Underwater archaeology deals with shipwrecks and submerged settlements, and its finds are recovered by divers rather than diggers. But this is by no means a marginal branch of archaeology. Studying maritime history, analysing changes in shipbuilding, navigation and shipboard life, reconstructing the infrastructure of overseas commerce, underwater archaeologists provide important fresh perspectives on the cultures that produced the ships and sailors. Drawing on detailed and recent case studies, Richard Gould provides an up-to-date review of the field, and a clear exposition of new developments in undersea technologies. He also argues for the careful management of underwater cultural resources.

RICHARD A. GOULD is Professor of Anthropology at Brown University. He is the author or editor of ten books, including Living Archaeology, published by Cambridge University Press in 1980, and Shipwreck Anthropology (1983). The common theme of his research is a broad anthropological interest in the relationship between material culture and human behaviour. His original interest, ethnoarchaeology, led him to research among Tolowa Indian communities in North West California, the Ngatatjara Aborigines in Australia’s Western Desert, and farmers in Finnish Lapland. He became involved in underwater archaeology fifteen years ago, and he has done fieldwork in Bermuda and Florida, and published widely in this area.
Archaeology and the Social History of Ships

Richard A. Gould
Contents

List of figures vi
List of tables xi
Acknowledgements xii

Introduction: Underwater archaeology as historical science 1
1. Interpreting the underwater archaeological record 7
2. Underwater archaeology: the state of the art 21
3. Ships and shipwrecks: basic mechanics 65
4. The archaeology of small watercraft 93
5. The earliest ships 121
6. Shipwrecks and our understanding of ancient trade 150
7. Sailing ships in the Middle Ages 168
8. Ships of the great age of sail 202
9. The transition from sail to steam in maritime commerce 238
10. New technologies and naval warfare 265
11. The archaeology of maritime infrastructure 299
12. The future of underwater archaeology 316

References cited 334
General index 354
Ship and site index 358
Figures

Fig. 1a. Unmodified T-2 tanker leaving Boston Harbor, 1957. 3
Fig. 1b. Generalized view of “jumboized” version of a T-2, similar to the Marine Electric. 3
Fig. 2a–b. Above- and below-water views of the ram bow on the wreck of HMS Vixen, Bermuda. 17
Fig. 3. Removal of the engine of S.S. Xantho from its conservation tank at the Western Australian Maritime Museum, Fremantle. 28
Fig. 4. Archaeological recording at “One Cannon Site,” Fort Cunningham, Bermuda. 30
Fig. 5. Aerial view of Fort Jefferson, Dry Tortugas National Park, Florida. 33
Fig. 6. Three Roman-era amphorae from the Port Vendres B shipwreck. 34
Fig. 7. Trilateration plan of USS Arizona wreck, Pearl Harbor, Hawaii. 39
Fig. 8. Contemporary print depicting the loss of the USS Monitor off Cape Hatteras, North Carolina, on 31 December 1862. 43
Fig. 9. Magnetic contour map of Monitor wreck. 45
Fig. 10. Side-scan sonar image of Monitor wreck. 46
Fig. 11. Artist’s depiction of underwater electronic grid at Monitor site. 49
Fig. 12. Aerial view of the Bird Key wreck (amou) in relation to Fort Jefferson, Dry Tortugas National Park, Florida. 54
Fig. 13. Four-bladed propeller on the Bird Key wreck. 55
Fig. 14. Trilateration plan of the Bird Key wreck. 56
Fig. 15. Bed-frame technique for three-dimensional site recording. 63
Fig. 16a. “Knees from trees”. Drawing from an eighteenth-century French shipbuilding manual. 67
Fig. 16b. Hanging knees inside hull of three-masted schooner C.A. Thayer, National Maritime Museum, Golden Gate Recreation Area, San Francisco. 67
Fig. 17. Bow-on view of clipper ship Cutty Sark in Greenwich, England. 69
Fig. 18. Hogging and sagging. 74
Fig. 19. Stable and unstable hull conditions. 77
Fig. 20. Irwin’s (1994) upwind strategy for voyages of discovery and colonization by the ancestors of the Polynesians. 81
Fig. 21. Trilateration plan of the Barrel Wreck site, Loggerhead Reef, Dry Tortugas National Park, Florida. 87
Fig. 22a–b. Plan of ship’s timbers and photograph of cement barrel casts at Barrel Wreck site, Loggerhead Reef, Dry Tortugas National Park, Florida. 88–9
Fig. 23. Haida dugout canoe from British Columbia, at the American Museum of Natural History, New York. 101
Fig. 24. A Tolowa Indian making modifications to a traditional Northwest California dugout river canoe at Crescent City, California, in 1963. 101
Fig. 25a–b. Fijian outrigger canoe under sail at Ono-I-Lau in 1991, compared with a Fijian double-hulled voyaging canoe (1918) at the Suva Museum, Fiji. 103
Fig. 26. Diagram of sewn-plank joinery of Ferriby 1. 106
Fig. 27. Double-hull voyaging canoe replica Hokule’a shortly after its launch in 1975 at Kaneohe Bay, Oahu. 109
Fig. 28. Rock engraving of outrigger canoe at Anaehoomalu, Hawaii. 110
Fig. 29. Generalized diagram of clinker construction, shown in cross-section and expanded views. 113
Fig. 30. Exploded view of Graeco-Roman mortise-and-tenon joinery of hull planks. 118
Fig. 31. The Khufu ship on display at Giza. 123
Fig. 32. Cross-section of the hull of the Khufu ship, showing
the complex arrangement of lashings and battens used to join the planks. 124

Fig. 33. Model of Egyptian sailing craft showing the hogging truss, steering oars, and characteristic use of a yard at the top and a boom at the bottom of the sail. 126

Fig. 34. Copper ox-hide ingot No. 33 from the Late Bronze Age shipwreck at Cape Gelidonya. 128

Fig. 35. Generalized model of a Roman merchant ship. 144

Fig. 36. Schematic model of the kula. 162

Fig. 37. Prehistoric stone ship setting, Åland Islands, Finland. 175

Fig. 38. Sailing ship of Viking tradition shown on the Bayeux Tapestry. 177

Fig. 39. Sailing replica of Viking warship at Viipuri (Vyborg), Russia. 179

Fig. 40a–b. Depictions of Baltic cogs on the walls of a thirteenth-century church at Finström, Åland Islands, Finland. 183

Fig. 41. Sailing replica of the Matthew, a nao-like vessel used by John Cabot in his 1497 voyage to North America. 204

Fig. 42. Sailing replica of the commercial galleon Susan Constant at Jamestown, Virginia. 208

Fig. 43a. Side and top views of a verso-type swivel gun from the Molasses Reef wreck, Caicos. 211

Fig. 43b. Heavily encrusted sixteenth-century swivel guns from a shipwreck of Iberian origin, Dry Tortugas National Park, Florida. 211

Fig. 44. Upper deck of the Swedish warship Vasa, showing excellent preservation of the wooden structure. 227

Fig. 45. Lower gunports of the Vasa with the gunport lids in the raised and open position. 228

Fig. 46. Stern section of the seventeenth-century Dutch East India Company armed merchantman Batavia on display at the Western Australian Maritime Museum, Fremantle, after excavation and conservation. 232

Fig. 47. Model of the Batavia showing shell-first construction techniques. 233

Fig. 48. Monumental gate reassembled from shaped stones from the wreck of the Batavia. 234

Fig. 49. Wreck of the County of Roxborough on Takaroa atoll in the
Tuamotu Islands, French Polynesia. 242
Fig. 50. Trilateration plan of the Killean wreck, Loggerhead Reef, Dry Tortugas National Park, Florida. 246
Fig. 51. Bow area of the Killean. 247
Fig. 52. Interior of the County of Roxborough. 248
Fig. 53. Pressure vessel from the Killean. 248
Fig. 54. A contemporary watercolor showing the loss of the Mary Celestia, Bermuda. 257
Fig. 55. Box boiler of the Mary Celestia. 259
Fig. 56. Feathering paddle wheel at the wreck of the Mary Celestia. 260
Fig. 57. Early depiction of the world’s first true ironclad warship, the Gloire. 269
Fig. 58. HMS Warrior undergoing restoration in 1986 in Hartlepool, England. 270
Fig. 59. Fleet of Russian turreted ironclads at the South Harbor, Helsinki, Finland, sometime during the late 1860s. 271
Fig. 60. A contemporary drawing of the Merrimac ramming and sinking the Cumberland. 273
Fig. 61a–b. Plan and elevation drawings of the Monitor wreck. 275
Fig. 62. Interior of one of the Coles turrets aboard the HMVS Cerberus wreck showing the two 18-ton rifled muzzle-loading guns. 279
Fig. 63. Trilateration plan of wreck of the HMS Vixen, Bermuda. 283
Fig. 64. Elevation drawings of the Vixen, showing how the ship broke and settled into the Chubb Cut Channel after being scuttled in 1896. 285
Fig. 65. Hypothetical ramming encounter at sea between the Vixen and the Warrior. 286
Fig. 66. Manually operated capstan on the foredeck of the Vixen. 287
Fig. 67a. Aerial view of the USS Utah following conversion as a radio-controlled target ship. 294
Fig. 67b. Detail showing installation of anti-aircraft guns aboard the Utah shortly before the Pearl Harbor attack. 294
Fig. 68. Above-water view of the wreck of the Utah. 296
Fig. 69. Plan drawing and elevation of the Utah wreck. 296
Fig. 70. Scale drawing of the floating dock Bermuda. 307
Fig. 71. Contemporary engineering drawings showing the
floating dock in cross section with various chambers filled and emptied for raising, lowering, and careening it.

Fig. 72. Contemporary drawing of the launch of the floating dock.

Fig. 73. Trilateration plan of the floating dock and its caissons.

Fig. 74a–b. Treasure hunter Mel Fisher’s boat and his stern-mounted “mailboxes” (blasters) at Key West, Florida.
Tables

Table 1. T-test comparison of Pensacola bricks from Fort Jefferson with unmarked bricks from Bird Key wreck, Dry Tortugas National Park, Florida 57
Table 2. Nearest-neighbor ranking of cement barrel fields at Barrel Wreck site, Dry Tortugas National Park, Florida 60
Table 3. Dimensions and specifications of the Kilfen 241
Acknowledgements

As a relative newcomer to the field of underwater archaeology, I benefited more than usual from the help and advice of friends and colleagues as I labored on this book. Sometimes the learning experience was exhilarating, at other times it was humbling. Researching and writing this book was a voyage of sorts. First I had to get my “sea legs” and acclimatize myself to unfamiliar surroundings. In my previous academic existence I was a land archaeologist and ethnoarchaeologist. I had never been a sport diver, and, indeed, the idea of becoming one had never crossed my mind until I met Keith Muckelroy in Cambridge in 1977. We were both writing books for Cambridge University Press at that time and shared the same editor, so we wound up conversing in the waiting room (and later in the pub) more than once. It was Keith, more than anyone else, who planted the idea in my mind that underwater archaeology had scholarly legitimacy beyond the arcane details of nautical history and technology. A student of a leading pioneer of analytical and anthropological approaches to archaeology, David Clarke, he led the way in this direction with his *Maritime Archaeology* (1978). Twenty years later, Keith’s intellectual influence on my book will be apparent to anyone familiar with his work, and I am grateful for the stimulation and encouragement he provided at the beginning of this voyage.

Several institutions have played a key role in aiding and supporting the efforts leading to this book. Special thanks go to the Western Australian Museum, both in Perth and at the Maritime Museum in Fremantle. Graeme Henderson, Jeremy Green, Charlie Dortch, and Mike McCarthy were unstinting in their advice and support and communicated a sense of
direction and purpose for their discipline that is seldom found. This same
sense of purpose was echoed by Ian MacLeod, Myra Stanbury, Pat Baker
(whose “photo tips” were invaluable), and everyone else on the staff of
the Western Australian Maritime Museum.

The same can be said for the Submerged Cultural Resources Unit of
the U.S. National Park Service in Santa Fe. Dan Lenihan and Larry
Murphy, in particular, coached me in the skills of underwater site record-
ing and imparted a high level of professionalism while doing so. It was
always a pleasure as well as a learning experience to work with the SCRU
team. Their support for our research in the Dry Tortugas from 1989 to
1997 deserves special mention. I also wish to acknowledge the generous
advice and support of the Bermuda Maritime Museum, most notably that
of Edward Harris and his able staff, especially Steve and Catherine Hoyt.
Special thanks go, too, to Jack Arnell and to the late Rowan Sturdy
and Douglas Little. And, of course, none of our work in Bermuda from
1987 to 1992 would have been possible without the generous aid and
support of Earthwatch and the splendid volunteers they recruited for our
field projects. Certain volunteers stand out, and special mention here
goes to Eugene T. Rowe and William May, who aided in the fieldwork
in Bermuda and in the Dry Tortugas and also coached me in various
“unsolved mysteries of the Bermuda Triangle” such as Brownie’s Third
Lung, underwater photography, and small-boat handling. My wife,
Elizabeth, deserves special thanks, too, for her editorial expertise and
assistance but, above all, for her endless patience throughout this long
process.

Many individuals also contributed scholarly advice and expertise along
the way. I have learned much from my students and former students, and
particularly I want to acknowledge and thank Donna Souza, Brenda
Lanzendorf, Rebecca Upton, Steve Lubkemann, Cathie Hall, and David
Conlin. Other scholars also offered useful suggestions in general discus-
sions or on various drafts of the manuscript. In particular, I wish to thank
James Bellingham, J. Richard Steffey, Rodger Smith, Ben Finney, Nan
Godet, Patrick McCoy, Nicholas Rodger, Daniel Martinez, James
Delgado, Stuart Frank, Christian Ahlström, Patrick Malone, Jim Smailes,
Iain Stuart, Michael Schiffer, David Lyon, Colin Martin, Fred Lipke, Ross
Holloway, Ray Sutcliffe, and Fred Walker for their advice. I remain
responsible, however, for any conclusions or interpretations presented
in this book. Unless specifically stated otherwise, all photographs in this book are mine.

Richard A. Gould
Brown University
Providence, RI