

Cambridge University Press
0521553059 - Practical Applications of Radioactivity and Nuclear Radiations: An Introductory Text for Engineers, Scientists, Teachers and Students - G. C. Lowenthal and P. L. Airey
Table of Contents
More information

Contents

List	List of illustrations		<i>page</i> xvi	
List	of table	es	XX	
Fore	eword		xxiii	
Prej	face		XXV	
Cha	pter 1:	Atoms, nuclides and radionuclides	1	
1.1	Introd	uction	1	
	1.1.1	Radioactivity, from the 1890s to the 1990s	1	
	1.1.2	On the scope and content of this text	3	
	1.1.3	Joining a large scale enterprise	4	
		Nuclear power and nuclear radiation applications	4	
		Figures from Japan	4	
		The role of research reactors	5	
1.2	An his	storic interlude: from atoms to nuclei	5	
	1.2.1	When atoms ceased to be atoms	5	
	1.2.2	The atomic nucleus	7	
1.3	Nuclei	i, nuclear stability and nuclear radiations	8	
	1.3.1	The birth of isotopes	8	
	1.3.2	Mass-energy conversions and the half life	9	
	1.3.3	From natural to man-made radioisotopes	11	
	1.3.4	The role of the neutron-to-proton ratio	13	
	1.3.5	An introduction to properties of radiations emitted		
		during radioactive decays	15	
	1.3.6	Another nuclear radiation: the neutron	17	

0521553059 - Practical Applications of Radioactivity and Nuclear Radiations: An Introductory Text for Engineers, Scientists, Teachers and Students - G. C. Lowenthal and P. L. Airey Table of Contents

vi		Contents	
1.4	Activa	ation processes	19
	1.4.1	Nuclear fission reactors	19
	1.4.2	Thermal neutron activations	21
	1.4.3	Activation and decay	22
	1.4.4	Other activation processes	22
		The production of neutron-poor radionuclides	22
		Positron emitters for nuclear medicine	23
1.5	Short	and long half lines and their uses	24
	1.5.1	Generators for short half life radionuclides	24
	1.5.2	Isomeric decays with applications to nuclear medicine	25
	1.5.3	Radionuclides with very long half lives	26
	1.5.4	The energetics of decays by alpha and beta particle	
		emissions	27
1.6	Paren	t half lives and daughter half lives	29
	1.6.1	Three cases	29
	1.6.2	Decay chain calculations	29
	1.6.3	Transient and secular equilibrium	30
Cha	pter 2:	Units and standards for radioactivity and radiation	
		dosimetry and rules for radiation protection	32
2.1	Introd	luction	32
2.2	Units	and standards of radioactivity	32
	2.2.1	A summary of their characteristics	32
	2.2.2	The curie and the becquerel	34
	2.2.3	Secondary standards and secondary standard instruments	35
	2.2.4	In-house standards	36
2.3	Radio	activity standards	37
	2.3.1	Comments on their production and their purpose	37
	2.3.2	The international dimension of radioactivity standards	37
2.4	Radia	tion dosimetry for radiation protection	38
	2.4.1	Absorbed dose limitations	38
	2.4.2	Units for exposure, absorbed and equivalent dose	39
	2.4.3	Weighting factors, w_R and w_T	40

0521553059 - Practical Applications of Radioactivity and Nuclear Radiations: An Introductory Text for Engineers, Scientists, Teachers and Students - G. C. Lowenthal and P. L. Airey

		Contents	vii
2.5	Dose l	imits	43
	2.5.1	The linear hypothesis and the ALARA principle	43
	2.5.2	Deterministic and stochastic effects	44
	2.5.3	Background doses and their relevance for radiation	
		protection	46
2.6	Radia	tion protection in the laboratory	49
	2.6.1	Classifications of sources and of laboratories	49
	2.6.2	Time, distance and shielding	50
	2.6.3	Coping with radioactive waste	51
	2.6.4	The radiation advisory officer	51
	2.6.5	Radiation monitors	52
	2.6.6	Guarding against radioactive contamination	54
2.7	Dose 1	rates from alpha, beta and gamma ray emitting	
	radion	uclides	54
	2.7.1	Rules-of-thumb for work with alpha and beta particles	54
	2.7.2	Dose rates from X and gamma radiations	55
		The dose equivalent rate constant, $D_{ m eq}$	55
		Dose calculations	56
Cha	pter 3:	Properties of radiations emitted from radionuclides	59
3.1	Tools	for applications	59
3.2	Prope	rties of alpha particles	59
	3.2.1	The nature and origin of alpha particles	59
	3.2.2		61
	3.2.3	Ionisation intensities of alpha particles	62
3.3	Prope	rties of beta particles	63
	3.3.1	Beta particles and electrons	63
	3.3.2	Beta particle applications	65
	3.3.3	The scattering and backscattering of beta particles	65
	3.3.4	An introduction to beta particle spectra	66
	3.3.5	Surface density	67
3.4	-	rties of gamma rays and X rays	68
	3.4.1	Gamma rays and their decay data	68
	3.4.2	X rays	69
	3.4.3	Three types of gamma ray interactions	70

0521553059 - Practical Applications of Radioactivity and Nuclear Radiations: An Introductory Text for Engineers, Scientists, Teachers and Students - G. C. Lowenthal and P. L. Airey

viii		Contents	
	3.4.4	Photon attenuation, an overview	72
	3.4.5	Attenuation equations for narrow beam geometry	73
	3.4.6	Photon attenuation measurements using μ_{m}	74
3.5	Pulse	height spectra due to alpha particles and gamma rays	75
	3.5.1	The response of detectors	75
	3.5.2	Alpha particle spectra	77
	3.5.3	Gamma ray spectra	78
3.6	Electr	on capture (EC), gamma rays and conversion electrons	79
	3.6.1	EC decays and their use as quasi-pure gamma ray emitters	79
	3.6.2	The internal conversion process	81
3.7	The ro	ole of mass energy in determining nuclear decays	82
	3.7.1	Neutron-poor radionuclides	82
	3.7.2	Positron decay and positron tomography	82
	3.7.3	Multi gamma ray emitters	84
	3.7.4	Three-pronged decays	87
3.8	Brems	sstrahlung	88
	3.8.1	Its origin	88
	3.8.2	Bremsstrahlung intensities	88
3.9	Fluore	escent radiations	89
	3.9.1	Fluorescent X rays	89
	3.9.2	Inner shell transitions	91
	3.9.3	Auger electrons and fluorescent yields	94
Cha	pter 4:	Nuclear radiations from a user's perspective	95
4.1	The pe	enetrating power of nuclear radiations	95
4.2	Radio	active sources	96
	4.2.1	Radionuclides and their decay schemes	96
	4.2.2	Source making and counting procedures	97
		Laboratory equipment	97
		Procedures for making thin sources	98
	4.2.3	Sealed sources	99
	4.2.4	Liquid scintillation counting to minimise source	
		self-absorption	100

0521553059 - Practical Applications of Radioactivity and Nuclear Radiations: An Introductory Text for Engineers, Scientists, Teachers and Students - G. C. Lowenthal and P. L. Airey

Table of Contents

		Contents	ix
4.3	Gamm	a ray applications	101
	4.3.1	The role of electronic instruments	101
	4.3.2	NIM bin and portable equipment	103
	4.3.3	Comments on instrumentation and its supply	104
4.4	Gamm	a ray counting with NaI(Tl) detectors	106
	4.4.1	Further comments on NaI(Tl) detectors	106
		NaI(Tl), an inorganic scintillation detector	106
		Selected characteristics of integral assemblies	106
		Total efficiencies and peak-to-total ratios	107
	4.4.2	Integral counting	108
	4.4.3	Peak counting	110
	4.4.4	Precautions to avoid errors due to Compton scatter	110
4.5	Correc	ctions and precautions, part 1	113
	4.5.1	•	113
	4.5.2	Dead time corrections	113
	4.5.3	Pulse pile-up, random and coincidence summing	114
		Randomly occurring effects	114
		Coincidence summing	116
	4.5.4	Decay corrections	117
4.6	Correc	ctions and precautions, part 2	117
	4.6.1	Unwanted radiations, a summary	117
	4.6.2	Radioactive parents and daughters	117
	4.6.3	Radionuclidic impurities	118
	4.6.4	The gamma ray background	119
	4.6.5	The alpha and beta particle background	121
Cha	pter 5:	Ionising radiation detectors	123
5.1	Radia	tion detectors, a summary	123
5.2	Chara	cteristics of ionisation detectors	123
	5.2.1	Saturation currents and gas multiplication	123
	5.2.2	Three saturation chambers	124
	5.2.3	Parallel plate and cylindrical chambers	126
5.3	_	rtional and Geiger–Müller counters	126
	5.3.1	Thin wire counters	126
		Operating principles	126

0521553059 - Practical Applications of Radioactivity and Nuclear Radiations: An Introductory Text for Engineers, Scientists, Teachers and Students - G. C. Lowenthal and P. L. Airey

X		Contents	
		Ion multiplication by collision	128
	5.3.2	The Geiger-Müller counter	130
	5.3.3	The proportional counter	131
		The proportional region	131
		Unsealed 4π windowless proportional counting	132
		Alpha and beta particle counting	132
5.4	Other	detectors and detection methods	132
	5.4.1	A matter of emphasis	132
	5.4.2	Liquid scintillation (LS) counting	133
		Introduction	133
		Quenching agents	133
		Comments on LS counting procedures	135
	5.4.3	Microcalorimetry for routine activity measurements	136
		Counting decays with thermal power	136
		Microcalorimetry for nuclear radiation applications	136
	5.4.4	Neutron detection for scientific and industrial applications	138
		An overview	138
		Proportional counting	138
		Measurements using high-intensity neutrons	139
5.5	An int	roduction to semiconductor detectors	139
	5.5.1	A few historical highlights on energy spectrometry	139
	5.5.2		140
	5.5.3	Lithium drifted and high-purity germanium detectors	143
	5.5.4	Further comments on silicon detectors	143
	5.5.5	Detectors made from crystals of semiconducting	
		compounds	144
	5.5.6	23	145
	5.5.7	A postscript on semiconducting detectors	146
Cha	pter 6:	Radioactivity and countrate measurements and the	
		presentation of results	147
6.1	An int	roduction to radioactivity measurements	147
	6.1.1	Problems	147
	6.1.2	A role for secondary standard instruments	148
6.2	Comn	nents on the preparation of radioactivity standards	149
	6.2.1	Problems with beta particle emitters	149

0521553059 - Practical Applications of Radioactivity and Nuclear Radiations: An Introductory Text for Engineers, Scientists, Teachers and Students - G. C. Lowenthal and P. L. Airey

Table of Contents

		Contents	xi
	6.2.2	Accurate radioactivity measurements	149
6.3	4 πγ pr	ressurised ionisation chambers	151
	6.3.1	Introduction	151
	6.3.2	Two types of $4\pi\gamma$ pressurised ionisation chambers	151
	6.3.3	Dose calibrators	153
	6.3.4	General purpose pressurised ionisation chambers	155
		Their role as precision instruments	155
		Activity calibrations	156
		The calibration graph	159
6.4	Gamn	na ray spectrometers and gamma ray spectrometry	159
	6.4.1	Towards multi gamma ray spectrometry	159
	6.4.2	Escape peaks	160
	6.4.3	Energy calibrations	162
	6.4.4	Energy resolution	162
	6.4.5	Full energy peak efficiency calibration	163
		Introduction	163
		Preparatory procedures	163
		The calibration	163
	6.4.6	Secondary standard instruments: strong and weak points	164
6.5	Result	s, part 1: collecting the data	166
	6.5.1	Five components for a complete result	166
	6.5.2	Errors and uncertainties	167
6.6	Result	s, part 2: Poisson and Gaussian statistics	168
	6.6.1	A first look at statistical distributions	168
	6.6.2	The Poisson distribution	169
	6.6.3	Gaussian statistics	171
	6.6.4	Confidence limits	174
6.7	Other o	characteristics of results and statistical tests	175
	6.7.1	Countrates and their combination	175
	6.7.2	Tests for accuracy and consistency	176
		Accuracy	176
		Consistency	177
	6.7.3	Tests for randomness	177
6.8	Movin	g on to applications	179

Cambridge University Press
0521553059 - Practical Applications of Radioactivity and Nuclear Radiations: An Introductory Text for Engineers, Scientists, Teachers and Students - G. C. Lowenthal and P. L. Airey
Table of Contents
More information

xii Contents

Cha	pter 7:	Industrial applications of radioisotopes and radiation	181
7.1	Introd	uction	181
	7.1.1	A change of emphasis	181
	7.1.2	An overview of industrial applications	181
		Summary	181
		Optimisation and control of processes in industrial plant	182
		Plant diagnostics	182
		Testing and inspection of materials	182
		Composition and structure of materials	183
		Modification and syntheses of materials	183
		Environmental applications	183
7.2	Scient	ific and industrial applications of gamma rays	186
	7.2.1	Applications employing gamma ray attenuation	186
		Nucleonic gauges	186
		Level gauges	187
		Optimum choice of the radioactive source	187
		Density gauges	189
		Mineral processing	192
		Coastal engineering	192
		Radiography	192
		Computerised tomography (CT)	193
		Column scanning	198
		On-line measurement of ash in coal	198
	7.2.2	Applications based on gamma ray backscatter	201
		Backscatter gauges	201
		Borehole logging using backscattered γ rays	201
	7.2.3	Applications based on X ray fluorescence	204
		Introduction	204
		X ray fluorescence analysis	204
		Portable X ray fluorescence gauges	206
		Applications to the mineral processing industry	207
7.3	Scient	ific and industrial applications of beta particles and	
	electro	ons	207
	7.3.1	Attenuation of beams of beta particles and electrons	207
		Applications in paper manufacture	208
	7.3.2	Industrial applications of beta particle backscatter	208
	7.3.3	Special applications: electron microscopy	209

0521553059 - Practical Applications of Radioactivity and Nuclear Radiations: An Introductory Text for Engineers, Scientists, Teachers and Students - G. C. Lowenthal and P. L. Airey

Table of Contents

		Contents	xiii
7.4	Scien	tific and industrial applications of neutrons	211
	7.4.1	Comments on work with neutrons and neutron doses	211
	7.4.2	Industrial applications of neutron sources	211
		Neutron sources	211
		Neutron moderation	215
		Neutron backscatter gauges	216
		Neutron moisture meters	216
		Borehole logging with neutrons	217
		Neutron radiography	218
	7.4.3	Neutron diffraction	219
	7.4.4	Neutron activation analysis (NAA)	220
		An overview	220
		Prompt neutron activation analysis	220
		Instrumented neutron activation analysis	221
		Other comments	222
7.5	Scien	tific and industrial applications of protons and alpha	
	partic		222
	7.5.1		222
	7.5.2	Multi element analyses	222
		Thin layer activation	223
	7.5.4	•	224
7.6	Scien	tific and industrial applications of the absorption of radiation	224
	7.6.1	The chemical effects of radiation	224
	7.6.2		226
		Basic processes	226
		Chemical dosimetry	226
	7.6.3	Industrial applications of high-energy radiation	228
		Introductory comment	228
		Radiation induced polymerisation	228
		Effects of high-energy radiation on polymers	229
	7.6.4	Radiation sterilisation	230
		Introduction	230
		Sterilisation of disposable medical products	230
		Other applications	231
	7.6.5	Food irradiation	231
Cha	pter 8:	Application of tracer technology to industry and the	
	_	environment	232

0521553059 - Practical Applications of Radioactivity and Nuclear Radiations: An Introductory Text for Engineers, Scientists, Teachers and Students - G. C. Lowenthal and P. L. Airey

xiv		Contents	
8.1	Introd	uction	232
	8.1.1	Radiotracers come on the scene	232
	8.1.2	Radiotracers: their advantages and their problems	233
		The advantages of radiotracers, a summary	233
		Radiation safety	235
	8.1.3	The evolution of radiotracer applications	237
		Early examples of tracer applications	237
		Recent advances	237
8.2	Tracei	applications in the field	238
	8.2.1	The general concept of the radiotracer experiment	238
	8.2.2	Choice of the optimum radiotracer: general	
		considerations	240
		Introduction	240
		Water tracing	241
		Sand and sediment tracing	242
		Industrial tracing	242
	8.2.3	Isotope injections	243
	8.2.4	Tracer detection and monitoring in the field	243
		Field monitoring systems	243
		The role of scattered radiation in the monitoring of	
		radiotracers	244
		Accurate field measurements	245
8.3	Applic	ations of tracer technology to flow studies	246
	8.3.1	General principles	246
		Introduction	246
		Residence time distribution (RTD)	246
		Mean residence time (MRT)	247
		Complete mixing	247
	8.3.2	Flow rate measurements: an overview	248
	8.3.3	Flow rate measurements: transit time techniques	248
		Pulse velocity method	248
		Correlation methods	250
	8.3.4	Flow rate measurements: tracer dilution methods	250
		Introduction	250
		Tracer injection at a constant rate	250
	8.3.5	Flow rate measurements: total sample method	252
		Principle of the method	252
		Case study: gas flow rate measurement	252

0521553059 - Practical Applications of Radioactivity and Nuclear Radiations: An Introductory Text for Engineers, Scientists, Teachers and Students - G. C. Lowenthal and P. L. Airey

Table of Contents

		Contents	XV
		Optimising accuracy	253
	8.3.6	Flow rate measurements: total count method	254
	8.3.7	Residence time distribution	255
	8.3.8	Residence time distribution: idealised plug flow	255
	8.3.9	Residence time distribution: idealised stirred flow	257
		Stirred flow	257
		An example from the gold extraction industry	258
	8.3.10	A comment on modelling complex flows	258
8.4	Industr	rial applications of tracers: case studies	260
	8.4.1	Introduction	260
	8.4.2	Fluidised catalytic cracking unit	260
	8.4.3	Radiotracers in the iron and steel industry	262
	8.4.4	Inventories	263
		Accurate measurements of activity ratios	263
		Mercury inventories	264
8.5	Conclu	asions	265
Cha	pter 9:	Radionuclides to protect the environment	267
9.1	Introd	uction	267
9.2	The in	vestigation of environmental systems	272
	9.2.1	-	272
	9.2.2	Applications of radioisotopes	278
9.3	Enviro	nmental applications of radioisotopes	279
	9.3.1	•	279
	9.3.2	River flow measurements	279
		The total sample method using tritium	279
		The total count method	281
	9.3.3	Studies of the dispersion of contaminants	284
		Competition for environmental resources	284
		Dispersion of contaminants	284
		An analytical treatment of dispersion	286
	9.3.4	A case study: sewage dispersion	286
	9.3.5	Applications of tracer techniques to sediment and	
		sand tracing	289
		Measurements of migration rates	289

0521553059 - Practical Applications of Radioactivity and Nuclear Radiations: An Introductory Text for Engineers, Scientists, Teachers and Students - G. C. Lowenthal and P. L. Airey

XV1		Contents			
		Coastal engineering demonstrations	289		
		Detector calibration	292		
		Suspended sediment gauges	293		
9.4	Appl	ications of naturally occurring radioisotopes	294		
	9.4.1	Man-made versus environmental radioisotopes	294		
	9.4.2	Erosion studies	294		
		A new use for caesium-137	294		
		Procedures and applications	295		
		An interesting result	297		
		Other techniques	297		
	9.4.3	Groundwater	298		
		Introduction	298		
		Groundwater resource evaluation	298		
		Locations of recharge areas	299		
		The dating of underground water	300		
		Accelerator mass spectrometry	301		
	9.4.4	Oceanography	301		
9.5	Nucl	ear waste disposal	302		
	9.5.1	The need for complete isolation	302		
	9.5.2	Natural analogues	303		
		Multi-barrier systems	303		
		A natural analogue of the leaching of fission products			
		from spent fuel	303		
	9.5.3	Regulatory requirements	304		
9.6	Sumi	mary and conclusions	304		
App	endice	s			
	1 (Glossary of technical terms	306		
	2 A	selection of references to texts on health physics and			
	ra	adiation protection	311		
	3 C	Comments on the availability of nuclear data on the Internet	312		
	4 A	application of tracer techniques to fluid dynamics	315		
	5 E	Dispersion processes	320		
Refe	erence.	s	323		
Inde	lex 33				