OPTICAL PROCESSES IN SOLIDS

It is known from theory and from comparison with experiment that optical spectra and their lineshapes can tell us much about the microscopic motion of the constituent particles of matter – electrons and nuclei.

A unifying element that links the apparently diverse phenomena observed in optical processes is the dielectric dispersion of matter. It describes the response of matter to incoming electromagnetic waves and charged particles, and thus predicts their behavior in the self-induced field of matter, known as polariton and polaron effects. The energies of phonon, exciton and plasmon, quanta of the collective motions of charged particles constituting the matter, are also governed by the dielectric dispersion. Since the latter is a functional of the former, one can derive useful relations for their self-consistency. The nonlinear response to laser light inclusive of multiphoton processes, and excitation of atomic inner shells by synchrotron radiation, are also described in the same context.

Within the validity of the configuration coordinate model, photo-induced lattice relaxation and chemical reaction are described in terms of the interaction modes. Applying these arguments equally to both ground and relaxed excited states, one obtains a novel and global perspective on structural phase transitions as well as on the nature of interatomic bonds.

The book will be of value to graduate students and researchers in solid state physics, physical chemistry, materials science and biochemistry.

YUTAKA TOYOZAWA is a Professor Emeritus at the University of Tokyo. He received B.Sc. and D.Sc. degrees from the University of Tokyo. He worked 5 years at the Research Institute for Fundamental Physics (Yukawa Hall) of Kyoto University, for 27 years at the Institute for Solid State Physics of the University of Tokyo, with the last 3 years as Director, and for 10 years at the Physics Department of Chuo University. He also spent some time at Technische Hochschule Stuttgart (1962–3), the University of Illinois (1968) and the University of Rochester (1968) as a visiting professor. Professor Toyozawa has made a number of pioneering contributions to the theoretical physics of light–matter interaction in condensed matter, and is best known for his work on the exciton. His own philosophy, inclusive of novel ideas and concepts, has had a profound influence on young scientists, experimental as well as theoretical, through his presentations at international schools and meetings, numerous original review papers, and books such as Physics of Elementary Excitations (with S. Nakajima and R. Abe) and Excitonic Processes in Solids (with M. Ueta, H. Kanzaki, K. Kobayashi, and E. Hanamura). He has received a number of awards for his scientific contributions, such as the Nishina memorial prize (1966) and the medal with purple ribbon (1989). Since his retirement in 1997, he is still working actively in developing the interdisciplinary areas.
OPTICAL PROCESSES IN SOLIDS

YUTAKA TOYOZAWA
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ix</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>xii</td>
</tr>
<tr>
<td>List of principal symbols</td>
<td>xiii</td>
</tr>
<tr>
<td>1 Radiation field</td>
<td></td>
</tr>
<tr>
<td>1.1 Maxwell equations for electromagnetic field</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Electromagnetic wave</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Canonical equations of motion for electromagnetic waves</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Thermal radiation field</td>
<td>7</td>
</tr>
<tr>
<td>2 Quantum mechanics</td>
<td></td>
</tr>
<tr>
<td>2.1 Elements of quantum mechanics</td>
<td>10</td>
</tr>
<tr>
<td>2.2 Quantum mechanics of a harmonic oscillator</td>
<td>15</td>
</tr>
<tr>
<td>2.3 Uncertainty relation and complementarity</td>
<td>19</td>
</tr>
<tr>
<td>2.4 Density matrix</td>
<td>23</td>
</tr>
<tr>
<td>3 Interaction of radiation with matter</td>
<td></td>
</tr>
<tr>
<td>3.1 A and B coefficients of Einstein</td>
<td>28</td>
</tr>
<tr>
<td>3.2 Relation between absorption and emission spectra in thermal equilibrium</td>
<td>30</td>
</tr>
<tr>
<td>3.3 Canonical form of radiation–matter interaction</td>
<td>31</td>
</tr>
<tr>
<td>3.4 First-order optical processes: absorption and emission of photon</td>
<td>33</td>
</tr>
<tr>
<td>3.5 Quantal vs. classical field description of absorption process</td>
<td>35</td>
</tr>
<tr>
<td>3.6 Oscillator strength and the sum rule</td>
<td>37</td>
</tr>
<tr>
<td>4 Electronic vs. nuclear motions and the optical spectra of localized electrons in solids</td>
<td>40</td>
</tr>
<tr>
<td>4.1 Born–Oppenheimer approximation</td>
<td>40</td>
</tr>
<tr>
<td>4.2 Classical approximation of vibrational motion</td>
<td>42</td>
</tr>
<tr>
<td>4.3 Perturbation theory in electron–vibration interaction</td>
<td>43</td>
</tr>
<tr>
<td>4.4 Relaxation of nuclear positions after electronic transition</td>
<td>45</td>
</tr>
<tr>
<td>4.5 Vibrational structures in absorption spectra</td>
<td>48</td>
</tr>
</tbody>
</table>
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6 Emission vs. absorption spectra</td>
<td>52</td>
</tr>
<tr>
<td>4.7 Interaction modes in degenerate excited states</td>
<td>53</td>
</tr>
<tr>
<td>4.8 Phonon coupling strength of localized electrons in solids</td>
<td>64</td>
</tr>
<tr>
<td>5 Lattice vibrations</td>
<td>69</td>
</tr>
<tr>
<td>5.1 Simple crystal lattices</td>
<td>69</td>
</tr>
<tr>
<td>5.2 Lattice vibrations in general crystals</td>
<td>73</td>
</tr>
<tr>
<td>5.3 Interaction of optical modes with electromagnetic field</td>
<td>77</td>
</tr>
<tr>
<td>5.4 Localized and quasi-localized modes</td>
<td>83</td>
</tr>
<tr>
<td>5.5 Quantum mechanics of lattice vibrations</td>
<td>86</td>
</tr>
<tr>
<td>6 Electric susceptibility and dielectric constant</td>
<td>89</td>
</tr>
<tr>
<td>6.1 Linear response theory for electric susceptibility</td>
<td>89</td>
</tr>
<tr>
<td>6.2 Analytic properties, dispersion relation and sum rule</td>
<td>95</td>
</tr>
<tr>
<td>6.3 Relation between electric susceptibility and dielectric constant</td>
<td>96</td>
</tr>
<tr>
<td>6.4 Dielectric constant in terms of phonons</td>
<td>99</td>
</tr>
<tr>
<td>6.5 Plasma oscillation and screening effect of electron gas</td>
<td>100</td>
</tr>
<tr>
<td>6.6 Energy loss of a charged particle injected into a dielectric</td>
<td>102</td>
</tr>
<tr>
<td>6.7 Optical activity</td>
<td>103</td>
</tr>
<tr>
<td>7 One-electron states in solids</td>
<td>107</td>
</tr>
<tr>
<td>7.1 Energy band</td>
<td>107</td>
</tr>
<tr>
<td>7.2 Band model for the classification of solids</td>
<td>109</td>
</tr>
<tr>
<td>7.3 The roles of impurity atoms</td>
<td>109</td>
</tr>
<tr>
<td>7.4 Effective mass approximation for shallow impurity states</td>
<td>110</td>
</tr>
<tr>
<td>7.5 Isoelectronic impurity</td>
<td>112</td>
</tr>
<tr>
<td>8 Excitons</td>
<td>113</td>
</tr>
<tr>
<td>8.1 Frenkel excitons</td>
<td>113</td>
</tr>
<tr>
<td>8.2 Wannier excitons</td>
<td>117</td>
</tr>
<tr>
<td>8.3 Elementary excitations in many-electron system of insulator</td>
<td>118</td>
</tr>
<tr>
<td>8.4 Optical spectra of excitons</td>
<td>123</td>
</tr>
<tr>
<td>8.5 Spin–orbit and exchange interactions in a crystal field</td>
<td>128</td>
</tr>
<tr>
<td>8.6 Polaritons and optical constants</td>
<td>132</td>
</tr>
<tr>
<td>8.7 Coherent potential approximation for exciton in mixed crystals</td>
<td>137</td>
</tr>
<tr>
<td>8.8 Giant oscillator strength of an impurity-bound exciton</td>
<td>141</td>
</tr>
<tr>
<td>8.9 Amalgamation- and persistence-type excitons in mixed crystals</td>
<td>143</td>
</tr>
<tr>
<td>9 Polaron and the self-trapped state</td>
<td>149</td>
</tr>
<tr>
<td>9.1 Polars in ionic crystals</td>
<td>149</td>
</tr>
<tr>
<td>9.2 Polaron theories for intermediate to strong coupling ranges</td>
<td>155</td>
</tr>
<tr>
<td>9.3 Electronic polaron, a renormalized electron in a</td>
<td>162</td>
</tr>
<tr>
<td>9.4 Short-range electron–phonon interaction and self-trapping</td>
<td>168</td>
</tr>
<tr>
<td>9.5 Continuum model for self-trapping</td>
<td>176</td>
</tr>
</tbody>
</table>
Contents

9.6 Microscopic structures of self-trapped electrons, holes and excitons 187

10 Optical spectra of exciton in the phonon field 192
 Overview 192
 10.1 Exciton–phonon interaction and the polaron effect of an exciton 194
 10.2 Phonon-induced interference in multicomponent exciton spectra 196
 10.3 Motional narrowing of exciton linewidth 200
 10.4 Motional reduction of phonon sidebands and the zero-phonon line 204
 10.5 Phonon sidebands of vibronic excitons in molecular crystals 209
 10.6 Correlation of absorption and emission spectra of excitons in the phonon field 213
 10.7 Examination of model Hamiltonians 230
 10.8 Polariton bottleneck for exciton–photon conversion 234

11 Higher-order optical processes 239
 11.1 Nonlinear responses and multiphoton processes 239
 11.2 Two-photon spectroscopy 242
 11.3 Light scattering 247
 11.4 Resonant light scattering by a localized electron 254
 11.5 Correlated absorption and emission of a localized electron 262
 11.6 Resonant light scattering in an exciton–phonon system 271
 11.7 Giant two-photon absorption and hyper-Raman scattering associated with an excitonic molecule 279
 11.8 Seeking materials with large nonlinear susceptibilities 282

12 Inner-shell excitation 284
 12.1 Inner-shell electrons and synchrotron radiation 284
 12.2 Hierarchical structures in absorption spectra of inner shells 286
 12.3 Auger process and its competition with the radiative process 293
 12.4 Lattice relaxation of core hole as reflected in recombination luminescence spectra 296
 12.5 Photoelectron spectroscopy 298
 12.6 Many-body effects in normal metals 304
 12.7 Core-electron spectra of atoms with incomplete outer shells 308

13 Photo-induced structural changes 319
 Overview 319
 13.1 Role of p-holes in formation of covalent bonds 322
 13.2 Photo-chemical processes in alkali halides 326
 13.3 Lattice relaxation of exciton across bandgap and its radiative and nonradiative annihilation 329
Contents

13.4 Neutral–ionic phase transition in quasi-one-dimensional charge transfer compounds 335
13.5 Photo-induced phase transition in TTF–CA 341
13.6 T–U–S model for N-electron N-site systems 345
13.7 Extrinsic self-trapping, and shallow–deep bistability of donor state 359

14 Light, matter and life (A scenario for the origin of life and its evolution) 371
14.1 Introduction 371
14.2 Energy source for creating living matter and sustaining living activities 372
14.3 Conversion of radiation energy to chemical energy 375
14.4 Kinetic equations for chemical evolution under solar radiation 378
14.5 Origin of natural selection and specific structure of biomolecules 382
14.6 The roles of water in photochemical reactions 383
14.7 Some remarks and further speculations 387

Appendix 1 Derivation of exciton Hamiltonian from many-body Hamiltonian 391
Appendix 2 Transient spectra for second-order optical processes 395
References (by chapter) 398
Subject index 415
Preface

Light is the most important medium of recognition in human life, as is obvious from the prominent role of vision among the five human senses. In its most naive form, one can recognize by light the position and shape of an object on the one hand and its color on the other. From the time that light was revealed to be a type of waveform, these two functions have been ascribed to the spatially and temporally oscillating factors of the wave, and have been applied to the diffraction study of the microscopic structures of matter and the spectroscopic study of microscopic motions in matter, respectively. It was Maxwell who revealed light to be an electromagnetic wave, which could be deduced from his fundamental equations for an electromagnetic field in a vacuum (Chapter 1).

Einstein, in his theory of relativity, incorporated three-dimensional space and one-dimensional time into a four-dimensional spacetime coordinate system on the basis of his Gedanken experiment with light as a standard signal for communication between observers. In contradistinction to the Newtonian equation of motion, the Maxwell equations survived this revolution of physics, proving themselves to be invariant against Lorentz transformation among different coordinate systems in relative motion. Thus, light acquired the position of universality governing the spacetime framework itself, something more than an unknown and intangible medium which was once called “the ether”.

Another important role of light in the history of physics is the spectral distribution of a radiation field in thermal equilibrium with matter. Planck’s working hypothesis introduced ad hoc to remove the deviation of the prediction of classical mechanical theory from observation, together with the empirical constant h now called by his name, turned out to be a doorway to the discovery of quantum mechanics (Chapter 2). The first step beyond Planck was made by Einstein who explained the Franck–Hertz experiment on photoelectrons through his hypothesis of a quantum of light—a photon as it is now called— which was a model substantiating Planck’s working hypothesis but was in a sense also a revival of Newton’s corpuscular model.
of light discarded long before. Compton explicitly associated momentum as well as energy to this hypothetical particle in conformity with the well-known energy–momentum relationship in the electromagnetic wave, and successfully explained his X-ray electron scattering experiment by applying the energy–momentum conservation law to two colliding particles. The success of two apparently contradicting models – wave and particle – depending upon the phenomena to be explained, was increasingly embarrassing to the physicists of that time.

What was found with light (wave → particle) took place with an electron in the opposite direction (particle → wave). Thus, de Broglie advocated that an electron with momentum p and energy E behaves like a wave with wave number $k = p/\hbar$ and angular frequency $\omega = E/\hbar$, the relation advocated by Einstein and Compton for a quantum of light. Shortly afterwards, Schrödinger presented his famous wave equation on the basis of this idea.

Another approach to quantum mechanics had been prepared by Bohr. He succeeded in explaining the series of lines in the spectrum of a hydrogen atom by assuming that the angular momentum of the orbital motion of an electron around a proton takes only integral multiples of \hbar and that the spectral lines correspond to the energy difference between these quantized stationary states. The correspondence principle he advocated, that the notion of the transition energy between (not the energies themselves of) the stationary states corresponds to the frequency of classical motion (as will most clearly be seen with a harmonic oscillator in Section 2.2), paved the way towards the discovery of matrix mechanics due to Heisenberg, which was soon proved to be equivalent to Schrödinger’s wave mechanics.

In this way, the interplay of radiation field and material particle, together with the wave–particle duality common to them, was the most important motivation driving classical physics towards the discovery of quantum mechanics. Atomic and molecular spectroscopy played the role of confirming quantum mechanics to the extremity of accuracy, particularly in the early days of its application.

Subsequent application of spectroscopic methods to condensed matter, which will be the main subject of the present book, opened an extremely fertile area of study which had never been expected, partly because light played the role of not only probing but sometimes changing the nature of the interatomic bonds of condensation – evolving from a spectator to a participator. First of all, light revealed the individual (Chapter 7) and collective (Chapters 5 and 8) motions of the constituent charged particles of matter which interact with various strengths and over different ranges. These motions are excited by electromagnetic waves, and the coefficient of the linear part of the response can be described in terms of the dielectric constant or conductivity as a function of frequency (Chapter 6). Even the motion of a charged particle and the effective interaction between charged particles within matter as the dielectric medium can be described in terms of a dielectric
Preface

function (Section 6.5; Chapters 8 and 9). The great difference in the rapidity of motion between electrons and nuclei allows us to apply the adiabatic approximation to describe their correlated motions (Chapter 4), providing the configuration coordinate model with interaction mode as a powerful tool to describe intuitively the rearrangement of nuclear positions after optical transition of (i) electrons in a molecule, or (ii) localized electrons in solids, inclusive of their photostructural changes and photochemical reactions (Chapter 13) – the light is here a participator in changing the nature of the interatomic bond. The way the dynamics of interacting collective excitations is reflected in typical optical spectra can be described systematically (Chapters 10, 11, and 12). Such studies turn out to be quite useful in judging what is going on in the microscopic world from a glance at the spectra – the light is here a spectator. The reader will find that the importance of the role of light as a participator increases in the order Chapter 11 through to Chapter 13.

On the basis of all that has been established in the main part of the book, the author presents in the last chapter (Chapter 14) a tentative scenario for the origin of life and its evolution, as a small contribution from physical science to a highly interdisciplinary problem yet unsolved. According to this scenario, solar radiation is a "creator" of life, far beyond being a mere participator.

The problems covered by this book are so diverse that presentation of some common viewpoints or intuitive models is desirable in order to describe them in a unified way and to correlate them in a plausible way. As such, we will take the dielectric description on the one hand and the configuration coordinate model with interaction mode (which can be extended to describe a phase transition) on the other (as already mentioned) – which are the two main features characterizing the book. At the same time, in a particular chapter we will refer not only to preceding but also to subsequent chapters in correlating the underlying physics and in showing instructive examples. In fact, such a style has already been taken in this preface. Also, we have tried to include many examples of comparison between theories and experiments which are considered to be of particular importance in the spectroscopic studies. Explanations are given in as intuitive a way as possible, sometimes with unavoidable lengthy mathematical expressions which can be skipped by readers with insufficient time. In fact, we have put more emphasis on the conceptual aspects than on mathematical derivations. The author hopes that this method of presentation will not only lead readers to a deeper understanding but will also encourage them to further creative thinking.

Yutaka Toyozawa
Acknowledgments

The author is much indebted to the Research Institute for Fundamental Physics of Kyoto University, the Institute for Solid State Physics of the University of Tokyo and the Physics Department of Chuo University, where the basic ideas underlying this book were developed. His particular thanks are due to the late Professor R. Kubo for many useful suggestions and continual encouragement. It is his great pleasure to acknowledge helpful conversations and interactions with many colleagues in the field: Professors Masaharu Inoue, K. S. Song, E. Hanamura, K. Cho, Y. Onodera, H. Sumi, A. Sumi, A. Kotani, K. Nasu, V. Hizhnyakov, Y. Kayanuma, Y. Shinozuka, S. Abe, M. Schreiber and many others not mentioned here. The author has been happy to learn a great deal from experimental physicists, including Professors H. Kanzaki, K. Kobayashi, T. Koda, T. Goto and K. Kan’no, who revealed many of the intriguing mechanisms of nature.

The author acknowledges with thanks the excellent cooperation he received from the staff of Cambridge University Press, in particular to Dr. Simon Capelin, the publishing director for physical sciences, for his encouragement and generous consideration of the time needed for the completion of the manuscript, and to Dr. Brian Watts, the copy editor, for laboriously converting the incomplete manuscript into a form useful for a broader area of readers. Finally, his thanks are due to Asako Toyozawa for her encouragement and help throughout this endeavor.

Yutaka Toyozawa
Principal symbols

\[A \] Einstein’s \(A \) coefficient; amplitude (Chapter 5)
\[A_a \] electron affinity of an acceptor
\[A(r) \] vector potential
\[a \] microscopic length, such as orbital radius
\[a_{ex} \] exciton radius
\[a(r) \] Wannier function
\[a_0 \] lattice constant
\[a, a^\dagger \] annihilation, creation operator of a fermion
\[B \] Einstein’s \(B \) coefficient; half-width of a band
\[B \] magnetic flux density
\[b \] reciprocal lattice
\[b, b^\dagger \] annihilation, creation operator of a boson
\[C \] elastic constant
\[c \] light velocity
\[c_l \] longitudinal sound velocity
\[c_0 \] light velocity in vacuum
\[D \] amplitude of local energy fluctuation
\[D \] electric flux density
\[d \] dimensionality
\[E \] energy
\[E_0 \] energy of zero-phonon line
\[E_a \] energy of peak (center) of absorption band
\[E_e \] energy of peak (center) of emission band
\[E_R \] relaxation energy
\[E \] electric field
\[e(r) \] microscopic electric field (Section 6.3)
\[e \] absolute value of the electronic charge
Principal symbols

\(e, e^* \) effective charge of ion (Chapter 5)
\(e \) unit vector for polarization of light
\(F(E), F_a(E) \) absorption spectrum
\(F_e(E) \) emission spectrum
\(f(t) \) generating function
\(f \) oscillator strength; force constant
\(f \) force density
\(g \) degree of degeneracy; coupling constant
\(g_s, g_l \) short- and long-range coupling constants,
\(H, h \) Hamiltonian
\(H_m \) magnetic field
\(I_d \) ionization energy of a donor
\(i, j, k \) (suffix) rectangular component
\(i, j, k \) (suffix) particle numbering
\(i, j, k \) unit vectors along three rectangular axes
\(J \) electric current density
\(j(r) \) operator for microscopic electric current density
\(K \) kinetic energy
\(K \) magnetic field
\(K, k, q \) wave vector
\(k_B \) Boltzmann constant
\(L \) macroscopic length
\(L_T \) thermal energy density (Chapter 1)
\(\ell \) (suffix) longitudinal; long range
\(l \) azimuthal quantum number (\(\ell \) in Chapter 12 only)
\(l \) orbital angular momentum
\(\ell, m, n \) state- or site-numbering; directional cosines
\(M \) atomic mass
\(M_r \) atomic reduced mass (Chapter 5)
\(m \) electron mass; magnetic quantum number
\(m_e \) electron effective mass
\(m_h \) hole effective mass
\(m_{ex} (= m_e + m_h) \) exciton mass
\(m_r [= (m_e^{-1} + m_h^{-1})^{-1}] \) exciton reduced mass
\(N \) total number
\(N_0 \) number density
\(n \) principal quantum number
\(n (\equiv b^\dagger b, \equiv a^\dagger a) \) number operator (for boson, or fermion)
\(n(\omega) \) refractive index
\(O(\ldots) \) of the order of . . .
Principal symbols

- **p, p, P**: momentum of a particle
- **P(r)**: electric polarization density
- **p_e**: fractional distances of an electron and a hole from their center-of-mass coordinate
- **Q**: point charge (Chapter 6)
- **q, q, Q**: position coordinate of a particle
- **Ry**: Rydberg energy
- **r**: position in space
- **s**: (suffix) short range
- **s**: mode index; spin; steepness index (Section 10.6)
- **s**: spin angular momentum
- **s(ω)**: spectral coupling (coupling function)
- **S**: coupling strength; total spin
- **T**: absolute temperature
- **t**: (suffix) transverse; triplet
- **t**: time; interatomic transfer energy
- **U, V**: potential energy
- **V**: macroscopic volume
- **v**: velocity; potential energy
- **W**: rate of a process (Section 6.6)
- **W_{g,e}(q)**: adiabatic potential of ground or excited state
- **w(ω)**: spectral density of energy (Chapter 3)
- **w(q); w_ℓ**: Boltzmann distribution
- **x, y, z**: rectangular coordinates
- **Z**: partition function
- **α**: polaron coupling constant
- **β(≡ 1/k_BT)**: reciprocal temperature in units of reciprocal energy
- **γ**: decay rate (≡ 2Γ/h); non-adiabaticity parameter (Section 9.4)
- **2Γ**: level width (see Σ)
- **Δ**: level shift (see Σ); displacement (Chapter 4); exchange energy (Section 8.5); ℓ-t splitting (Section 8.6); exciton energy difference in mixed crystal (Section 8.7)
- **Δ(r)**: dilation field
- **∇ ≡ (∂/∂x, ∂/∂y, ∂/∂z)**: gradient operator
- **ε**: one-electron energy,
Principal symbols

\(\varepsilon_g \) bandgap energy

\(\varepsilon_\mu \) normally occupied level (Chapters 8, 12)

\(\varepsilon_v \) normally unoccupied level (Chapters 8, 12)

\(\varepsilon_\ell ; \varepsilon(\omega) \) dielectric constant; dielectric function

\(\varepsilon_0 \equiv \varepsilon(\infty) \) dielectric constant of vacuum

\(\varepsilon_e \) electronic dielectric constant

\(\varepsilon_s \equiv \varepsilon(0) \) static dielectric constant

\(\lambda \) wavelength; mode of photons specified by \((\mathbf{k}, \mathbf{e})\) (Chapter 3); spin–orbit coupling constant; quantum number for internal states of an exciton

\(\Lambda(r) \) locator (Chapter 6)

\(\mu \) magnetic permeability

\(\mu_0 \) magnetic permeability of vacuum

\(\mu_e \) electric dipole moment

\(\nu \) frequency; number of nearest neighbors; number of p-holes in an atom (Section 13.1)

\(\rho \) charge density; density matrix (Chapter 2); mass density (Chapter 5); number density (Chapter 6)

\(\rho(E) \) density of states (per energy)

\(\prod \) product

\(\sum \) summation

\(\Sigma(= \Delta + i\Gamma) \) self-energy

\(\sigma \) electric conductivity; steepness coefficient

(Urbach rule); number of atoms in unit cell

\(\tau \) relaxation time; lifetime; other characteristic time

\(\chi \) electric susceptibility

\(\Omega, \omega (\equiv 2\pi \nu) \) angular frequency; energy (in Sections 11.2–11.7 only)

\(\omega_t, \omega_l \) angular frequencies of transverse, longitudinal optical modes lattice vibrations

\((\hbar)\omega_{nm} \) (with two suffixes) \(\equiv E_n - E_m \) (without \(\hbar \) in Sections 11.2–11.7)

\(d\Omega \) differential solid angle

\(\Xi \) deformation potential constant

\(\xi(\eta, \zeta) \) displacement of an atom (Chapter 5)

\(\zeta \) chemical shift (Section 12.2)

\(\phi, \Psi, \phi, \psi \) wave function

\(\phi(r), \Phi(r) \) scalar potential

\(\text{Tr}(A) \) trace: sum of diagonal elements

\([A, B]_- \equiv AB - BA \) commutator
Principal symbols

\[[A, B]_+ \equiv AB + BA \] anticommutator

\[\langle A \rangle \] quantum-mechanical expectation value

\[\langle\langle A \rangle\rangle \] thermodynamic average

\[\overline{A} \] tensor of the second rank; renormalized quantity (in Chapter 10 only)

\[A \cdot B \] scalar product

\[A \times B \] vector product