CAMBRIDGE STUDIES IN
ADVANCED MATHEMATICS: 51

EDITORIAL BOARD
W. FULTON, T. TOM DIECK, P. WALTERS

SPINNING TOPS
Spinning tops
A Course on Integrable Systems

Michèle Audin

Institute de Recherche Mathématique Avancée
Université Louis Pasteur et CNRS
Contents

Acknowledgements vii

Introduction 1
1 Completely integrable systems 2
2 The Arnold-Liouville theorem 5
3 A discourse on the method 6
4 About this book 11
5 Notation 13

I The rigid body with a fixed point 15
1 The equations 15
2 The question of integrability 18
3 The three-dimensional free rigid body and the Euler-Poinsot case 21

II The symmetric spinning top 27
1 Introduction to the symmetric spinning top 27
2 A Lax pair and what follows 32

III The Kowalevski top 45
1 Kowalevski's method 45
2 Lax pair and spectral curves 52
3 Lax pairs for generalised spinning tops and applications 60

IV The free rigid body 65
1 The Euler and Manakov equations 65
2 The dimension-3 free rigid body 66
3 Remarks on the dimension-4 rigid body 69

V Non-compact levels: a Toda lattice 77
1 The differential system and the spectral curve 77
2 The eigenvector mapping: the $n = 2$ case 83
Contents

<table>
<thead>
<tr>
<th>Appendices</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix 1 A Poisson structure on the dual of a Lie algebra</td>
<td>91</td>
</tr>
<tr>
<td>Appendix 2 R-matrices and the “AKS theorem”</td>
<td>98</td>
</tr>
<tr>
<td>Appendix 3 The eigenvector mapping and linearising flows</td>
<td>104</td>
</tr>
<tr>
<td>Appendix 4 Complex curves, real curves and their Jacobians</td>
<td>113</td>
</tr>
<tr>
<td>Appendix 5 Prym varieties</td>
<td>124</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>References</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>131</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Index</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>137</td>
</tr>
</tbody>
</table>
Acknowledgements

Among the works in which I have learned the most, there are three papers that I wish to mention here. I think that I was very lucky to start my initiation to integrable systems by reading two very beautiful papers that are not among the most cited, those of Verdier [84] and Griffiths [36]. On the one hand, Verdier had the brilliant idea of illustrating his exposition of the work of Adler and van Moerbeke by the example of the symmetric top. On the other hand, Griffiths’ main philosophical point was to look at a Lax equation, without specifying anything more. The advantage of this approach is that it allows one to start working without having first ingested loop algebras and the “AKS theorem”. Moreover, in this sober presentation, the role played by the eigenvectors of the Lax matrices is amply brought to light. The algebraic geometry related to these eigenvectors is extremely well described in Reyman’s paper [74] – which is the third paper to which I feel indebted.

The present text originates mainly from several talks\footnote{1} I have given on the examples here, in particular on the work I have done jointly with R. Silhol [15] and from a graduate course I taught in Strasbourg in 1992-93, jointly with J.-Y. Méridol, on “Algebraic curves and integrable systems”. The first version, Toupies, un cours sur les systèmes intégrables was written at the end of 1993. I am very pleased to acknowledge the influence of the very clear survey of Reyman & Semenov-Tian-Shanski [77] on the present version.

I have learned a lot in discussions with Jean-Yves Méridol, Robert Silhol, and, especially, Alexei Reyman.

A lot of people have helped me to understand the material here, by criticism, questions or simply remarks during a talk, among which are, colleagues or students, Nicole Bopp, Nicole Desolneux-Moulines, Ljubomir Gavrilov, Sophie Gérardy, Bertrand Haas, Patrick Iglesias, Viatcheslav Kharchanov, Dimitri Markushevich, Nguyen Tien Dung, Nitin Nitsure, Leonid Polterovich, Claude Sabbah, Jean-Marie Strelcyn, Jean Stutzmann and Pol Vanhaecke. I wish to thank them all.

The pictures in this book have been created by Raymond Seroul, whom I am also very pleased to thank.

Michèle Audin
Strasbourg, January 30, 1996

\footnote{1} I thank all the people who have invited me to give or listened to me giving talks in Basel, Bochum, Bombay, Boston, Cambridge, Haifa, Lausanne, Lumiéry, Lyon, Montréal, Paris, Nantes, Strasbourg, Tel-Aviv.
Acknowledgements

Last, but not least, I wish to thank the staff of Cambridge University Press, especially David Tranah, who kindly welcomed the book, and Susan Parkinson, who was very helpful in improving the English.

Michèle Audin
Strasbourg, January 8, 1996

For the paperback edition, I have only corrected a few misprints.

Strasbourg, May 1, 1999