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Order-of-Magnitude Astrophysics

1.1 Introduction

The subject of astrophysics involves the application of the laws of physics to
large macroscopic systems in order to understand their behaviour and predict
new phenomena. This approach is similar in spirit to the application of the laws
of physics in the study of, say, condensed-matter phenomena, except for the
following three significant differences:

(1) We have far less control over the external conditions and parameters in as-
trophysics than in, say, condensed-matter physics. It is not possible to study
systems under controlled conditions so that certain physical processes dom-
inate the behaviour. Identifying the causes of various observed phenomena
in astrophysics will require far greater reliance on statistical arguments than
in laboratory physics.

(2) The astrophysical systems of interest span a wide range of parameter space
and require inputs from several different branches of physics. Typically, the
densities can vary from 10−25 gm cm−3 (interstellar medium) to 1015 gm
cm−3 (neutron stars); temperatures from 2.7 K (microwave background ra-
diation) to 109 K (accreting x-ray sources) or even to 1015 K (early universe);
radiation from wavelengths of meters (radio waves) to fractions of angstroms
(hard gamma rays); typical speeds of particles can go up to 0.99c (relativis-
tic jets). Clearly we require inputs from quantum-mechanical and relativistic
regimes as well as from more familiar classical physics.

(3) The primary source of information about distant astrophysical sources is
the electromagnetic radiation detected from them. Therefore, to obtain a
complete picture about any source, it is necessary to examine it in all the
wave bands. Because of technological limitations, it is often quite diffi-
cult to have uniform coverage across the entire electromagnetic spectrum.
Hence the information we have about the sources is often distorted or
incomplete.
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2 1 Order-of-Magnitude Astrophysics

These considerations suggest that two aspects will be most important in the
study of different astrophysical systems. The first is the appreciation of the
different states in which bulk matter can exist under different conditions and
the dynamics of the matter governed by different equations of state. The sec-
ond is an understanding of different radiative processes that lead to the emis-
sion of photons, which act as prime carriers of information about astronomical
objects.

We shall be concerned with these and related topics in several chapters of this
book. The purpose of this introductory chapter is twofold: It will first provide –
in Sections (1.2) – (1.4) – a rapid overview of several physical processes at an
order-of-magnitude level and introduce the necessary concepts. Then we will
make an attempt to understand the existence of different astrophysical structures
from first principles to the extent possible. Implementing such a plan, of course,
has not been possible even in laboratory physics, and it is unlikely to succeed in
the case of astrophysics. At present, astrophysics does require a fair amount of
observational and phenomenological input, just like any other branch of applied
physics. Nevertheless, we will make such an attempt as it is useful in providing
the most basic and direct connection between physics and astrophysics.

1.2 Energy Scales of Physical Phenomena

Let us consider a system of N particles (N � 1), each of mass m, occupying
a spherical region of radius R. In dealing with the dynamics of such a large
collection of particles, it is useful to introduce the concept of pressure exerted
by the system of particles as the momentum transferred per second normal to a
(fictitious) surface of unit area. The contribution to the rate of momentum transfer
(per unit area) from particles of energy ε is n(ε)p(ε) · v(ε), where n(ε) denotes
the number of particles per unit volume with momentum p(ε) and velocity v(ε).
We obtain the net pressure by averaging this expression over the angles defined
by p (or v) and summing over all values of the energy. Because the momentum
and the velocity are parallel to each other, the vector dot product p · v averages
to (1/3)pv (in three dimensions), giving

P = 1

3

∫ ∞

0
n(ε)p(ε)v(ε) dε, (1.1)

where the integration is over all energies. The system is called ideal if the kinetic
energy dominates over the interaction energy of the particles. In that case ε is
essentially the kinetic energy of the particle. With the relations

p = γ mv, ε = (γ − 1)mc2, γ ≡
(

1 − v2

c2

)−1/2

, (1.2)

where ε is the kinetic energy of the particle, the pressure can be expressed in the

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-56632-2 - Course of Theoretical Astrophysics, Volume 1: Astrophysical Processes
T. Padmanabhan
Excerpt
More information

http://www.cambridge.org/9780521566322
http://www.cambridge.org
http://www.cambridge.org


1.2 Energy Scales of Physical Phenomena 3

form

P = 1

3

∫ ∞

0
nε

(
1 + 2mc2

ε

)(
1 + mc2

ε

)−1

dε. (1.3)

In the nonrelativistic (NR) limit (with mc2 � ε), this gives PNR ≈ (2/3) 〈nε〉 =
(2/3)UNR, where UNR is the energy density (i.e., energy per unit volume) of the
particles. In the relativistic case (with ε � mc2 or when the particles are mass-
less), the corresponding expression is PER ≈ (1/3) 〈nε〉 = (1/3)UNR. Hence, in
general, P ≈ U up to a factor of order unity.

This result can be converted into a more useful form of equation of state
whenever the mean free path of the particles in the system is small compared
with the length scales over which the physical parameters of the system change
significantly. Then the pressure can be expressed in terms of density and tempe-
rature if the energy density can be expressed in terms of these variables. This is
possible in several contexts leading to different equations of state. To understand
each of these cases it is useful to start by identifying the characteristic energy
scales of bulk matter. We now turn to this task.

1.2.1 Rest-Mass Energy

We can associate the rest-mass energy mc2 with each individual particle of
mass m. In normal matter, made up of nucleons and electrons, the lowest value
for rest-mass is provided by electrons with mec2 ≈ 0.5 MeV. For nucleons, the
rest-mass energy is m pc2 ≈ 1 GeV. Because the total mass of the system is mostly
due to the nucleons, the total rest-mass energy will be Emass

∼= N Am pc2 ∼= Mc2,
where Am p � m is the mass of each nucleus and Nm = M is the total mass of the
system. Rest-mass energy is extensive – that is, Emass ∝ N – in the low-energy
phenomena in which masses of individual nuclei do not change.

1.2.2 Atomic Binding Energies

If the particles of the system have internal structure (molecular, atomic, nuclear,
etc.) then we get further energy scales that are characteristic of the interactions.
The simplest is the atomic binding energy of atoms and molecules, which arises
from the electromagnetic coupling between the particles.

The Hamiltonian describing an electron, moving in the Coulomb field of a
nucleus of charge Zq, is given by H0 = (p2/2me) − (Zq2/r ). If this electron
is described by a wave function ψ(x, L), where L denotes the characteristic
scale over which ψ varies significantly, then the expectation value for the en-
ergy of the electron in this state is E(L) = 〈ψ |H0|ψ〉 ≈ (–h2/2me L2) − (Zq2/L).
The first term arises from the fact that 〈ψ |p2|ψ〉 = −–h2 〈ψ |∇2|ψ〉 ≈ (–h2/L2),
which is equivalent to the uncertainty principle stated in the form p ∼= –h/L . This
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4 1 Order-of-Magnitude Astrophysics

expression for E(L) reaches a minimum value of Emin = −Z2εa when L is var-
ied, with the minimum occurring at Lmin = (a0/Z ), where

a0 ≡
–h2

meq2
≡

–λe

α
≈ 0.52 × 10−8 cm, εa ≡ meq4

2–h2 = 1

2
α2mec2 ≈ 13.6 eV,

(1.4)

with the definitions –λe ≡ (–h/mec) and α ≡ (q2/–hc). a0 and εa correspond to the
size and the ground-state energy of a hydrogen atom with Z = 1. The wave-
length λ corresponding to εa is λ = (hc/εa) = 2α−2–λe � 103Å and lies in the UV
band. The fine-structure constant α ≈ 7.3 × 10−3 plays an important role in the
structure of matter and arises as the ratio between several interesting variables:

α = (v/Zc) = (2µB/qa0) = (r0/–λe) = ( –λe/a0),

where v is the speed of an electron in the atom, µB ≡ (q–h/2mec) is the Bohr
magneton representing the magnetic moment of the electron, and r0 ≡ (q2/mec2)
is called the classical electron radius.

When atoms of size a0 are closely packed, the number density of atoms is
nsolid ≈ (2a0)−3 ≈ 1024 cm−3. The binding energy of such a solid arises essen-
tially because of the residual electromagnetic force between the atoms, and the
typical binding energy per particle is f εa with f ≈ (0.1−1).

1.2.3 Molecular Binding Energy

The simplest molecular structure consists of two atoms bound to each other in
the form of a diatomic molecule. The effective potential energy of interaction
U (r ) between the atoms in such a molecule arises from a residual electrostatic
coupling and has a minimum at a separation r � a0, approximately the size of
the atom. The depth of the potential well at the minimum is comparable with
the electronic-energy level εa of the atom. In addition to the internal, electronic,
binding energies of the atoms comprising the molecule, there are two other
contributions to the energy of a diatomic molecule:

(1) The atoms of such a molecule can vibrate at some characteristic frequency
ωvib about the mean position along the line connecting them; this will lead
to vibrational-energy levels separated by Evib ≈ –hωvib. If the displacement
is ∼a0 from the minimum, the vibrational energy Evib will be ∼εa . Writing
εa ≈ (1/2)µω2

viba2
0
∼= (–h2/mea2

0), where µ is the reduced mass of the two
atoms, we get

Evib = –hωvib ≈
–h2

(µme)1/2a2
0

≈
(

me

µ

)1/2

εa � 0.25 eV (1.5)

if µ � m p.
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1.2 Energy Scales of Physical Phenomena 5

(2) The molecule can also rotate about an axis perpendicular to the line joining
them. If the rotational angular momentum is J , this will contribute an energy
of approximately

Erot ≈
(

J 2

µa2
0

)
≈

(
–h2

µa2
0

)
≈

(
me

µ

)
εa ≈ 10−3εa � 10−2 eV (1.6)

if J� –h and µ � m p. It follows from these relations that Erot:Evib:E0 ≈
(me/µ):(me/µ)1/2:1 and Evib ≈ √

εa Erot. Because (me/µ) ≈ 10−3, the wave-
lengths of radiation from vibrational transitions are ∼40 times larger than
those of electronic transitions; similarly, the rotational transitions lead to rad-
iation with wavelengths ∼1000 times larger than those of electronic transi-
tions. These wavelengths are usually in the IR band.

Atomic and molecular energies are also extensive, with the binding energy of
a system of N particles scaling as N .

1.2.4 Nuclear-Energy Scales

Atomic nuclei are bound by the strong-interaction force that provides a binding
energy per particle of ∼8 MeV, which is the characteristic scale for nuclear-
energy levels. In the astrophysical context, a more relevant energy scale is the
one at which nuclear reactions can be triggered in bulk matter, which can be
estimated as follows. For two protons to fuse together while undergoing nu-
clear reaction, it is necessary that they be brought within the range of attractive
nuclear force, which is approximately l ≈ (h/m pc) = (2π–h/m pc). Because this
requires overcoming the Coloumb repulsion, such direct interaction can take
place only if the kinetic energy of colliding particles is of the order of the elec-
trostatic potential energy at the separation l. This requires energies of the order
of ε ≈ (q2/ l) = (α/2π )m pc2 ≈ 1 MeV. It is, however, possible for nuclear re-
actions to occur through quantum-mechanical tunneling when the de Broglie
wavelength λdeB ≡ (h/m pv) = l(c/v) of the two protons overlap. This occurs
when the energy of the protons is approximately εnucl ≈ (α2/2π2)m pc2 ≈ 1 keV.
It is conventional to write this expression as εnucl ≈ ηα2m pc2, with η � 0.1.
This quantity εnucl sets the scale for triggering nuclear reactions in astrophysical
contexts.

1.2.5 Gravitational Binding Energy

In the nonrelativistic, Newtonian theory for gravity, the gravitational energy of
a system of size R and mass M will be Egrav ≈ GM2/R ≈ (Gm2

p/R)N 2. This
is not extensive with respect to N (for a given R), and the potential energy per
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6 1 Order-of-Magnitude Astrophysics

particle varies as

εg ≡ Egrav

N
=

(
Gm2

p

R

)
N =

(
4π

3

)1/3

Gm2
p N 2/3n1/3, (1.7)

where n = (3N/4π R3) is the number density of particles. The pressure due to
gravitational force near the center of the object will be approximately

Pg ≈ (G M2/R2)

(4π R2)
≈ 1

3

(
4π

3

)1/3

Gm2
p N 2/3n4/3 ∼= 1

3

(
Egrav

V

)
.

If the gravitational potential energy is comparable with the rest-mass energy
of the system, it is necessary to take general relativistic effects into account. The
ratio Rgm ≡ (Egrav/Emass) is Rgm � 0.7(M/1033 gm) (R/1 km)−1, which shows
that if massive objects (with M � 1033 gm) are confined to small regions (with
R � 1 km), the system will exhibit general relativistic effects. When this ratio is
small compared with unity, the system can be treated by Newtonian gravity.

1.2.6 Thermal and Degeneracy Energies of Particles

So far we have not introduced the notion of Temperature or the kinetic energy
of the particle. These attributes bring in the next set of energy scales into the
problem. For a particle of momentum p and mass m, the kinetic energy is given by

ε =
√

p2c2 + m2c4 − mc2 =
{

p2/2m (p � mc)

pc (p � mc)
, (1.8)

where the two forms are applicable in the non-relativistic (NR) and extreme
relativistic (ER) limits. The behaviour of the system depends on the origin of the
momentum distribution of the particles.

The familiar situation is the one in which short-range interactions (usually
called ‘collisions’) between the particles effectively exchange the energy so as
to randomize the momentum distribution. This will happen if the effective mean
free path of the system l is small compared with the length scale L at which
physical parameters change. (The explicit form taken by the condition l � L can
be very different in different cases; this condition is discussed in detail towards
the end of this section.) When such a system is in steady state, we can assume that
the local thermodynamic equilibrium, characterized by a local temperature T ,
exists in the system. Then the probability for occupying a state with energy E
will scale as P(E) ∝ exp[−(E/kB T )]. The typical momentum of the particle
when the temperature is T is given by Eq. (1.8) with ε � kB T , that is,

p ∼= mc

[
2kB T

mc2
+

(
kB T

mc2

)2
]1/2

∼=
{

(2mkB T )1/2 (kB T � mc2; NR)

(kB T/c) (kB T � mc2; ER)
.

(1.9)
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1.2 Energy Scales of Physical Phenomena 7

In this case, the momentum and the kinetic energy of the particles vanish when
T → 0.

The situation is actually more complicated for material particles like electrons.
The mean energy of a system of electrons will not vanish even at zero temperature
because electrons obey the Pauli exclusion principle, which requires that the
maximum number of electrons that can occupy any quantum state be two, one
with spin up and another with spin down. Because the uncertainty principle
requires that 	x	px >∼ h, we can associate (d3xd3 p)/(2π–h)3 microstates with
a phase-space volume d3x d3 p. Therefore the number of quantum states with
momentum less than p is [V (4πp3/3)/(2π–h)3], where V is the spatial volume
available for the system. The lowest energy state will be the one in which the
N electrons fill all levels up to some momentum pF , called Fermi momentum.
This requires that

n =
(

N

V

)
= 2

(
4πp3

F/3
)

(2π–h)3
= 1

3π2

(
pF
–h

)3

, (1.10)

giving pF = –h(3π2n)1/3. It is obvious that if pF >∼ mc the system must be treated
as relativistic, even in the zero-temperature limit. The energy corresponding to
pF will be

εF =
√

p2
F c2 + m2c4 − mc2 =

⎧⎪⎨
⎪⎩

p2
F

2m
=

(
–h2

2m

)
(3π2n)2/3 (NR)

pF c = (–hc)(3π2n)1/3 (ER)

. (1.11)

The quantity εF (called the Fermi energy) sets the quantum-mechanical scale of
the energy; quantum-mechanical effects will be dominant if εF >∼ kB T (degen-
erate), and the classical theory will be valid for εF � kB T (nondegenerate). The
relevant ratio Rft ≡ (εF/kB T ) that determines that the degree of degeneracy is(

εF

kB T

)
= mc2

kB T

{[(
–hn1/3

mc

)2

(3π2)2/3 + 1

]1/2

− 1

}

∼=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2
(3π2)2/3

(
–h2

m

n2/3

kB T

)

(3π2)1/3

(
–hc

kB T
n1/3

) , (1.12)

where the two limiting forms are valid for n � (–h/mc)−3 (NR) and n � (–h/mc)−3

(ER), respectively. In the first case [n � (–h/mec)−3 � 1031 cm−3], the system is
nonrelativistic; it will also be degenerate if Rft = (εF/kB T ) � 1 and classical
if Rft � 1. The transition occurs at Rft ≈ 1, which corresponds to nT −3/2 =
[(mkB)3/2/–h3] = 3.6×1016 in cgs units. In the second case [n � (–h/mec)−3 �
1031 cm−3; ρ ≡ m pn � 107 gm cm−3], electrons have pF � mec and are
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8 1 Order-of-Magnitude Astrophysics

relativistic irrespective of temperature. The quantum effects will dominate ther-
mal effects if kB T � (–hc)n1/3, and we will have a relativistic, degenerate gas.

In general, the kinetic energy of the particle will have contributions from
the temperature as well as from Fermi energy. If we are interested in only
the asymptotic limits, we can take the total kinetic energy per particle to be
ε ≈ εF (n) + kB T . Note that such a system has a minimum energy NεF (n) even
at T = 0.

By using our general result P � nε [see Eq. (1.3)], we can obtain the equation
of state for the different cases discussed above. First, for a quantum-mechanical
gas of fermionic particles with kB T � εF and ε ≈ εF , it follows from Eq. (1.11)
that P � nεF varies as the (5/3)rd power of density in the nonrelativistic case
and as the (4/3)rd power of density in the relativistic case. Whether the system
is relativistic or not is decided by the ratio (pF/mc) or – equivalently – the ratio
(εF/mc2). The transition occurs at n = nRQ ≈ (–h/mc)−3. Second, if the system is
classical with kB T � εF so that ε ∼= kB T , then P � nkB T in both nonrelativistic
and extreme relativistic limits.

The energy scale of the individual particles also characterizes the energy
involved in the collisions between the particles. If this quantity is larger than the
binding energy of the atomic system, the atoms will be ionised and the electrons
will be separated from the atoms. The familiar situation in which this happens is at
high temperatures with kB T >∼ εa when the system will be made of free electrons
and positively charged ions, whereas, if kB T � εa , the system will be neutral.
The transition temperature at which nearly half the number of atoms are ionised
occurs around kB T ≈ (εa/10), which is ∼104 K for hydrogen. For T � 104 K,
the kinetic energy of the free electrons in the hydrogen plasma will be ∼kB T .

The electrons can be stripped off the atoms in another different context. This
occurs if the matter density is so high that the atoms are packed close to each
other, with the electrons forming a common pool with εF >∼ εa . In this case, the
electrons will be quantum mechanical and the relevant energy scale for them
will be εF . The temperature does not enter into the picture if kB T � εF , and we
may call this a zero-temperature plasma. Conventionally, such systems are called
degenerate. For normal metals in the laboratory the Fermi energy is comparable
with the binding energy within an order of magnitude. If the temperature is below
104 K, the properties of the system are essentially governed by Fermi energy.

In the derivation of P in Eq. (1.3) it is assumed that the the gas is ideal, i.e.,
the mutual interaction energy of the particles is small compared with the kinetic
energy. To treat a plasma as ideal, it is necessary that the Coulomb interaction
energy of ions and electrons be negligible. The typical Coulomb potential energy
between the ions and the electrons in the plasma is given by εCoul ≈ Zq2n1/3. If
the classical high-temperature plasma is to be treated as an ideal gas, this energy
should be small compared with the energy scale of the particle ε ≈ kB T , which
requires the condition nT −3 � (kB/Zq2)3 � 2.2 × 108 Z−3 in cgs units. On the
other hand, to treat the high-density quantum gas as ideal, we should require that
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1.2 Energy Scales of Physical Phenomena 9

the Coulomb energy εCoul ≈ Zq2n1/3 be small compared with the Fermi energy
εF ≈ (–h2/2m)n2/3. The condition now becomes n � 8Z3a−3

0 ≈ Z3 × 1026 cm−3.
Note that such a system becomes more ideal at higher densities; this is because
the Fermi energy rises faster than the Coulomb energy.

Let us now go back to the tacit assumption we made in the above analysis,
viz., that physical interactions between the particles of the system are capable
of maintaining the thermal equilibrium. Determining the precise condition that
will ensure this is not a simple task; but – naively – we would require that (1) the
mean free path for particles, l = (nσ )−1 based on a relevant scattering process
governed by a cross section σ , be small compared with the scale L over which
various parameters change significantly, and (2) that the mean time between col-
lisions τ = (nvσ )−1 be small compared with the time scale over which physical
parameters change.

To apply this condition we need to know the relevant mean free path for the
system. For a neutral gas of molecules, this is essentially determined by molecu-
lar collisions with σ0 ≈ πa2

0 ≈ 8.5 × 10−17 cm2 and l = (nσ0)−1. The time scale
for the establishment of a Maxwellian distribution of velocities will be approxi-
matelly τneu � l/v ∝ n−1T −1/2. For an ionized classical gas, the cross section for
scattering is decided by Coulomb interaction between charged particles. Because
an ionized plasma is made of electrons and ions with vastly different inertia, the
interparticle collisions can take different time scales to produce thermal equili-
brium between electrons, between ions, and between electrons and ions. Each of
these needs to be discussed separately.

The typical impact parameter between two electrons is b ≈ (2Zq2/mev
2),

where v is the typical velocity of an electron. The corresponding e–e scattering
cross section is

σcoul ≈ πb2 ≈ π

(
Zq2

me

)2 1

v4
≈ 10−20 cm2 Z2

(
T

105 K

)−2

, (1.13)

and the mean free path varies as l = (nσcoul)−1 ∝ (T 2/n). The mean free time
between the electron–electron scattering will be τee ≈ (nσv)−1, where n is the
number density of electrons and σ ≈ πb2. This gives τee ≈ (m2

ev
3/2π Z2q4n),

which is the leading dependence. (A more precise analysis changes the numerical
coefficient and introduces an extra logarithmic factor; see Chap. 9.)

Note that τ ∝ m2v3 ∝ T 3/2m1/2 at a given temperature T ∝ (1/2)mv2. There-
fore the ion–ion collision time scale τpp will be larger by the factor (m p/me)1/2�
43, giving τpp = (m p/me)1/2τee � 43τee.

The time scale for significant transfer of energy between electrons and ions
is still larger because of the following fact. When two particles (of unequal
mass) scatter off each other, there is no energy exchange in the centre-of-mass
frame. In the case of ions and electrons, the centre-of-mass frame differs from
the lab frame only by a velocity vCM � (me/m p)1/2vp � vp. Because there is

© Cambridge University Press www.cambridge.org

Cambridge University Press
978-0-521-56632-2 - Course of Theoretical Astrophysics, Volume 1: Astrophysical Processes
T. Padmanabhan
Excerpt
More information

http://www.cambridge.org/9780521566322
http://www.cambridge.org
http://www.cambridge.org


10 1 Order-of-Magnitude Astrophysics

no energy exchange in the centre-of-mass frame, the maximum energy transfer
in the lab frame (which occurs for a head-on collision) is approximately 	E =
(1/2)m p(2vcm)2 = 2m pv

2
cm � 2mev

2
p, giving [	E/(1/2)m pv

2
p] � (me/m p) � 1.

Therefore it takes (m p/me) times more collisions to produce equilibrium be-
tween electrons and ions, that is, the time scale for electron–ion collision is
τpe = (m p/me)τee � 1836τee. The plasma will relax to a Maxwellian distribu-
tion in this time scale.

Finally, it must be noted that in a high-temperature tenuous plasma, this mean
free path can become larger than the size of the system. If that happens, it
is necessary to check whether there are any other physical processes that can
provide an effective mean free path that is lower. Most astrophysical plasmas
host magnetic fields that make the charged particles spiral around the magnetic-
field lines. We can estimate the typical radius of a spiraling charged particle in a
magnetic field by equating the centrifugal force (mv2/r ) to the magnetic force
(qvB/c). This leads to a radius called the Larmor radius, given by

rL = (mcv/qB) = 13 cm (T/105 K)1/2(B/1 G)−1

in a thermal plasma. When the Larmor radius is small, it can act as the effec-
tive mean free path for the scattering of charged particles. The ratio between
the mean free path from Coulomb collisions [l ∝ (T 2/n)] and the Larmor ra-
dius [rL ∝ (T 1/2/B)] varies as (BT 3/2/n) and can be large in tenuous high-
temperature plasmas with strong magnetic fields. This ratio is unity for a critical
magnetic field:

Bc = 10−19 G

(
T

105 K

)−3/2( n

1 cm−3

)
. (1.14)

The magnetic field in most astrophysical plasmas will be larger than Bc, and
hence this effect will be important.

1.3 Classical Radiative Processes

We next turn to the question of gathering information about the cosmic structures
from the radiation received from them. To relate the information received through
the electromagnetic waves to the properties of the emitting system, it is necessary
to understand the process of electromagnetic radiation from different systems
and the nature of the spectrum emitted by each of them.

In classical electromagnetic theory, radiation is emitted by any charged particle
that is in accelerated motion. A detailed argument given in Chap. 3 shows that
the total amount of energy radiated per second in all directions by a particle with
charge q moving with acceleration a is given by

dE
dt

= 2

3

q2

c3
a2, (1.15)
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