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1

Radiation field

1.1 Maxwell equations for electromagnetic field

Early in the nineteenth century, people already realized that light was better de-
scribed by a wave model than by a corpuscular model on the basis of experimental
confirmation of the interference effect. However, they were not yet aware of an
entity that could oscillate and propagate in a vacuum, unlike the case of a sound
wave which they knew to be a compressional wave of air. The answer came from an
apparently different area: later in that century, Maxwell formulated the experimen-
tal laws relating the spatial and temporal changes of electric and magnetic fields
into a set of simultaneous equations which are now called by his name. He found
the set to have a solution describing an electromagnetic wave which propagates in
a vacuum, and this wave was indentified with light since the predicted velocity of
the former exactly agreed with that of the latter already known at that time.

Maxwell’s equations for the electric field E and magnetic field H are given as a
set of the following four equations1,2

∇ × E = −∂ B/∂t, (1.1.1)

∇ × H = ∂ D/∂t + J, (1.1.2)

∇ · D = ρ, (1.1.3)

∇ · B = 0. (1.1.4)

Here ∇ ≡ (∂/∂x, ∂/∂y, ∂/∂z) denotes a vector differential operator, × the
vector product and · the scalar product. Therefore, ∇·B represents divB ≡
(∂/∂x)Bx + · · · and ∇ × E represents rot E ≡ [(∂/∂y)Ez − (∂/∂z)Ey, . . . , . . .].

For the electric flux density D and magnetic flux density B, we have also linear
relations which are exact in a vacuum and hold approximately in many ordinary

1



2 1 Radiationfield

(neither ferroelectric nor ferromagnetic) materials for weakfields:

D = εE, (1.1.5)

B = µH . (1.1.6)

Thedielectric constantε and themagnetic permeabilityµ are material constants,
while in a vacuum they are universal constants written asε0 andµ0. The most
recent value ofε0 is 8.854 187 817× 10−12 F m−1, while µ0 = 4π × 10−7 N A−2

by definition.
Matter with acharge densityρ is subject to theLorentz forcewith densityf and

velocityv which is given by

f = ρ(E + v × B). (1.1.7)

This equation should be added to (1.1.1–1.1.4) for a consistent description of
interacting particles andfields satisfying the conservation laws of energy and mo-
mentum, as will be seen below.

Taking the divergence of (1.1.2) and using (1.1.3), one gets thecontinuity
equationdescribing the conservation of charge through theelectric currentJ:

∂ρ/∂t + ∇ · J = 0. (1.1.8)

Under the proportionality (1.1.5, 1.1.6), the energy density of thefields is given by

U ≡ (D · E + B · H )/2, (1.1.9)

as is seen by integrating it over the volumeV and taking its time derivative:

d/dt
∫

V
U dV =

∫
V

(∂ D/∂t · E + ∂ B/∂t · H )dV.

With the use of eqs. (1.1.1, 1.1.2), the identity:∇ · (E × H ) = H · ∇ × E − E ·
∇ × H and the partial integration to be balanced by the surface integral, onefinally
obtains the energy conservation relation:

d/dt
∫

V
UdV = −

∫
V

(J · E)dV −
∫

s
Sn ds. (1.1.10)

Here thefirst integral on the right hand side (r.h.s.) represents the energy dissipated
asJoule’s heatand the second the energy lost through the surfaces (suffix n denotes
the component outward-normal to the surface elementds) by theflow:

S ≡ E × H , (1.1.11)

which is called thePoynting vector.
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1.2 Electromagnetic wave

Under the absence of chargeρ and currentJ, (1.1.1–1.1.6) reduce to homogeneous
equations for thefields. Putting (1.1.5, 1.1.6) into (1.1.1, 1.1.2) and making use of the
identity:∇ × ∇ × E = ∇(∇ · E) − (∇2)E, where∇2 ≡ (∇ · ∇) = ∂2/∂x2 +
∂2/∂y2 + ∂2/∂z2, one obtains

∇2E − εµ∂2E/∂t2 = 0 (1.2.1)

and a similar equation forB. Equation (1.2.1) has a solution describing a plane
wave

E(r , t) = E0 exp[i (k · r − ωt)] (1.2.2)

which propagates withwave vectork (k = 2π/λ, whereλ is thewavelength), an-
gular frequencyω(= 2πν, whereν is the frequency) and velocityc = ω/k given
by

c = (εµ)−1/2. (1.2.3)

In a vacuum, (1.2.3) reduces toc0 = (ε0µ0)−1/2 (= 2.997 924 58× 108 m s−1, the
most recent value), which was found to agree with the velocity of light as mentioned
above. TheE wave (1.2.2) and the correspondingB wave of the same form satisfy

k · E0 = 0, k · B0 = 0, B0 = i (k/ω) × E0 (1.2.4)

as is seen from (1.1.1, 1.1.3 and 1.1.4). Namely, we have atransversewave with
k, E0 andB0 forming a right-handed system withB0 lagging behindE0 by phase
differenceπ/2. From (1.1.9, 1.1.11) and (1.2.3, 1.2.4) onefinds thatS = c(k/k)U ,
namely that the energy densityU is conveyed towards the direction ofk with
velocityc.

Similarly to the energy conservation, one can derive the momentum conservation
relation from (1.1.7) and the Maxwell equations. One can see from this relation
that the electromagnetic wave has momentum densityU/c in the direction of prop-
agationk/k, although we do not give the derivation here.

As the electromagnetic wave passes from a vacuum into a material, the velocity
c0 and hence the wavelengthλ0 = c0/ν decrease toc andλ = c/ν, respectively,
sinceν does not change due to the continuity of thefield at the surface. The ratio

n ≡ c0/c = (εµ/ε0µ0)
1/2, (1.2.5)

which is calledrefractive indexof the material, relates the refraction angleθ to the
incidence angleθ0 through the law of refraction: sinθ = (1/n) × sinθ0.
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1.3 Canonical equations of motion for electromagnetic waves

The wave equation (1.2.1) is a differential equation of second order in timet
which is similar to the Newtonian equation of motion of a particle, whereas the
original simultaneous equations (1.1.1, 1.1.2) forE and B are of first order in
t , similar to thecanonical equationsof motion for the position coordinateq and
the momentump. The canonical form is more convenient, especially when one
constructs quantum mechanical and quantum electrodynamical equations from the
classical ones.

It is convenient to introduce thevectorandscalar potentials, A(r , t) andφ(r , t), in
place of the electromagneticfields,E(r , t) andB(r , t). According to one theorem in
vector analysis, the divergence-freefield B (eq. (1.1.4)) can be written as a rotation
of the vector potentialA:

B = ∇ × A. (1.3.1)

Putting this into (1.1.1), one obtains

∇ × (E + ∂ A/∂t) = 0. (1.3.2)

According to another theorem, the rotation-freefield as given in (· · ·) of (1.3.2)

can be written as a gradient of the scalar potentialφ:

E + ∂ A/∂t = −∇φ. (1.3.3)

A generalsolution of the set of inhomogeneous equations (1.1.1–1.1.4) forφ and
A is given as the sum of aparticular solution of the set and a general solution of the
homogeneous equations (obtained by puttingJ = 0 andρ = 0 in (1.1.1–1.1.4)).
One particular solution which is well known is theretarded potentialsφ(r , t) and
A(r , t) due to the charge and current densitiesρ andJ as their respective sources
at the spacetime point (r ′, t ′ = t − |r − r ′|/c), with the common integration kernel
(overr ′) being coulombic:|r − r ′|−1, as it should be. This solution plays an espe-
cially important role in studying how the oscillating charge and current as sources
give rise to electromagnetic waves at a remote location. We will not give the deriva-
tion here, leaving it to the standard text books.1,2

We are here concerned with a general solution of the homogeneous equations,
namely a superposition of the electromagnetic waves which are given by

A(r , t) = A0 exp[i (k · r − ωt)], A0 = E0/ i ω = (ik−2) k × B0, (1.3.4)

as can be confirmed by eqs. (1.3.1, 1.3.3). They also satisfy the wave equation of
the form (1.2.1). The wave vectork can take arbitrary values in infinitely extended
space. A more realistic situation is a confined space such as a cavity. For the
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sake of simplicity, let us consider a cube of sideL and impose a cyclic boundary
condition

A(r + Li, t) = A(r + Lj, t) = A(r + Lk, t) = A(r , t) (1.3.5)

wherei, j andk are unit vectors along the three sides of the cube. Thenk in (1.3.4)
takes only discrete values:

kx = 2πnx/L , ky = 2πny/L , kz = 2πnz/L (1.3.6)

wherenx, ny andnz can take independently all integer values, inclusive of negative
values ansd zero.† Then the number of possible modes withkx within a small interval
dkx is given bydnx = (L/2π )dkx and similarly fory andz components. Since the
electromagnetic wave is a transverse wave and there are two possible directions
of polarization (defined to be alongE0) for a given wave vectork, the number
per volume of possible modes contained within the spherical shell betweenk and
k + dk is given by

2dn/V = 2 × 4πk2dk/8π3 = 2 × 4πρ(ω)dω,

ρ(ω) ≡ ω2/8π3c3
0. (1.3.7)

The set of alluk(r ) = L−3/2 exp(i k · r ) with k given by (1.3.6) forms an or-
thonormal complete set such that (uk, uk′) ≡ ∫

dr uk∗(r )uk′(r ) = δk,k′. However, in
order to expand the vector potentialA(r , t), one has to prepare the set of vector
basis functions

Ak j (r ) = ek j uk(r ) ( j = 1, 2) (1.3.8)

with the use of the two possible directions of polarizationek j for eachk which
satisfyek j ⊥ k (transverse wave!) andek j · ek j ′ = δ j j ′. Denoting the set (k j ) simply
by κ, one can see that (1.3.8) form an orthonormal set in the following sense:∫

dr A∗
κ (r ) · Aκ ′(r ) = δκκ ′. (1.3.9)

Then one can expand

A(r , t) = (4ε)−1/2
∑

κ
[qκ (t)Aκ (r ) + q∗

κ (t)A∗
κ (r )]. (1.3.10)

Although thefirst term in [· · ·] is sufficient as an expansion, the addition of the
second term automatically assures that the three components of the vectorA(r , t)

† A more realistic electromagnetic boundary condition for the real-valued waves of the form sin(k · r ) sin(ωt)
may be that the waves vanish at the boundary surface, which gives possiblek values without the factor 2 on the
right hand sides of (1.3.6) but confines them to positive values. The two effects cancel out, keeping the number
of possible modes within the interval (k, k + dk), as given by (1.3.7), unchanged. Other possible shapes of the
cavity do not change (1.3.7) as long as we are concerned with the majority ofk values which are much greater
than 1/L.
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arereal quantities for anyt . (The prefactor withε, the dielectric constant, is for
the normalization of energy, as will be seen later.) It is convenient to introduce
real-valued dynamical coordinates

Qκ (t) ≡ [qκ (t) + q∗
κ (t)]/2 (1.3.11)

instead of the complex-valuedqκs. In order that each term in (1.3.10) represents a
running wave as in eq. (1.2.2),qκ (t) should vary as exp(−i ωκ t) whereωκ ≡ ωk.
The time derivative of (1.3.11) is then given by

d Qκ/dt = −i ωκ (qκ − q∗
κ )/2. (1.3.12)

By introducing the momentumPκ ≡ dQκ/dtas an independent dynamical variable,
one can rewrite the complexqκ , with the use of (1.3.11, 1.3.12), as

qκ = Qκ + (i /ωκ )Pκ . (1.3.13)

Now the energy density (1.1.9) can be rewritten as

U = (ε/2)[(∂ A/∂t)2 + c2(∇ × A)2]

with the use of eqs. (1.1.5, 1.1.6) and (1.3.1, 1.3.3). Putting (1.3.10, 1.3.13) into
this expression and integrating over the volume which is the cube, one obtains

H ≡
∫

Udr =
∑

κ

(
P2

κ + ω2
κ Q2

κ

)
/2 (1.3.14)

with the use of (1.3.9). The total energy of the transverse electromagneticfield is
thus reduced to a HamiltonianH of an assembly of harmonic oscillators indexed
with κ. In fact, the canonical equations of motion:dQκ/dt = ∂ H/∂ Pκ anddPκ/

dt = − ∂ H/∂Qκ give an harmonic oscillation with angular frequencyωκ .
The above procedure may seem to be artificial because in defining Pκ by (1.3.12)

we have made use of a solution yet to be obtained. However, this artifice is com-
mon to the canonical formalism in which the formula defining the momentum
P ≡ mdQ/dt with massm is to be derived from one of the canonical equations of
motion:dQ/dt = ∂ H/∂ P (= P/m for a general motion which is not harmonic). In-
troduction ofP as an independent variable has the merit of lowering the differential
equations of motion tofirst order in time as compared to the Newtonian equations
of motion which are of second order. This facilitates the time–integration a great
deal, so as to more than cover the demerit of doubling the number of independent
variables. The canonical formalism turns out to be more natural in statistical me-
chanics in whichP andQ are independent variables, and to be indispensable for
quantum mechanics in whichP andQ are mutually conjugate variables subject to
the uncertainty relation.
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1.4 Thermal radiation field

We are now in a position to describe that experimental fact whose deviation from
the predictions of classical physics provided a clue to the discovery of quantum
mechanics. It is well known, even in daily experience, that the glowing radiation
emitted by a hot body shifts from red to yellow, namely toward shorter wavelengths,
as the temperature increases. The observed spectral distribution of this radiation
in an idealized situation, namely in a cavity which is in thermal equilibrium with
its wall, depends only on the temperature but not on the material of the wall, as
shown schematically by the solid lines in Fig. 1.1. The broken lines are the spectra
predicted by the classical theory available at that time, late in the 19th century when
the experiments were done. Onefinds that the theory deviates from the observation
significantly in the short-wavelength region.

Let us trace this theoretical prediction which was based on the classical me-
chanics and statistical mechanics applied to an assembly of harmonic oscillators
representing the radiationfield as mentioned in the preceding section. A harmonic
oscillator with Hamiltonian given byH (Q, P) = P2/2 + ω2Q2/2, which is in
thermal equilibrium at temperatureT , obeys the Boltzmann distribution: the prob-
ability of finding the system within a small region of the phase space (Q, P) is
proportional to

exp[−βH (Q, P)]d Qd P, with β ≡ 1/kBT (1.4.1)

Fig. 1.1 The spectral distribution of energy density,LT , of thermal radiationfield at various
temperatures. Solid lines are experimental results (shown schematically) which can befitted
by the quantum hypothesis of Planck. Broken lines are the predictions of classicalfield
theory.
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wherekB is the Boltzmann constant. Consider the region of the phase space which
is surrounded by an ellipse given byH (Q, P) = E. Its area is given by

s(E) = π (2E/ω2)1/2(2E)1/2 = E/ν (1.4.2)

whereν = ω/2π is the frequency. Integrating (1.4.1) over the elliptic shell between
E andE + dEwhose area is given bydE/ν, one obtains the Boltzmann distribution
for the energy: exp(−βE)dE/ν. The statistical average of the energy is then given by

〈〈E〉〉 =
∫ ∞

0
E exp(−βE)d(E/ν)/

∫ ∞

0
exp(−βE)d(E/ν)

= β−1 = kBT (1.4.3)

which does not depend on the frequencyν of the oscillator for the electromagnetic
wave concerned.

Let us rewrite (1.3.7), the number of normal modes of electromagnetic wave
within a small intervaldk of wave number, into that within an intervaldλ of
wavelength, making use of the relationk = 2π/λ. The number per unit volume
of the cavity space is then given by 8πλ−4dλ. Multiplying this by the energy per
mode (1.4.3), one obtains the energy density perλ of the thermal radiationfield

LT (λ) = 8πkBTλ−4 (1.4.4)

which diverges at shorter wavelengths, as shown by the broken lines in Fig. 1.1.
In 1900, Planck put forth a working hypothesis,3 by which he couldprovisionally

evade the discrepancy of the theoretical prediction from the experimental result;
that concerned with the mechanics, not with the statistical distribution. In classical
mechanics, one tacitly assumes that the energy of a particle in motion can take con-
tinuous values as exemplified by the continuous distribution shown in the integral
of (1.4.3). For a harmonic oscillator with frequencyν, hetentatively replacedthe
continuous values by the following set ofdiscretevalues:

En = nhν (n = 0, 1, 2, . . .). (1.4.5)

Here,h is an empirical constant to be determined later. The integral in (1.4.3) is
then to be replaced by a summation, with the following result:

〈〈E〉〉 =
∞∑

n=0

nhν exp(−βnhν)/
∞∑

n=0

exp(−βnhν)

= hν/[exp(βhν) − 1] = hν〈〈n〉〉. (1.4.6)

(Note: the summation in the denominator givesf (β) = [1 − exp(−βhν)]−1 so that
the numerator can be written as−d f (β)/dβ.) Hence, (1.4.4) was replaced by

LT (λ) = 8πλ−5hc0/[exp(hc0/kBTλ) − 1]. (1.4.7)
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Planck could reproduce the experimental spectra shown schematically in Fig. 1.1.
at all temperature by the new formula (1.4.7) by choosing an appropriate value for
h, the only adjustable parameter. In spite of this brilliant success, it took some time
before people realized the physical meaning of the working hypothsis (1.4.5) which
seemed so absurd from the viewpoint of classical physics. However, the constant
h introduced by him as an empirical parameter played a pivotal role in the groping
effort for new physical principles until quantum mechanics was discovered a quarter
of a century later. And in fact Planck’s hypothesis, (1.4.5), was successfully derived
subsequently when quantum mechanics was established, as will be described in
Sections 2.2 and 2.3. Planck’s constanth is now a universal constant governing the
entire quantum world. Its value is 6.626 068 76× 10−34 J s according to a recent
measurement.

Returning to the problem of thermal radiation, wefind that the new formula
(1.4.7) reduces to the classical one (1.4.4) in the limit of high temperature or long
wavelength, namely whenkBTλ/hc0 = kBT/hν � 1. The spectral maximum of
the quantal expression (1.4.7) appears atλmax which is related toT by

λmaxT = (hc0/4.966kB) = 0.290 cm K. (1.4.8)

This reproduces Wien’s displacement law, the empirical law which had been found
before Planck put forth his hypothesis.

In contrast to traditional spectroscopy in whichλ has been chosen as the variable,
it is more convenient to choose an angular frequencyω = 2πc0/λ. Then the energy
density inω-space, defined byWT (ω)dω = LT (λ)dλ, is given by

WT (ω) = (��hω3/π2c3
0)〈〈n〉〉 = (��hω3/π2c3

0)/[exp(β��hω) − 1], (1.4.9)

where we have defined��h ≡ h/2π which is nowadays more frequently used thanh.
It takes its maximum value at

��hωmax = 2.821kBT (1.4.10)

which is different from the photon energy corresponding to theλmax of (1.4.8),
namelyhc0/λmax = 4.966kBT .




