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Some mathematical essentials

1.1 Scalars, vectors, and Cartesian tensors

Geometry is a vital ingredient in the description of continuum problems. Our
treatment will focus on the mathematically simplest representation for this subject.
Although curvilinear coordinates can be more natural, they introduce complica-
tions that go beyond the scope of this book. The initial part of our treatment will
parallel the Cartesian approach of Mase and Mase (1990) rather than the curvilin-
ear approach of Narasimhan (1993) and Fung (1965). Hence, we will adhere to a
Cartesian description of problems and be spared the need to distinguish between
covariant and contravariant notation. Moreover, we will generally employ second-
rank tensors which are matrices that possess some very special and important
(coordinate) transformation properties.

We will distinguish between three classes of objects: namely, scalars, vectors,
and tensors. In reality, all quantities may be regarded as tensors of a specific rank.
Scalar (nonconstant) quantities, such as density and temperature, are zero rank or
order tensors, while vector quantities (which have an associated direction, such as
velocity) are first-rank tensors. Second-rank tensors, such as the stress tensor, are a
special case of square matrices. We will usually denote vector quantities by bold-
face lower-case letters, while second-rank tensors will be denoted by bold-face
upper-case letters.

To simplify our geometrical description of problems, we will employ an indicial
notation. In lieu of x , y, and z orthogonal axes, we will employ x1, x2, and x3.
Similarly, we will denote by ê1, ê2, and ê3 unit-vectors in the directions of x1, x2,
and x3. The indicial notation implies that any repeated index is implicitly summed,
generally from 1 through 3. This is the Einstein summation convention. It is suf-
ficient to denote a vector v by its three components (v1, v2, v3). We conform with
the tradition that vector quantities are shown in bold face. For more detail on these
issues, the reader is advised to consult mathematical texts such as those by Boas

1

http://www.cambridge.org/9780521562898
http://www.cambridge.org
http://www.cambridge.org


Cambridge University Press
978-0-521-56289-8 - Continuum Mechanics in the Earth Sciences
William I. Newman
Excerpt
More information

www.cambridge.org© in this web service Cambridge University Press

2 Some mathematical essentials

(2006), Arfken and Weber (2005), Mathews and Walker (1970), or Schutz (1980)
ranging from elementary to advanced treatments. We note that v can be represented
vectorially then as

v ≡
3∑

i=1

vi êi = vi êi . (1.1)

Accordingly, we see that

Ti j vi ê j =
3∑

i=1, j=1

Ti jvi ê j . (1.2)

Moreover, vectors and matrices have certain of the properties of a group: (a) the
sum of two vectors is a vector; (b) the product of a vector by a scalar is a vector,
etc. In addition, we define an inner (scalar) product or dot product according to the
usual physicist’s convention

u · v ≡ ui vi . (1.3)

It is important to note that mathematicians sometimes employ a slightly different
notation for the inner product, namely

(u, v) = uT v = vT u = ui vi , (1.4)

where they assume that u and v are column vectors. The latter formalism requires
particular care since transposed quantities often appear. In order to maintain trans-
parency in all of our derivations, we will employ primarily the indicial nota-
tion. Moreover, if we define u and v to be the lengths of u and v, respectively,
according to

u ≡ √
ui ui = |u| ; v ≡ √

vi vi = |v| , (1.5)

we can identify an angle θ between u and v which we define according to

u · v ≡ u v cos θ. (1.6)

We now introduce the Kronecker delta δi j and the Levi-Civita permutation symbol
εi jk owing to their utility in tensor calculations.

We define the Kronecker delta according to

δi j ≡
{

1, if i = j
0, if i �= j

. (1.7)

It follows that the Kronecker delta is the realization of the identity matrix. It follows
then that

êi · ê j = δi j , (1.8)
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1.1 Scalars, vectors, and Cartesian tensors 3

and that

δi i = 3. (1.9)

(This is equivalent to saying that the trace, i.e. the sum of the diagonal elements,
of the identity matrix is 3.) An important consequence of equation (1.8) is that

δi j ê j = êi . (1.10)

We can employ these definitions to derive the general scalar product relation (1.3)
using the special case (1.8). In particular, it follows that

u · v = ui êi · v j ê j = ui v j êi · ê j = ui v j δi j = ui vi . (1.11)

In order to introduce the vector (cross) product, we introduce the Levi-Civita or
permutation symbol εi jk according to

εi jk ≡
⎧⎨
⎩

1, if i j k are an even permutation of 1 2 3
−1, if i j k are an odd permutation of 1 2 3
0, if any two of i , j , k are the same

. (1.12)

We note that εi jk changes sign if any two of its indices are interchanged. For exam-
ple, if the 1 and 3 are interchanged, then the sequence 1 2 3 becomes 3 2 1. Accord-
ingly, we define the cross product u × v according to its i th component, namely

(u × v)i ≡ εi jk u j vk, (1.13)

or, equivalently,

u × v = (u × v)i êi = εi jk êi u j vk = − (v × u). (1.14)

By inspection, it is observed that this kind of structure is closely connected to the
definition of the determinant of a 3×3 matrix. This follows directly when we write
the scalar triple product

u · (v × w) = εi jk ui v j wk, (1.15)

which, by virtue of the cyclic permutivity of the Levi-Civita symbol demonstrates

u · (v × w) = v · (w × u) = w · (u × v). (1.16)

The right side of equation (1.15) is the determinant of a matrix whose rows corre-
spond to u, v, and w, respectively. It is useful to note that the scalar triple product
can be employed to establish whether a Cartesian coordinate system is right or left
handed, i.e. the product is +1 or −1.

It is useful, as well, to consider the vector triple cross product

u × (v × w) = u × εi jk êi v j wk = εlmi êl um εi jk v j wk

= (
εilm εi jk

)
êl um v j wk . (1.17)
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4 Some mathematical essentials

It is necessary to deal first with the εilmεi jk term. Observe, as we sum over the i
index, that contributions can emerge only if l �= m and j �= k. If these conditions
both hold, then we get a contribution of 1 if l = j and m = k and a contribution of
−1 if l = k and m = j . Hence, it follows that

εilm εi jk = δl j δmk − δlk δmj . (1.18)

Returning to equation (1.17), we obtain that

u × (v × w) = (
δl j δmk − δlk δmj

)
êl um v j wk

= êl vl um wm − êl wl um vm (1.19)

= v (u · w) − w (u · v),

thereby reproducing a familiar, albeit otherwise cumbersome to derive, algebraic
identity. Finally, if we replace the role of u in the triple scalar product (1.15) by
v × w, it immediately follows that

(v × w) · (v × w) = |v × w|2 = εi jk v j wkεilm vl wm

= (
δ jlδkm − δ jmδkl

)
v j wk vl wm . (1.20)

Finally, this can be written

|v × w|2 = v2w2 − (v · w)2 = v2 w2 sin2 θ, (1.21)

where we have made use of the definition (1.6). Indeed, it is possible to demon-
strate the validity of many other vector identities by employing the Levi-Civita and
Kronecker symbols. This is especially true with respect to derivative operators. We
define ∂i according to

∂i ≡ ∂

∂xi
. (1.22)

Another notational shortcut that is commonly used is to employ a subscript of “, i”
to denote a derivative with respect to xi ; importantly, a comma “,” is employed to
designate differentiation together with the subscript. Hence, if f is a scalar function
of x, we write

∂ f

∂xi
= ∂i f = f,i ; (1.23)

but if g is a vector function of x, we write

∂gi

∂x j
= ∂ j gi = gi, j . (1.24)

Higher derivatives may be expressed using this shorthand as well, e.g.

∂2gi

∂x j ∂xk
= gi, jk . (1.25)
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1.1 Scalars, vectors, and Cartesian tensors 5

Then, the usual gradient, divergence, and curl operators become

∇ = êi ∂i ; (1.26)

∇ · u = ∂i ui ; (1.27)

and

∇ × u = εi jk êi ∂ j uk, (1.28)

where u is a vector and a function of the position vector x. With only a modest
degree of additional effort (noting that ∂i commutes with ∂ j , an added benefit of
Cartesian geometry, but not with any function of x), it is now relatively simple to
derive all vector identities in Cartesian coordinates. Before proceeding further, it
deserves mention that the usual theorems of Gauss, Green, and Stokes also hold for
tensor quantities albeit in a slightly more complicated form than for vector ones.
The essential point here is that as one converts from a volume integral to a surface
integral and to a line integral, appropriate differential operators are introduced. In
a Cartesian representation, these rarely cause any problems and the rules discussed
above apply.

One final notation issue needs to be addressed at this time, the tensor (outer)
product of two vectors, the so-called dyad

u v = ui êi v j ê j = ui v j êi ê j . (1.29)

(Although some engineering texts sometimes introduce the ⊗ symbol between the
two vector quantities, mathematics texts often employ the ⊗ symbol to denote an
“antisymmetric” form, i.e. u ⊗ v = uv − vu. Other mathematics texts employ the
“wedge” u ∧ v for this purpose. The absence of an intervening dot between the
unit vectors is significant: there is no inner product implied.) Operations on dyads
follow the usual rules for the relevant vector components; e.g.

u v · p q = u (v · p)q = (v · p)u q, (1.30)

where we note that the scalar product (v · p) should be regarded solely as a scalar
quantity. Dyads are particularly useful in the decomposition or diagonalization of
matrices. Note, also, that although a dyad has nine components, only six indepen-
dent quantities are involved (and these six quantities can be calculated up to a mul-
tiplicative constant). It is possible in similar fashion to construct triadic, tetradic,
and higher rank tensors.

Thus far, our treatment of geometry and some of the underpinnings of scalars,
vectors and Cartesian tensors has been abstract. The power of these methods is
greatly enhanced when we employ our geometric intuition in solving problems.
(This philosophy is also at the heart of our adherence to Cartesian coordinates
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6 Some mathematical essentials

in our treatment. Once we have derived the fundamental equations of continuum
mechanics in Cartesian form, it is relatively simple to convert them to other curvi-
linear coordinate systems, such as cylindrical or spherical. What we gain in the
process is geometrical simplicity.)

As an illustration of the utility of coupling geometric intuition with the formal-
ism, consider the classic problem of establishing the bond angles in a methane or
CH4 molecule. Visualize the carbon atom at the origin of our coordinate system
and let us assume that one of the hydrogen atoms is at a distance v from the carbon
atom along the z-axis. We will designate its position by the vector v(0). The three
remaining hydrogen atoms make an angle θ , to be determined, with respect to the
hydrogen atom on the z-axis, and we will call their vectors v(i) for i = 1, 2, 3. The
“center of mass” of the hydrogen atoms is

∑3
i=0 v(i) = 0, i.e. at the origin where

the carbon atom is situated. We take the dot product of v(0) with this latter quantity
to find that v2 + 3 v2 cos θ = 0 leaving cos θ = −1/3 or θ ≈ 109.471 220 634◦.
Drawing a picture is always a good idea. Let us consider a more complex example.

As a novel illustration of the use of dyads, consider the “corner cube” reflector
frequently employed on highways and elsewhere owing to their remarkable ability
to reflect back to the source light incident on the device from any angle.

A corner reflector consists of three mutually perpendicular, intersecting flat sur-
faces (see figure 1.1). In particular, assume that the corner’s faces can be described
by normal unit vectors n̂i , i = 1, 2, 3 as shown in the accompanying figure. If
a light ray with direction r̂ impinges on face #1, then its projection along the n̂1

direction is reversed while its projection on the n̂i for i = 2, 3 remains unchanged.
Thus, the new vector r̂′ after the first reflection is given by

r̂′ = (
n̂2 n̂2 + n̂3 n̂3 − n̂1 n̂1

) · r̂ = (
I − 2 n̂1 n̂1

) · r̂, (1.31)

1
2

3

Figure 1.1 Geometry of a corner cube retroreflector.
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1.2 Matrices and determinants 7

where

I = n̂1 n̂1 + n̂2 n̂2 + n̂3 n̂3 (1.32)

defines the identity operator. We now allow for a reflection on face number 2, yield-
ing r̂′′. Taking all three reflections in turn, we obtain for the final ray vector

r̂′′′ = (
I − 2 n̂3 n̂3

) · (I − 2 n̂2 n̂2
) · (I − 2 n̂1 n̂1

) · r̂ = −r̂, (1.33)

after a modest amount of algebra where the scalar products of the form n̂1 · n̂2,
etc., are observed to vanish. Hence, we see how the utilization of these geometrical
constructs can dramatically simplify the solution of practical problems.1

The notation employed thus far has mixed symbolic and indicial conventions; the
proper treatment requires a covariant–contravariant formulation which would also
accommodate curvilinear coordinates. Engineering texts generally employ nota-
tion that preserves vectorial quantities using bold-face characters, e.g. n, while
physics texts such as Landau et al. (1986) and Landau and Lifshitz (1987) generally
employ indicial notation, e.g. ni . When referring to tensors (and to matrices), the
symmetries possessed with respect to the indices can be particularly important. For
example, if Ai j = −A ji , we say that the second-rank tensor A is anti-symmetric;
similarly, if Ai j = A ji , we say that A is symmetric. To maintain a (subtle) dis-
tinction between matrices and tensors, we shall denote the associated matrix by
the symbol A. We turn now to some of the essential properties of matrices and
determinants.

1.2 Matrices and determinants

A matrix, unlike a tensor which properly defined also preserves coordinate transfor-
mation properties, is an ordered rectangular array of elements enclosed by brack-
ets. The reader may wish to review a good linear algebra text before continuing
further. An encyclopedic source of information concerning matrices is the two-
volume text by Gantmakher (1959). An M by N matrix (written M × N ) can be
expressed

A = [
Ai j

] =

⎛
⎜⎜⎝

A11 A12 . . . A1N

A21 A22 . . . A2N
...

...
. . .

...

AM1 AM2 . . . AM N

⎞
⎟⎟⎠. (1.34)

1 An especially elegant way of demonstrating the reversal of the direction of the incident beam is to adopt
temporarily a rotated coordinate system whose axes are orthogonal to each of the three cube faces. In this
system, each of the components of the ray vector undergoes a reversal as the light ray encounters each cube
face, respectively. Since all three components of the initial vector are reversed after the three reflections, the
outcome of this encounter with a corner cube is the reversal of the light ray.
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8 Some mathematical essentials

A zero or null matrix has all elements equal to zero. A diagonal matrix is a square
matrix whose elements which are not on the principal diagonal vanish; the unit or
identity matrix is a diagonal matrix whose diagonal elements are unit values. By
interchanging the rows and columns of an M × N matrix A, we form its N × M
transpose AT . It follows then that a symmetric matrix is a square matrix A = AT .
Any matrix can be expressed as the sum of a symmetric and an antisymmetric
matrix, respectively, namely

A = A + AT

2
+ A − AT

2
. (1.35)

For complex-valued matrices, we sometimes denote by the superscript † or H the
complex conjugate transpose or Hermitian operator. Thus, we define A† ≡ AH ≡
AT � where a � is used to indicate the complex conjugate. We say that a matrix A
is Hermitian if it is identical to its conjugate transpose. Such properties sometimes
emerge in the manipulation of matrices, but rarely so in continuum mechanics.

Matrix addition is commutative, i.e. A + B = B + A, and associative, i.e.
A + (B + C) = (A + B) + C. Multiplication of a matrix A by a scalar λ gives
rise to a new matrix λA. A matrix product C = AB can be defined in a manner
reminiscent of an inner product, that is

Ci j = Aik Bkj , (1.36)

where summation over the index k takes place over the admissible range – note
that the matrices A and B must be compatible in size. Observe further that matrix
multiplication is not commutative, i.e. AB �= BA.

It is often useful to define a quadratic form from a matrix A or its equivalent
second rank tensor A, namely xH A x. We say that a matrix is positive definite if
xH A x > 0 for all x and that it is positive semi-definite if xH A x ≥ 0. (This
property of matrices is of fundamental importance in continuum mechanics and
in stability theory.) The sum of the diagonal elements of a matrix is its trace, i.e.
tr A ≡ Aii . For convenience, we will define the determinant of a matrix using the
Levi-Civita symbol, extending the definition (1.12) of the symbol to an arbitrary
number N of indices (corresponding to an N × N matrix). In particular, we define

εi1i2...iN ≡
⎧⎨
⎩

1, if i1i2 . . . iN are an even permutation of 1, 2, . . . N
−1, if i1i2 . . . iN are an odd permutation of 1, 2, . . . N .

0, if any two of i1i2 . . . iN are the same
(1.37)

The issue of even and odd permutations can be understood this way: if we inter-
change any two indices of the Levi-Civita symbol, then it changes sign, alternat-
ing between +1 and −1. Accordingly, however, we note that if any two indices
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1.3 Transformations of Cartesian tensors 9

are the same, then the Levi-Civita symbol must vanish. Then, we define detA
according to

detA ≡ εi1i2...iN A1i1 A2i2 . . . ANiN . (1.38)

It is easy to show that this reduces to the familiar definition for the determinant of
a 3 × 3 matrix. Moreover, it is easy to show that all of the familiar properties of a
determinant are preserved through this definition – particularly, if we regard each
row (or column) of A as a vector, then the determinant vanishes if any row (or col-
umn) can be expressed as a linear combination of the other rows (or columns).
Finally, these rules can be employed to develop the usual rules for the evaluation
of a determinant by cofactors, etc. The inverse of a matrix A−1, if it exists, is a
matrix defined such that A−1 A = AA−1 = I, the identity matrix. We observe
that the transpose or inverse of a product reverses the usual order of terms, that is

(AB)T = BT AT , (1.39)

and

(AB)−1 = B−1 A−1. (1.40)

Also, it is important to note that the determinant of a product is equal to the product
of the determinants, namely

det (AB) = (detA) (detB) . (1.41)

Although harder to prove, this is demonstrable using the Levi-Civita expression for
the determinant of a matrix.

1.3 Transformations of Cartesian tensors

It is possible to convert (or rotate from) one coordinate system to another via a
“transformation” – the existence of this transformation for tensors but not in gen-
eral for matrices is what makes tensors a special case of matrices. Suppose we
have one set of coordinate axes defined by unit vectors êi and wish to transform to
another set of coordinate axes defined by unit vectors ê′

i . Then, we can write (since
we are dealing with a linear superposition)

ê′
i = Ai j ê j , (1.42)

where it follows that

Ai j = ê′
i · ê j . (1.43)

Thus, we see that the coefficients of the transformation matrix are just the
“direction cosines” defining the angles between the old and new coordinate sys-
tems. Expression (1.42) will be employed universally in transforming vectors and,

http://www.cambridge.org/9780521562898
http://www.cambridge.org
http://www.cambridge.org


Cambridge University Press
978-0-521-56289-8 - Continuum Mechanics in the Earth Sciences
William I. Newman
Excerpt
More information

www.cambridge.org© in this web service Cambridge University Press

10 Some mathematical essentials

later, tensors from one Cartesian coordinate system to another. Similarly, we can
write for the inverse transform

êi = A−1
i j ê′

j , (1.44)

where

A−1
i j = êi · ê′

j . (1.45)

By inspection, we observe that

A−1 = AT . (1.46)

The action of A on a vector can be regarded, alternately, as a rotation from one
coordinate system to another (i.e. from the unprimed to the primed), or as a phys-
ical rotation of the vector in a manner specified by the reorientation of the coordi-
nate axes.

The matrix A has some notable properties and, in particular, is referred to as
unitary or length preserving. This can be shown by observing that, if

u′ ≡ A · u = A u, (1.47)

or, using indicial notation,

u′
i = Ai j u j , (1.48)

then

u′2 = u′T · u′ = uT · AT · A · u = uT · u = u2, (1.49)

for any u. Another important outcome of equations (1.42) and (1.48) emerges
due to

u′ = u′
i ê′

i = Ai j u j Aik êk = AT
ji Aik u j êk = δ jk u j êk = u, (1.50)

thereby showing that the two representations that we have for our original vector
u are identical. The transformation equation (1.48) allows us to convert almost
effortlessly from one coordinate system to the other without changing any physical
quantities.

If we regard each column of A as being a vector, say u(i), i = 1, 2, 3, a lit-
tle manipulation produces (since the inverse and transpose of A are identical) the
result

u(i) · u( j) = δi j . (1.51)

Thus, these three vectors are both orthogonal and of unit length. Similarly, one can
regard each row of A as being a vector, say v(i), and similarly show that these three
vectors are also orthogonal and of unit length. Note that we used inner-product
notation in the context of a tensor, i.e., we considered the vector A · u which is
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