
in the kinetic theory for smooth particles, 323
contact
angle, 14
force, 16
between particles, 13
continuity equation, 22
continuum model, 22, 28
validity of, 28
coordinate transformation
reflection, 438
rotation, 437
time-dependent, 440
time-independent, 435
translation, 435
coordination number, 21
core flow, 5, 122
Coriolis acceleration, 447
force, 448
corotational derivative, 234
frame, 234
Cousserat continu, 380
Couette cell, cylindrical, 54, 86, 246
Coulomb force, 13
yield condition, 61, 68, 108
couple stress, 380
creeping flow, 37, 49
critical damping, 51
voids ratio, 73
critical state, 73
approximation, 125
curve, 74
line, 81
theory, 79
cross product, 407
section of a yield surface, 217
cubical triaxial test, 225
curl of a vector, 412
current configuration, 30, 52
cylindrical coordinates, 412
damping coefficient, 25
dashpot, 25, 50
deep hopper, 129
dense random packing, 22
sample, 71, 74
density of the granular material, 21
departure from equilibrium, 301
determinant of a matrix, 410
do a second-order tensor, 409
deviator stress, 66
deviatoric normality, 229
stress tensor, 215
difference scheme Euler, 424
predictor-corrector, 425
second-order, 425
differential balances, 31
energy balance, 34
linear momentum balance, 33, 52
mass balance, 32, 52
diffusion equation, 277
dilatancy, 57
dilation, 73
branch, 78
dipole, 13

Index

direct collisions, 297
shear box, 70
discontinuity curve, for a bunker 193, 202
texture, for a hopper, 152
discontinuous solution, 430
admissible, 432
for a bunker, 193, 197, 202
for a hopper, 152
discrete element method, 23
model, 22–23
model for a heap, 50
displacement gradient, 248
vector, 31, 248
dissipation inequality, 92
distinct element method, 23
divergence
of a second-order tensor, 412
theorem, 44
domain
of dependence, 186
of determinacy, 205
dot product of two vectors, 405
double
do dot product, 408
shear apparatus, 89
shearing model, 101, 114
drag force
exerted by a fluid, 37, 39, 52
exerted by a granular material, 87
drained
angle of repose, 15, 42
test, triaxial, 222
Drucker–Prager yield condition, 216
for a cohesive material, 244
dry granular material, 1
dummy index, 404
dyadic product, 406
effective stress, 222
eigenvalue
of a differential equation, 141
of a matrix, 64, 109
eigenvector, 64, 109
elastic
collisions, 285
deformation, 76, 78
equations, 245
elastic–viscoplastic equations, 214
elastoplastic equations, 214
electromagnetic force, 13
electrostatic force, 13, 43
emptying of a hopper, 51
energy
balance, 34
flux vector, 34
transfer by conduction, 34
entropy balance, 29
envelope, of Mohr’s circles, 101, 111
event-driven method, 28
equation of equilibrium, 36
equations of motion
for rough particles, 378, 381
for smooth particles, 305, 307
equipartition of energy, 285, 383, 385
in granular mixtures, 327
exit shock, for a hopper, 152, 164. See also
free-fall curve
extended
principal stress space, 80
Tresca yield condition, 218
von Mises yield condition, 216
tension test, triaxial, 222
failure, 72
fan, of characteristics, 187
flooding, 40
flow
between horizontal plates, 85, 104, 229, 236, 339
flow rule, 84
in cylindrical coordinates, 154
data related to, 228
for plane flow, 91, 100
for three-dimensional flow, 226
fluctuational kinetic energy, 289
balance for nearly perfectly rough particles, 381
balance for smooth particles, 291, 307, 408
conductivity of, 292, 323, 390, 391
dissipation rate of, 292, 307, 323, 390, 391
flux of, 291, 307, 323
fluid-particle interaction, 36
suspension, 1, 38
force
balance, 36
chain, 4
Fourier transform, two-dimensional, 282
frame indifference, 439
and constitutive equations, 233, 443
of fluctuational energy balance for rough particles, 381, 391
of Jaumann derivative of the stress, 445
of spin distribution, 387
of stress gradient, 447
of stress for nearly smooth particles, 391
of stress tensor, 442
of rate of deformation tensor, 445
frame indifferent scalar, 441
second-order tensor, 442
vector, 441
free index, 404
stream velocity, 36
free-fall curve, for a hopper, 203. See also exit shock
friction, 18, 26
wear-free, 19
frictional stress
in frictional-kinetic model, 395
in viscometric flows, 397
frictional-kinetic model, 395
application to chute flow, 396
boundary conditions for, 395, 396
Index

fully developed flow
for the double-shearing model, 104
of a hypoelastic material, 236
in an inclined chute, 6
of a Lévy–Mises material, 86
of a Newtonian fluid, 85
of a rigid-plastic material, 229
fully rough wall, 112, 133
funnel flow
in a bunker, 5, 196
condition for, 196, 265, 268
in a hopper, 122, 265, 273
Galilean transformation, 50
γ-ray attenuation, 75, 251
densitometer, 124
Gaussian integrals, 453
genuine solution, 430
Goodman–Cowin equations, 214, 230
gradient
operator, 411
plastic equations, 214
of a scalar, 411
of a vector, 411
grain temperature, 289, 296
viscosity of, 327
Granta-gravel, yield condition for, 216
granular gas, 285
granular jump, 353
granular material, 1
granular mixtures, 326
equipartition of energy in, 327
Green’s theorem, 430, 431
H theorem, 300
Haar–von Karman hypothesis, 261
Hamaker constant, 13
heap, 1, 24, 41, 166
discrete model for, 50
high-density heuristic theory for granular gases, 290
constitutive relations for, 291, 292
hopper, 5
hopper wall
rough, 131
shallow, 191, 195
smooth, 127
steep, 191
hourglass, 2, 106
Hvorslev surface, 75, 110
hydraulic diameter, 119
hydrodynamic equations. See equations of motion
hydrodynamics variables
definition of, 305, 306
relaxation time of, 294
for rough particles, 378
hyperbolic equations, 421
for a bin, 186
for a bunker, 196
for a hopper, 143, 203
hypoelastic material, 235, 236, 247
hypoplastic viscous model, 273
hysteresis
in chute flow, 399
in isotropic compression, 222
loss, in rolling, 24
in uniaxial compression, 83
inclined plane, 42, 107
incompressible flow, 87, 96, 103
angle of dilation for, 111
in a hopper, 123
index notation, 404
inelastic collisions, 285
energy dissipation in, 289
model for, 288
inelastic particles or grains, 286
inelasticity parameter ϵ, 307
inertia tensor, 44
inertial term, 34
integral
angular momentum balance, 47
balances, 31
linear momentum balance, 33
mass balance, 32, 52
intermediate flow, in a bunker, 197
internal energy balance, 34
invariants of a tensor. See principal invariants
inverse collisions, 297
inverse collisions, precollision velocities for rough particles, 379
for smooth particles, 298
inverse of a tensor, 409
irrecoverable deformation, 76
isotropic
compression test, 222
loading, 247
material, 62, 435
tensor valued function, 243
Jacobian, 52
Jacobian
for change of phase space variables, 297
for transformation of (C1, C) to (G, G), 299, 379
for transformation between direct and inverse collisions, 299, 379
Janssen solution, 60, 184, 211
Janssen–Walker solution, 210
Jaumann derivative, 234
Jenike shear cell, 70
Jenike–Shield yield condition, 219
jump balances, 428
for a bunker, 193
for a hopper, 152, 164
mass, 428
momentum, 429
jump conditions
for conservation laws, 432
for linear hyperbolic equations, 432
Kelvin modes, 368
kinematic model, 276
kinetic theory
for rough inelastic particles, 374
for smooth inelastic particles, 295

486
Index

Knudsen number, 308
Kronecker delta, 404

<table>
<thead>
<tr>
<th>Laboratory frame, 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lade–Duncan yield condition, 219</td>
</tr>
<tr>
<td>Laplacian operator, 411</td>
</tr>
<tr>
<td>Layering modes, 368</td>
</tr>
<tr>
<td>Lévy–Mises equations, 84, 266</td>
</tr>
<tr>
<td>Lévy’s flow rule. See Lévy–Mises equations</td>
</tr>
<tr>
<td>Lift force, 36</td>
</tr>
<tr>
<td>Linear momentum balance for a continuum, 29, 33</td>
</tr>
<tr>
<td>for a particle, 23</td>
</tr>
<tr>
<td>for a rigid body, 44</td>
</tr>
<tr>
<td>Linearized stability analysis for the radial fields in a hopper, 141, 162</td>
</tr>
<tr>
<td>for rapid shear flow, 366</td>
</tr>
<tr>
<td>Liquid bridge, 14, 42</td>
</tr>
<tr>
<td>Toroidal approximation for, 41</td>
</tr>
<tr>
<td>Load cell, 195, 256</td>
</tr>
<tr>
<td>Loading, 88, 222</td>
</tr>
<tr>
<td>Path, 75</td>
</tr>
<tr>
<td>Local volume averaging, 38, 52</td>
</tr>
<tr>
<td>Loose random packing, 22</td>
</tr>
<tr>
<td>Sample, 71, 74</td>
</tr>
</tbody>
</table>

Major principal stress, 65
Mass flow, 5, 122, 166
Flow, criteria for, 196, 269
Flux, 152
Holdup, 6
Mass balance, 32
For the fluid phase, 38
For the particle phase, 38
Mass flow rate, for a hopper, 116, 129
Correlation of Al-Din and Gunn, 162
Correlation of Beverloo et al., 117
Correlation of Rose–Tanaka–Beverloo–Nedderman, 119, 137, 263
From the Brennen–Pearce solution, 136
From the power series solution, 149
From the solution of Nguyen et al., 263
From the SWRG solution, 129, 262
Material coordinates, 30
Derivative, 31
Frame indifference, 443
Point, 30
Volume, 30
Matrix, 406
Representation of a tensor, 406
Maximal angle of stability, 48
Maximum shear rate, 94
Shear stress, 66
Maxwell–Boltzmann distribution, 300
Maxwell transport equation for rough particles, 379
For smooth particles, 302
Mean curvature, 42
Mean free path, 290, 301
Mean free time, 295
Mean stress in three dimensions, 215
in two dimensions, 66
Mechanical energy balance, 35, 307
Method of characteristics, 185, 424
of moments, 316
Minor principal stress, 65
Modified Cam clay, yield condition for, 244
Mohr–Coulomb approximation, 203
Mohr–Coulomb yield condition, 65, 68, 219
Mohr’s circle for the rate of deformation tensor, 94, 112
For the stress tensor, 66, 68, 111
Molecular chaos, 299
With Enskog correction, 299
Moment of inertia, 24
For a sphere, 44, 376
Momentum balance for the fluid phase, 38
For the particle phase, 38
Motion of a continuum, 30
Multiple steady states in chute flow, 351
in standpipe flow, 11
nearly perfectly rough particles, 378
Constitutive relations for, 389
equations of motion for, 381
Velocity distribution for, 382
nearly smooth particles, 378
Constitutive relations for, 390
equations of motion for, 381
Velocity distribution for, 386
Neutral stability, for plane Couette flow, 369
For the radial fields, 141
Newtonian fluid, 37, 85
Nonassociated flow rule, 92, 229
Norm of a tensor, 235
Normal consolidation, 77
Curve, 222
Normal stress differences, 310
Normality, 93
Normally consolidated sample, 77
Octahedral plane, 217
Oedometer, 82
One-dimensional deformation of a hypoelastic material, 236
of a rigid-plastic material, 230
Orthogonal curvilinear coordinates, 412
Matrix, 410
Second-order tensor, 410
Packings, 21
Pair distribution function, 299
Anisotropy of, 325
At contact, 300, 304
at equilibrium, 300

Index

partially saturated granular material, 1

particle
density, 19, 21
path, 231

particulate solid, 1

passive state of stress
in a bin, 69, 187
in a hopper, 127, 133, 190

peculiar
spin, 378
velocity, 296

perfectly rough particles, 375

phase space, 295, 378

differential volume in, 297

phase velocity, 369, 455

photoelastic material, 4, 90

/\Pi_1-plane, 217

plastic
deformation, 76, 77, 84, 91
potential, 91, 227

potential flow rule, 100

potential locus, 91

plasticity theory, 82

plane Couette flow, 339

analysis using high-density heuristic theory, 340

analysis using kinetic theory, 346

stability of, 369

plane flow, 55

plowing, 19, 62

plug
flow, 6, 169, 256

formation in rapid flow, 348

permutation symbol, 407, 416

Poisson’s ratio, 245, 246

polar
elastoplastic equations, 214
hypoplastic equations, 214

molecule, 13

pore pressure, 222

porosity, 19

position vector, 434

powder, 1

power series solution, 147

Prakash–Rao yield condition, 156

Prandtl–Reuss equations, 84

pressure
of a fluid, 36, 86
rise in standpipe flow, 9

principal invariants, 65, 109, 213

principal stress, 64, 109

axis, 65, 109, 110

direction, 65

space, 214

projection of a surface, 44

product of two second-order tensors, 408

pseudo

scalar, tensor, 456

vector, 384, 456

pseudothermal energy, 289

balance for nearly perfectly rough particles, 381

balance for smooth particles, 291, 307, 408

conductivity of, in the high-density heuristic theory, 292

conductivity of, for nearly perfectly rough particles, 390

conductivity of, for nearly smooth particles, 391

conductivity of, for smooth particles, 323

dissipation rate of, 292, 307, 323

flux of, 291, 307, 323

quasi-static flow, 41

quasilinear system, 420

radial segregation, 11

radial stress field
for a conical hopper, 264, 267
for a wedge-shaped hopper, 138

radial velocity field
for a conical hopper, 265, 268
for a wedge-shaped hopper, 139

radio pill, 140, 259

random packing, 22

Rankine zone, in a bin, 187

rapid flow, 54

rate
dependent equation, 273

independent behavior, 62, 86

independent equation, 86
type material, 235

of working of the stresses, 34

rate- and state-variable model, 132

rate of deformation tensor, 37

components of, 83, 413, 415

defined in the compressive sense, 83

interpretation of the components of, 110

reference
configuration, 30, 52
frame, 30

regular packing, 21

relative velocity, 37

reloading, 82, 89

Reynolds number, 37, 39

Richardson–Zaki equation, 39, 52

right-hand rule, 407

right-handed system, 407

rigid body

motion, 83

rotation, 242

rigid-plastic material, 78, 84, 229, 230

rolling friction torque, 24

Roscoe surface, 77, 79, 110

rotating cylinder, 11, 113

rupture layer, 73

in a bunker, 56, 166, 200, 203

in a hopper, 122

in a soil specimen, 56

rupture surface. See rupture layer

sandpile, 1

saturated granular material, 1

scalar product
of second-order tensors, 408

of vectors, 405

second

law of thermodynamics, 29

order tensor, 405
Index

segregation, 2, 11
series solution
 for a conical hopper, 263
 for a wedge-shaped hopper, 135, 147
settling of a suspension, 39
shear
 box, 70, 71
 between horizontal plates, 85, 104, 229, 236, 339
 layer, 6
 rate, 54
 strain, 75
shear band. See rupture layer
shear viscosity in rapid flow, 319, 320, 323, 389, 391
shearing deformation, 102
shock, 432
silo, 5
simple shear apparatus, 73
singlet distribution function, 296, 378
slip plane, 68, 162
slip velocity, 331
slow flow, 54
smooth particles, 285
 collisional impulse for, 289
 equations of motion for, 306
 equilibrium distribution function for, 300
 kinetic theory for, 295
 Maxwell transport equation for, 302
smooth wall, 61, 127
smooth wall, radial gravity problem
 compressible flow, 154
 for a conical hopper, 262
 for a wedge-shaped hopper, 125
Sokolovskii variables, 66
solid angle, 297
solids fraction, 19
data for a bin, 251
data for chute flow, 355
data for a hopper, 122
Sonine polynomials, 316
space diagonal, 214
specularity coefficient, 333, 338
spherical coordinates, 414
shell, deformation of, 245
spin, 375
spin tensor. See vorticity tensor
spin viscosity, 391
spring constant, 25
spring–mass–dashpot system, 50
stability
 of the double-shearing model, 114
 of plane Couette flow, 369
 of the radial stress field, 141, 162
 of the radial velocity field, 142
 of a slope, 108
 of unbounded shear flow, 366
stagnant material, 5, 180
standpipe, 6
statics, 36
fluid, 36
granular, 36
heap, 48
hopper, 107, 162
slope, 108
stick-slip, 180, 257
stiffness, 25
Stokes' law, 37
stop–start operation, 259
strain
 engineering, 231
 increment tensor, 83
 natural, 231
tensor, 245, 413, 415
streaming and collisional contribution to
 the flux of fluctuational energy, 307, 310, 311, 320
 the stress, 306, 310, 311, 319, 322
streamline, 254
stress
 chain, 4
 characteristic, 422
dilatancy, 96, 114
dip, 3
power, 35
tensor, 32, 419
vector, 32, 418
stress tensor
 for the fluid phase, 38
 for the particle phase, 38
substantial derivative, 31
successive approximation procedure, for hopper flow, 145
summation convention, 404
surcharge, 185
surface tension, 14
suspension, fluid-particle, 1
symmetry
 of the stress tensor, 34, 47
 of yield surfaces, 80, 220
tensile force, 17
tensor, 405
 first-order, 403
 product, 406
 second-order, 405
 third-order, 407
terminal velocity, 39
test function, 430
torque, 24, 246
 variation with the shear rate, 86
trace of a tensor, 406
tracer particle, 250
traction-free surface, 128, 136, 149
transition region, in a bunker, 171, 183, 190
translation of a sphere, 49
transport theorem
 generalized, 46
transpose of a tensor, 409
Tresca yield condition, 218
triaxial test, 220
compression, 222
extension, 222
turning point, 364
two-particle distribution function, 296, 299
Index

unconfined yield strength, 112
undrained test, triaxial, 222
uniaxial compression, 69, 82
uniform shear, 286, 292, 348
of a mixture, 327
stability of, 366
unit
tensor, 406
vector, 403
unloading
isotropic compression, 222
uniaxial compression, 70, 82, 238
van der Waals force, 13
for rough particles, 14
vector, 403
product, 407
triple product, 416
velocity
characteristic, 197, 426
discontinuity, 178, 197
gradient tensor, 35
of a material point, 30
weakening behavior, 86
velocity data for a
bin, 178
conical hopper, 251
wedge-shaped hopper, 137
velocity distribution function, 295
at equilibrium, for rough particles, 383
at equilibrium, for smooth particles, 300
for a pair of particles, 296
perturbation from equilibrium of, 309
at a wall, 334
vertical channel, 6
vibrated bed, 26
virtual mass force, 36
viscoelastic equations, 214
viscometric flows, 310, 339
viscoplastic equations, 214
viscosity in rapid flow
of granular mixtures, 327
from the high-density heuristic theory, 292
from kinetic theory, 323, 389, 391
voids
fraction, 19
ratio, 110
volumetric strain, 82
von Mises yield condition, 215
vorticity, 242, 412
and angular velocity, 242
vorticity tensor, 92, 241
components of
in cylindrical coordinates, 413
in spherical coordinates, 415
wall
roughness, 131
yield condition, 59
wall stress, data
after filling, bunker, 175, 177, 178, 180
dynamic, 178, 259
during flow, bin, 256–259
during flow, bunker, 177, 178, 180
during flow, hopper, 140
static, 178, 259
wall stress oscillations
in bins, 256
in bunkers, 172, 177, 180
walls
boundary conditions at, 331
as sources and sinks of energy, 345, 348
velocity distribution at, 334
water content, 225
weak solution, 430
wedge-shaped hopper, 116
wet granular material, 1
yield
condition, 62
criterion, 62
function, 62
stress, in uniaxial tension or compression, 215
surface, 77, 79, 215
yield locus, 78
covex, 93
in the σ–r plane, 81, 111
in the N–T plane, 78, 111
Young–Laplace equation, 42
Young’s modulus, 26, 245
zero extension line, 427