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Introduction

There are many daily pattern recognition tasks that humans routinely carry

out without thinking twice. For example, we can recognize those that we know

by looking at their face or hearing their voice. You can recognize the letters

and words you are reading now because you have trained yourself to recognize

English letters andwords.We can understandwhat someone is saying even if it

is slightly distorted (e.g., spoken too fast). However, human pattern recogni-

tion suffers from three main drawbacks: poor speed, difficulty in scaling, and

inability to handle some recognition tasks. Not surprisingly, humans can’t

match machine speeds on pattern recognition tasks where good pattern recog-

nition algorithms exist. Also, human pattern recognition ability gets over-

whelmed if the number of classes to recognize becomes very large. Although

humans have evolved to performwell on some recognition tasks such as face or

voice recognition, except for a few trained experts, most humans cannot tell

whose fingerprint they are looking at. Thus, there are many interesting pattern

recognition tasks for which we need machines.

The field of machine learning or pattern recognition is rich with many

elegant concepts and results. One set of pattern recognition methods that we

feel has not been explained in sufficient detail is that of correlation filters. One

reason why correlation filters have not been employed more for pattern

recognition applications is that their use requires background in and famil-

iarity with different disciplines such as linear systems, random processes,

matrix/vector methods, statistical decision theory, pattern recognition, optical

processing, and digital signal processing. This book is aimed at providing such

background as well as introducing the reader to state-of-the-art in design and

analysis of correlation filters for pattern recognition. The next two sections in

this chapter will provide a brief introduction to pattern recognition and

correlation, and in the last section we provide a brief outline of the rest of

this book.
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1.1 Pattern recognition

In pattern recognition, the main goal is to assign an observation into one of

multiple classes. The observation can be a signal (e.g., speech signal), an image

(e.g., an aerial view of a ground scene) or a higher-dimensional object (e.g.,

video sequence, hyperspectral signature, etc.) although we will use an image as

the default object in this book. The classes depend on the application at hand.

In automatic target recognition (ATR) applications, the goal may be to

classify the input observation as either natural or man-made, and follow this

up with finer classification such as vehicle vs. non-vehicle, tanks vs. trucks, one

type of tank vs. another type.

Another important class of pattern recognition applications is the use of

biometric signatures (e.g., face image, fingerprint image, iris image, and voice

signals) for person identification. In some biometric recognition applications

(e.g., accessing the automatic teller machine), we may be looking at a verifica-

tion application where the goal is to see whether a stored template matches the

live template in order to accept the subject as an authorized user. In other

biometric recognition scenarios (e.g., deciding whether a particular person is in

a database), we may want to match the live biometric to several stored

biometric signatures.

One standard paradigm for pattern recognition is shown in Figure 1.1. The

observed input image is first preprocessed. The goals of preprocessing depend

very much on the details of the application at hand, but can include: reducing

the noise, improving the contrast or dynamic range of the image, enhancing the

edge information in the image, registering the image, and other application-

specific processes.

A feature extraction module next extracts features from the preprocessed

image. The goal of feature extraction is to produce a few descriptors to capture

the essence of an input image. The number of features is usually much smaller

than the number of pixels in that input image. For example, a 64� 64 image

contains 4096 numbers (namely the pixel values), yet wemay be able to capture

the essence of this image using only 10 or 20 features. Coming up with good

features depends very much on the designer’s experience in an application

domain. For example, for fingerprint recognition, it is well known that

features such as ridge endings and bifurcations called minutiae (shown in
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Figure 1.1 Block diagram showing themajor steps in image pattern recognition
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Figure 1.2) are useful for distinguishing one fingerprint from another. In other

pattern recognition applications, different features may be used. For example,

in face recognition, one may use geometric features such as the distance

between the eyes or intensity features such as the average gray scale in the

image, etc. There is no set of features that is a universal set in that it is good for

all pattern recognition problems. Almost always, it is the designer’s experi-

ence, insight, and intuition that help in the identification of good features.

The features are next input to a classifier module. Its goal is to assign the

features derived from the input observation to one of the classes. The classi-

fiers are designed to optimize some metric such as probability of classification

error (if underlying probability densities are known), or empirical error count

(if a validation set of data with known ground truth1 is available). Classifiers

come in a variety of flavors including statistical classifiers, artificial neural-

network-based classifiers and fuzzy logic-based classifiers. The suitability of a

classifier scheme depends very much on the performance metric of interest,

and on what a-priori information is available about how features appear for

different classes. If we have probability density functions for various features

for different classes, we can design statistical classification schemes.

Sometimes, such probability density information may not be available and,

instead, we may have sample feature vectors from different classes. In such a

Ridge ending Ridge bifurcation

Figure 1.2 Some features used for fingerprint recognition: ridge ending (left)
and ridge bifurcation (right)

1 A term from remote sensing to denote the correct class of the object being tested.
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situation, we may want to use trainable classifiers such as neural networks. In

this book, we will not discuss these different pattern recognition paradigms.

Interested readers are encouraged to consult some of the many excellent

references [1, 2] discussing general pattern recognition methods.

Another important pattern recognition paradigm is to use the training data

directly instead of first determining some features and performing classifica-

tion based on those features. While feature extraction works well in many

applications, it is not always easy for humans to identify what the good

features may be. This is particularly difficult when we are facing classification

problems such as the one shown in Figure 1.3, where the images were acquired

using a synthetic aperture radar (SAR) and the goal is to assign the SAR

images to one of two classes (tank vs. truck). Humans are ill equipped to come

upwith the ‘‘best’’ features for this classification problem.Wemay be better off

letting the images speak for themselves, rather than imposing our judgments of

what parts of SAR images are important and consistent in the way a target

appears in the SAR imagery. Correlation pattern recognition (CPR) is an

excellent paradigm for using training images to design a classifier and to

classify a test image.

1.2 Correlation

Most readers are probably familiar with the basic concept of correlation as it

arises in probability theory. We say that two random variables (RVs, the
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Figure 1.3 Synthetic aperture radar (SAR) images of two vehicles, (a) T72 and
(b) BTR70, from the public MSTAR database [3]
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concept to be explained more precisely in Chapter 2) are correlated if knowing

something about one tells you something about the other RV. There are

degrees of correlation and correlation can be positive or negative. The role

of correlation for pattern recognition is not much different in that it tries to

capture how similar or different a test object is from training objects. However,

straightforward correlation works well only when the test object matches well

with the training set and, in this book, we will provide many methods to

improve the basic correlation and to achieve attributes such as tolerance to

real-world differences or distortions (such as image rotations, scale changes,

illumination variations, etc.), and discrimination from other classes.

We will introduce the concept of CPR using Figure 1.4. In this figure, we

have two images: a reference image of the pattern we are looking for and a test

image that contains many patterns. In this example, we are looking for the

letter ‘‘C.’’ But in other image recognition applications, the reference r[m, n]

can be an (optical, infrared, or SAR) image of a tank and the test image t[m, n]

can be an aerial view of the battlefield scene. In a biometric application, the

reference may be a client’s face image stored on a smart card, and the test

image may be the one he is presenting live to a camera. For the particular case

in Figure 1.4, let us assume that the images are binary with black regions

taking on the value 1 and white regions taking on the value 0.

The correlation of the reference image r[m, n] and the test image t[m, n]

proceeds as follows. Imagine overlaying the smaller reference image on top of

the upper left corner portion of the test image. The two images are multiplied

(pixel-wise) and the values in the resulting product array are summed to obtain

the correlation value of the reference image with the test image for that relative

location between the two. This calculation of correlation values is then

repeated by shifting the reference image to all possible centerings of the

reference image with respect to the test image. As indicated in the idealized

C
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correlation
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imageNASA

CMU-ECE
LOCKHEED

Figure 1.4 Schematic of the image correlation: reference image, test image,
and ideal correlation output
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correlation output in Figure 1.4, large correlation values should be obtained at

the three locations where the reference matches the test image. Thus, we can

locate the targets of interest by examining the correlation output for peaks and

determining if those correlation peaks are sufficiently large to indicate the

presence of a reference object. Thus, when we refer to CPR in this book, we

are not referring to just one correlation value (i.e., one inner product of two

arrays), but rather to a correlation output c[m, n] that can have as many pixels

as the test image. The following equation captures the cross-correlation process

c m; n½ � ¼
X
k

X
l

t k; l½ �r kþm; l þ n½ � (1:1)

From Eq. (1.1), we see that correlation output c[m, n] is the result of adding

many values, or we can say that the correlation operation is an integrative

operation. The advantage of such an integrative operation is that no single

pixel in the test image by itself is critical to forming the correlation output. This

results in the desired property that correlation offers graceful degradation.We

illustrate the graceful degradation property in Figure 1.5. Part (a) of this figure

shows a full face image from the Carnegie Mellon University (CMU) Pose,

Illumination, and Expression (PIE) face database [4] and part (b) shows the

correlation output (in an isometric view) from a CPR system designed to

search for the image in part (a). As expected, the correlation output exhibits

a large value indicating that the test image indeedmatches the reference image.

Part (c) shows the same face except that a portion of the face image is occluded.

Although the resulting correlation output in part (d) exhibits correlation

peaks smaller than in part (b), it is clear that a correlation peak is still present

indicating that the test image does indeed match the reference object. Some

other face recognition methods (that rely on locating both eyes to start the

feature extraction process) will not exhibit similar graceful degradation

properties.

Another important benefit of CPR is the in-built shift-invariance. As we will

show in later chapters, correlation operation can be implemented as a linear,

shift-invariant filter (this shift-invariance concept will be made more precise

in Chapter 3 on linear systems), which means that if the test image contains

the reference object at a shifted location, the correlation output is also shifted

by exactly the same amount. This shift-invariance property is illustrated

in parts (e) and (f) of Figure 1.5. Part (e) shows a shifted and occluded version

of the reference image and the resulting correlation output in part (f) is shifted

by the same amount, but the correlation peak is still very discernible. Thus,

there is no need to go through the trouble of centering the input image prior to

recognizing it.
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Figure 1.5 Illustration of the graceful degradation property of correlation
operation, (a) a full face image from the CMUPIE database [4], (b) correlation
output for test image in part (a), (c) occluded face image, (d) correlation output
for image in part (c), (e) shifted and occluded face image, and (f) correlation
output for image in part (e)
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A reasonable question to ask at this stage is why one needs to read the rest of

this book when we have already explained using Figure 1.4 and Figure 1.5 the

basic concept of correlation and advantages of using correlation.

We need to discuss more advanced correlation filters because the simple

scheme in Figure 1.4 works well only if the test scene contains exact replicas of

the reference images, and if there are no other objects whose appearance is

similar to that of the reference image. For example, in Figure 1.4, the letter ‘‘O’’

will be highly correlated with letter ‘‘C’’ and the simple cross-correlation will

lead to a large correlation output for the letter ‘‘O’’ also, which is undesirable.

Thus, we need to, and we will, discuss the design of correlation templates that

not only recognize the selected reference image, but also reject impostors from

other classes. Also the book discusses practical issues of computing correlation

using digital methods and optical methods. One way to summarize the con-

tents of this book is that it contains much of the material we wish had been

available when starting into CPR.

Another deficiency of the straightforward correlation operation in Eq. (1.1)

is that it can be overly sensitive to noise. Most test scenes will contain all types

of noise causing randomness in the correlation output. If this randomness is

not explicitly dealt with, correlation outputs can lead to erroneous decisions.

Also, as illustrated in Figure 1.5, sharp correlation peaks are important in

estimating the location of a reference image in the test scene. It is easier to

locate the targets in a scene if the correlation template is designed to produce

sharp peaks. Unfortunately, noise tolerance and peak sharpness are typically

conflicting criteria, and we will need design techniques that optimally trade off

between the two conflicting criteria.

The straightforward correlation scheme of Figure 1.4 does not work well if

the reference image appears in the target scene with significant changes in

appearance (often called distortions), perhaps owing to illumination changes,

viewing geometry changes (e.g., rotations, scale changes, etc.). For example, a

face may be presented to a face verification system in a different pose from the

one used at the time of enrolment. In an ATR example based on infrared

images, a vehicle of interest may look different when compared to the reference

image because the vehicle may have been driven around (and as a result, the

engine has become hot leading to a brighter infrared image). A good recogni-

tion system must be able to cope with such expected variability. In this book,

we will discuss various ways to increase the capabilities of correlation methods

to provide distortion-tolerant pattern recognition.

Another important question in connection with the correlation method is

how it should be implemented. As we will show later in this book, straightfor-

ward implementations (e.g., image–domain correlations as in Figure 1.4) are
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inefficient, and more efficient methods based on fast Fourier transforms

(FFTs) exist. Such efficiency is not just a theoretical curiosity; this efficiency

of FFT-based correlations is what allows us to use CPR for demanding

applications such as real-time ATR and real-time biometric recognition.

This book will provide the theory and details to achieve such efficiencies.

It is fair to say that the interest in CPR is mainly due to the pioneering work

by VanderLugt [5] that showed how the correlation operation can be imple-

mented using a coherent optical system. Such an optical implementation

carries out image correlations ‘‘at the speed of light.’’ However, in practice,

we don’t achieve such speed owing to a variety of factors. For example,

bringing the test images and reference images into the optical correlators and

transferring the correlation outputs from the optical correlators for post-

processing prove to be bottlenecks, as these steps involve conversion from

electrons to photons and vice versa. Another challenge is that the optical

devices used to represent the correlation templates cannot accommodate

arbitrary complex values as digital computers can. Some optical devices may

be phase-only (i.e., magnitude must equal 1), binary phase-only (i.e., onlyþ1

and�1 values are allowed), or cross-coupled where the device can accommo-

date only a curvilinear subset of magnitude and phase values from the complex

plane. It is necessary to design CPR schemes that take into account such

implementation constraints if we want to achieve the best possible perfor-

mance. This book will provide sufficient information for designing optical

CPR schemes.

1.3 Organization

As discussed in the previous section, CPR is a rather broad topic requiring

background in many subjects including linear systems, matrix and vector

methods, RVs and processes, statistical hypothesis testing, optical processing,

digital signal processing, and, of course, pattern recognition theory. Not

surprisingly, it is difficult to find all these in one source. It is our goal to

provide the necessary background in these areas and to illustrate how to

synthesize that knowledge to design CPR systems. In what follows, we will

provide brief summaries of what to expect in the following chapters.

Chapter 2, Mathematical background In this chapter, we provide brief reviews

of several relevant topics from mathematics. We first review matrices and

vectors, as the correlation templates (also known as correlation filters) are

designed using linear algebra methods and it is important to know concepts

such as matrix inverse, determinant, rank, eigenvectors, diagonalization, etc.

This chapter also introduces some vector calculus (e.g., gradient) and

1.3 Organization 9
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illustrates its use in optimization problems that we will need to solve for CPR.

As we mentioned earlier, randomness is inevitable in input patterns, and a

short review of probability theory and RVs is provided in this chapter. This

review includes the case of two RVs as well as more RVs (equivalently, more

compactly represented as a random vector).

Chapter 3, Linear systems and filtering theory In this chapter, we review the

basic concepts of linear shift-invariant systems and filters. These are important

for CPR since most implementations of correlation are in the form of filters,

which is why we refer to the correlation templates also as correlation filters

(strictly speaking, templates refer to image domain quantities whereas filters

are in the frequency domain). In addition to standard one-dimensional (1-D)

signals and systems topics, we review some two-dimensional (2-D) topics of

relevance when dealing with images. This is the chapter where we will see that

the correlation operation is implemented more efficiently via the frequency

domain rather than directly in the image domain. Both optical and digital

correlation implementations originate from this frequency domain version.

This chapter reviews sampling theory, which is important to understand

the connections between digital simulations and optical implementations.

Since digital correlators are heavily dependent on the FFT, this chapter

reviews the basics of both 1-D and 2-D FFTs. Finally, we review random

signal processing, as the randomness in the test images is not limited to just one

value or pixel. The randomness in the images may be correlated from pixel to

pixel necessitating concepts from random processes, which are reviewed in

this chapter.

Chapter 4, Detection and estimation The goal of this relatively short chapter is

to provide the statistical basis for some commonly used CPR approaches.

First, we derive the optimal methods for classifying an observation into one of

two classes. Then, we show that the optimummethod is indeed a correlator, if

we can assume some conditions about the noise. Another topic of importance

is estimation, which deals with the best ways to extract unknown information

from noisy observations. This is of particular importance when we need to

estimate the error rates from a correlator.

Chapter 5, Correlation filter basics In some ways, this is the core of this book.

It starts by showing how correlation is optimum for detecting a known

reference signal in additive white Gaussian noise (AWGN). This theory owes

its origins to the matched filter (MF) [6], introduced during World War II for

radar applications. Next, we show howMFs can be implemented digitally and

optically using Fourier transforms (FTs). As MFs cannot be implemented (as

they are) on limited-modulation optical devices, we next discuss several vari-

ants of the MF including phase-only filters, binary phase-only filters and

10 Introduction
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