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Radiation field

1.1 Maxwell equations for electromagnetic field

Early in the nineteenth century, people already realized that light was better de-
scribed by a wave model than by a corpuscular model on the basis of experimental
confirmation of the interference effect. However, they were not yet aware of an
entity that could oscillate and propagate in a vacuum, unlike the case of a sound
wave which they knew to be a compressional wave of air. The answer came from an
apparently different area: later in that century, Maxwell formulated the experimen-
tal laws relating the spatial and temporal changes of electric and magnetic fields
into a set of simultaneous equations which are now called by his name. He found
the set to have a solution describing an electromagnetic wave which propagates in
a vacuum, and this wave was indentified with light since the predicted velocity of
the former exactly agreed with that of the latter already known at that time.

Maxwell’s equations for the electric field E and magnetic field H are given as a
set of the following four equations1,2

∇ × E = −∂ B/∂t, (1.1.1)

∇ × H = ∂ D/∂t + J, (1.1.2)

∇ · D = ρ, (1.1.3)

∇ · B = 0. (1.1.4)

Here ∇ ≡ (∂/∂x, ∂/∂y, ∂/∂z) denotes a vector differential operator, × the
vector product and · the scalar product. Therefore, ∇·B represents divB ≡
(∂/∂x)Bx + · · · and ∇ × E represents rot E ≡ [(∂/∂y)Ez − (∂/∂z)Ey, . . . , . . .].

For the electric flux density D and magnetic flux density B, we have also linear
relations which are exact in a vacuum and hold approximately in many ordinary
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2 1 Radiation field

(neither ferroelectric nor ferromagnetic) materials for weak fields:

D = εE, (1.1.5)

B = µH. (1.1.6)

The dielectric constant ε and the magnetic permeability µ are material constants,
while in a vacuum they are universal constants written as ε0 and µ0. The most
recent value of ε0 is 8.854 187 817 × 10−12 F m−1, while µ0 = 4π × 10−7 N A−2

by definition.
Matter with a charge density ρ is subject to the Lorentz force with density f and

velocity v which is given by

f = ρ(E + v × B). (1.1.7)

This equation should be added to (1.1.1–1.1.4) for a consistent description of
interacting particles and fields satisfying the conservation laws of energy and mo-
mentum, as will be seen below.

Taking the divergence of (1.1.2) and using (1.1.3), one gets the continuity
equation describing the conservation of charge through the electric current J:

∂ρ/∂t + ∇ · J = 0. (1.1.8)

Under the proportionality (1.1.5, 1.1.6), the energy density of the fields is given by

U ≡ (D · E + B · H )/2, (1.1.9)

as is seen by integrating it over the volume V and taking its time derivative:

d/dt
∫

V
U dV =

∫

V
(∂ D/∂t · E + ∂ B/∂t · H )dV .

With the use of eqs. (1.1.1, 1.1.2), the identity: ∇ · (E × H ) = H · ∇ × E − E ·
∇ × H and the partial integration to be balanced by the surface integral, one finally
obtains the energy conservation relation:

d/dt
∫

V
UdV = −

∫

V
(J · E)dV −

∫

s
Sn ds. (1.1.10)

Here the first integral on the right hand side (r.h.s.) represents the energy dissipated
as Joule’s heat and the second the energy lost through the surface s (suffix n denotes
the component outward-normal to the surface element ds) by the flow:

S ≡ E × H, (1.1.11)

which is called the Poynting vector.
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1.2 Electromagnetic wave 3

1.2 Electromagnetic wave

Under the absence of charge ρ and current J, (1.1.1–1.1.6) reduce to homogeneous
equations for the fields. Putting (1.1.5, 1.1.6) into (1.1.1, 1.1.2) and making use of the
identity: ∇ × ∇ × E = ∇(∇ · E) − (∇2)E, where ∇2 ≡ (∇ · ∇) = ∂2/∂x2 +
∂2/∂y2 + ∂2/∂z2, one obtains

∇2 E − εµ∂2 E/∂t2 = 0 (1.2.1)

and a similar equation for B. Equation (1.2.1) has a solution describing a plane
wave

E(r , t) = E0 exp[i(k · r − ωt)] (1.2.2)

which propagates with wave vector k (k = 2π/λ, where λ is the wavelength), an-
gular frequency ω(= 2πν, where ν is the frequency) and velocity c = ω/k given
by

c = (εµ)−1/2. (1.2.3)

In a vacuum, (1.2.3) reduces to c0 = (ε0µ0)−1/2 (= 2.997 924 58 × 108 m s−1, the
most recent value), which was found to agree with the velocity of light as mentioned
above. The E wave (1.2.2) and the corresponding B wave of the same form satisfy

k · E0 = 0, k · B0 = 0, B0 = i(k/ω) × E0 (1.2.4)

as is seen from (1.1.1, 1.1.3 and 1.1.4). Namely, we have a transverse wave with
k, E0 and B0 forming a right-handed system with B0 lagging behind E0 by phase
difference π/2. From (1.1.9, 1.1.11) and (1.2.3, 1.2.4) one finds that S = c(k/k)U ,
namely that the energy density U is conveyed towards the direction of k with
velocity c.

Similarly to the energy conservation, one can derive the momentum conservation
relation from (1.1.7) and the Maxwell equations. One can see from this relation
that the electromagnetic wave has momentum density U/c in the direction of prop-
agation k/k, although we do not give the derivation here.

As the electromagnetic wave passes from a vacuum into a material, the velocity
c0 and hence the wavelength λ0 = c0/ν decrease to c and λ = c/ν, respectively,
since ν does not change due to the continuity of the field at the surface. The ratio

n ≡ c0/c = (εµ/ε0µ0)1/2, (1.2.5)

which is called refractive index of the material, relates the refraction angle θ to the
incidence angle θ0 through the law of refraction: sin θ = (1/n) × sin θ0.
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4 1 Radiation field

1.3 Canonical equations of motion for electromagnetic waves

The wave equation (1.2.1) is a differential equation of second order in time t
which is similar to the Newtonian equation of motion of a particle, whereas the
original simultaneous equations (1.1.1, 1.1.2) for E and B are of first order in
t , similar to the canonical equations of motion for the position coordinate q and
the momentum p. The canonical form is more convenient, especially when one
constructs quantum mechanical and quantum electrodynamical equations from the
classical ones.

It is convenient to introduce the vector and scalar potentials, A(r , t) andφ(r , t), in
place of the electromagnetic fields, E(r , t) and B(r , t). According to one theorem in
vector analysis, the divergence-free field B (eq. (1.1.4)) can be written as a rotation
of the vector potential A:

B = ∇ × A. (1.3.1)

Putting this into (1.1.1), one obtains

∇ × (E + ∂ A/∂t) = 0. (1.3.2)

According to another theorem, the rotation-free field as given in (· · ·) of (1.3.2)

can be written as a gradient of the scalar potential φ:

E + ∂ A/∂t = −∇φ. (1.3.3)

A general solution of the set of inhomogeneous equations (1.1.1–1.1.4) for φ and
A is given as the sum of a particular solution of the set and a general solution of the
homogeneous equations (obtained by putting J = 0 and ρ = 0 in (1.1.1–1.1.4)).
One particular solution which is well known is the retarded potentials φ(r , t) and
A(r , t) due to the charge and current densities ρ and J as their respective sources
at the spacetime point (r ′, t ′ = t − |r − r ′|/c), with the common integration kernel
(over r ′) being coulombic: |r − r ′|−1, as it should be. This solution plays an espe-
cially important role in studying how the oscillating charge and current as sources
give rise to electromagnetic waves at a remote location. We will not give the deriva-
tion here, leaving it to the standard text books.1,2

We are here concerned with a general solution of the homogeneous equations,
namely a superposition of the electromagnetic waves which are given by

A(r , t) = A0 exp[i(k · r − ωt)], A0 = E0/ iω = (ik−2) k × B0, (1.3.4)

as can be confirmed by eqs. (1.3.1, 1.3.3). They also satisfy the wave equation of
the form (1.2.1). The wave vector k can take arbitrary values in infinitely extended
space. A more realistic situation is a confined space such as a cavity. For the
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1.3 Canonical equations of motion for electromagnetic waves 5

sake of simplicity, let us consider a cube of side L and impose a cyclic boundary
condition

A(r + Li, t) = A(r + Lj, t) = A(r + Lk, t) = A(r , t) (1.3.5)

where i, j and k are unit vectors along the three sides of the cube. Then k in (1.3.4)
takes only discrete values:

kx = 2πnx/L , ky = 2πny/L , kz = 2πnz/L (1.3.6)

where nx , ny and nz can take independently all integer values, inclusive of negative
values ansd zero.† Then the number of possible modes with kx within a small interval
dkx is given by dnx = (L/2π )dkx and similarly for y and z components. Since the
electromagnetic wave is a transverse wave and there are two possible directions
of polarization (defined to be along E0) for a given wave vector k, the number
per volume of possible modes contained within the spherical shell between k and
k + dk is given by

2dn/V = 2 × 4πk2dk/8π3 = 2 × 4πρ(ω)dω,

ρ(ω) ≡ ω2/8π3c3
0. (1.3.7)

The set of all uk(r ) = L−3/2 exp(ik · r ) with k given by (1.3.6) forms an or-
thonormal complete set such that (uk, uk′) ≡ ∫

druk∗(r )uk′(r ) = δk,k′. However, in
order to expand the vector potential A(r , t), one has to prepare the set of vector
basis functions

Ak j (r ) = ek j uk(r ) ( j = 1, 2) (1.3.8)

with the use of the two possible directions of polarization ek j for each k which
satisfy ek j ⊥ k (transverse wave!) and ek j · ek j ′ = δ j j ′. Denoting the set (k j) simply
by κ , one can see that (1.3.8) form an orthonormal set in the following sense:

∫

dr A∗
κ (r ) · Aκ ′(r ) = δκκ ′. (1.3.9)

Then one can expand

A(r , t) = (4ε)−1/2
∑

κ
[qκ (t)Aκ (r ) + q∗

κ (t)A∗
κ (r )]. (1.3.10)

Although the first term in [· · ·] is sufficient as an expansion, the addition of the
second term automatically assures that the three components of the vector A(r , t)

† A more realistic electromagnetic boundary condition for the real-valued waves of the form sin(k · r ) sin(ωt)
may be that the waves vanish at the boundary surface, which gives possible k values without the factor 2 on the
right hand sides of (1.3.6) but confines them to positive values. The two effects cancel out, keeping the number
of possible modes within the interval (k, k + dk), as given by (1.3.7), unchanged. Other possible shapes of the
cavity do not change (1.3.7) as long as we are concerned with the majority of k values which are much greater
than 1/L .
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6 1 Radiation field

are real quantities for any t . (The prefactor with ε, the dielectric constant, is for
the normalization of energy, as will be seen later.) It is convenient to introduce
real-valued dynamical coordinates

Qκ (t) ≡ [qκ (t) + q∗
κ (t)]/2 (1.3.11)

instead of the complex-valued qκs. In order that each term in (1.3.10) represents a
running wave as in eq. (1.2.2), qκ (t) should vary as exp(−iωκ t) where ωκ ≡ ωk .
The time derivative of (1.3.11) is then given by

d Qκ/dt = −iωκ (qκ − q∗
κ )/2. (1.3.12)

By introducing the momentum Pκ ≡ dQκ/dt as an independent dynamical variable,
one can rewrite the complex qκ , with the use of (1.3.11, 1.3.12), as

qκ = Qκ + (i/ωκ )Pκ . (1.3.13)

Now the energy density (1.1.9) can be rewritten as

U = (ε/2)[(∂ A/∂t)2 + c2(∇ × A)2]

with the use of eqs. (1.1.5, 1.1.6) and (1.3.1, 1.3.3). Putting (1.3.10, 1.3.13) into
this expression and integrating over the volume which is the cube, one obtains

H ≡
∫

Udr =
∑

κ

(
P2

κ + ω2
κ Q2

κ

)
/2 (1.3.14)

with the use of (1.3.9). The total energy of the transverse electromagnetic field is
thus reduced to a Hamiltonian H of an assembly of harmonic oscillators indexed
with κ . In fact, the canonical equations of motion: dQκ/dt = ∂ H/∂ Pκ and dPκ/

dt = − ∂ H/∂ Qκ give an harmonic oscillation with angular frequency ωκ .
The above procedure may seem to be artificial because in defining Pκ by (1.3.12)

we have made use of a solution yet to be obtained. However, this artifice is com-
mon to the canonical formalism in which the formula defining the momentum
P ≡ mdQ/dt with mass m is to be derived from one of the canonical equations of
motion: dQ/dt = ∂ H/∂ P (= P/m for a general motion which is not harmonic). In-
troduction of P as an independent variable has the merit of lowering the differential
equations of motion to first order in time as compared to the Newtonian equations
of motion which are of second order. This facilitates the time–integration a great
deal, so as to more than cover the demerit of doubling the number of independent
variables. The canonical formalism turns out to be more natural in statistical me-
chanics in which P and Q are independent variables, and to be indispensable for
quantum mechanics in which P and Q are mutually conjugate variables subject to
the uncertainty relation.
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1.4 Thermal radiation field 7

1.4 Thermal radiation field

We are now in a position to describe that experimental fact whose deviation from
the predictions of classical physics provided a clue to the discovery of quantum
mechanics. It is well known, even in daily experience, that the glowing radiation
emitted by a hot body shifts from red to yellow, namely toward shorter wavelengths,
as the temperature increases. The observed spectral distribution of this radiation
in an idealized situation, namely in a cavity which is in thermal equilibrium with
its wall, depends only on the temperature but not on the material of the wall, as
shown schematically by the solid lines in Fig. 1.1. The broken lines are the spectra
predicted by the classical theory available at that time, late in the 19th century when
the experiments were done. One finds that the theory deviates from the observation
significantly in the short-wavelength region.

Let us trace this theoretical prediction which was based on the classical me-
chanics and statistical mechanics applied to an assembly of harmonic oscillators
representing the radiation field as mentioned in the preceding section. A harmonic
oscillator with Hamiltonian given by H (Q, P) = P2/2 + ω2 Q2/2, which is in
thermal equilibrium at temperature T , obeys the Boltzmann distribution: the prob-
ability of finding the system within a small region of the phase space (Q, P) is
proportional to

exp[−β H (Q, P)]d Qd P, with β ≡ 1/kBT (1.4.1)

Fig. 1.1 The spectral distribution of energy density, LT , of thermal radiation field at various
temperatures. Solid lines are experimental results (shown schematically) which can be fitted
by the quantum hypothesis of Planck. Broken lines are the predictions of classical field
theory.

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-55605-7 - Optical Processes in Solids
Yutaka Toyozawa
Excerpt
More information

http://www.cambridge.org/9780521556057
http://www.cambridge.org
http://www.cambridge.org


8 1 Radiation field

where kB is the Boltzmann constant. Consider the region of the phase space which
is surrounded by an ellipse given by H (Q, P) = E . Its area is given by

s(E) = π (2E/ω2)1/2(2E)1/2 = E/ν (1.4.2)

where ν = ω/2π is the frequency. Integrating (1.4.1) over the elliptic shell between
E and E + dE whose area is given by dE/ν, one obtains the Boltzmann distribution
for the energy: exp(−βE)dE/ν. The statistical average of the energy is then given by

〈〈E〉〉 =
∫ ∞

0
E exp(−βE)d(E/ν)/

∫ ∞

0
exp(−βE)d(E/ν)

= β−1 = kBT (1.4.3)

which does not depend on the frequency ν of the oscillator for the electromagnetic
wave concerned.

Let us rewrite (1.3.7), the number of normal modes of electromagnetic wave
within a small interval dk of wave number, into that within an interval dλ of
wavelength, making use of the relation k = 2π/λ. The number per unit volume
of the cavity space is then given by 8πλ−4dλ. Multiplying this by the energy per
mode (1.4.3), one obtains the energy density per λ of the thermal radiation field

LT (λ) = 8πkBT λ−4 (1.4.4)

which diverges at shorter wavelengths, as shown by the broken lines in Fig. 1.1.
In 1900, Planck put forth a working hypothesis,3 by which he could provisionally

evade the discrepancy of the theoretical prediction from the experimental result;
that concerned with the mechanics, not with the statistical distribution. In classical
mechanics, one tacitly assumes that the energy of a particle in motion can take con-
tinuous values as exemplified by the continuous distribution shown in the integral
of (1.4.3). For a harmonic oscillator with frequency ν, he tentatively replaced the
continuous values by the following set of discrete values:

En = nhν (n = 0, 1, 2, . . .). (1.4.5)

Here, h is an empirical constant to be determined later. The integral in (1.4.3) is
then to be replaced by a summation, with the following result:

〈〈E〉〉 =
∞∑

n=0

nhν exp(−βnhν)/
∞∑

n=0

exp(−βnhν)

= hν/[exp(βhν) − 1] = hν〈〈n〉〉. (1.4.6)

(Note: the summation in the denominator gives f (β) = [1 − exp(−βhν)]−1 so that
the numerator can be written as −d f (β)/dβ.) Hence, (1.4.4) was replaced by

LT (λ) = 8πλ−5hc0/[exp(hc0/kBT λ) − 1]. (1.4.7)
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1.4 Thermal radiation field 9

Planck could reproduce the experimental spectra shown schematically in Fig. 1.1.
at all temperature by the new formula (1.4.7) by choosing an appropriate value for
h, the only adjustable parameter. In spite of this brilliant success, it took some time
before people realized the physical meaning of the working hypothsis (1.4.5) which
seemed so absurd from the viewpoint of classical physics. However, the constant
h introduced by him as an empirical parameter played a pivotal role in the groping
effort for new physical principles until quantum mechanics was discovered a quarter
of a century later. And in fact Planck’s hypothesis, (1.4.5), was successfully derived
subsequently when quantum mechanics was established, as will be described in
Sections 2.2 and 2.3. Planck’s constant h is now a universal constant governing the
entire quantum world. Its value is 6.626 068 76 × 10−34 J s according to a recent
measurement.

Returning to the problem of thermal radiation, we find that the new formula
(1.4.7) reduces to the classical one (1.4.4) in the limit of high temperature or long
wavelength, namely when kBT λ/hc0 = kBT/hν � 1. The spectral maximum of
the quantal expression (1.4.7) appears at λmax which is related to T by

λmaxT = (hc0/4.966kB) = 0.290 cm K. (1.4.8)

This reproduces Wien’s displacement law, the empirical law which had been found
before Planck put forth his hypothesis.

In contrast to traditional spectroscopy in which λ has been chosen as the variable,
it is more convenient to choose an angular frequency ω = 2πc0/λ. Then the energy
density in ω-space, defined by WT (ω)dω = LT (λ)dλ, is given by

WT (ω) = (✏✏hω3/π2c3
0)〈〈n〉〉 = (✏✏hω3/π2c3

0)/[exp(β✏✏hω) − 1], (1.4.9)

where we have defined ✏✏h ≡ h/2π which is nowadays more frequently used than h.
It takes its maximum value at

✏✏hωmax = 2.821kBT (1.4.10)

which is different from the photon energy corresponding to the λmax of (1.4.8),
namely hc0/λmax = 4.966kBT .
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2

Quantum mechanics

2.1 Elements of quantum mechanics

Quantum mechanics was discovered in 1925 through groping efforts to compromise
two apparently contradictory pictures on the fundamental entities in nature. One was
the wave picture for light which was later extended to matter by de Broglie, another
was the corpuscular picture of matter which was later extended to light by Einstein.
Schrödinger’s wave equation came as a natural development of the first stream,
while Heisenberg’s matrix mechanics was presented as a unique proposal from the
second stream. In spite of completely different appearances, the two theories proved,
within a couple of years after their discoveries, to be equivalent. This is a most
beautiful example that the physical reality exists independent of the mathematical
framework formulated for its description.

In this chapter, we will give a very brief review of the principles of quantum
mechanics,1–3 mainly with the harmonic oscillator as a model system for the fol-
lowing reasons. The first is historical: the electromagnetic wave, whose interaction
with matter is the subject of this book, is a harmonic oscillator, a system which
was for the first time subject to “quantization”, thus opening a way to the discovery
of quantum mechanics. The second is technical: the harmonic oscillator is one of
very few examples of analytically soluble problems in quantum mechanics. The
third is pedagogical: the harmonic oscillator is a system best suited for realization
of the equivalence of the two different pictures mentioned above and hence for a
deeper understanding of the principles of quantum mechanics. Finally, the fourth
is practical and applies particularly to matter: in this book we will deal with a variety
of elementary excitations in solids, such as phonons, excitons and plasmons which
are approximately harmonic oscillators.

According to quantum mechanics, the state of a physical system is described by
a wave function ψt which is a complex quantity and varies with time t following

10
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