PRACTICAL APPLICATIONS OF RADIOACTIVITY
AND NUCLEAR RADIATIONS

This book introduces selected examples from the numerous applications of
radioisotopes and ionising radiations to engineering and environmental
sciences and technologies. In addition, it serves teachers and students as an
introductory course in nuclear sciences.

The early chapters introduce the properties of radionuclides, radioactive
sources, ionising radiations, detectors and instrumentation, and how they
are used. Also described are the methods for obtaining accurate countrate
measurements allowing for the statistics of radioactive decays. Later chapters
introduce applications to mining, mineral processing, petroleum refining,
contaminant transport, borehole logging, fluid flow measurements and to the
assessment of sites for radioactive waste disposal. The fact that different
radionuclides can be used to separately label and study different components of
complex systems is an outstanding example of their versatility.

This book will be of particular interest to scientists, technologists, teachers
and students, helping them to work with radioisotopes safely, efficiently and
reliably.
Since the 1960s, Drs Lowenthal and Airey served on the research staff of the Australian Nuclear Science and Technology Organisation, ANSTO (formerly the Australian Atomic Energy Commission, AAEC), where Dr Airey continues to hold a senior position.

Dr Lowenthal was the leader of a small group which established the Australian Standards of Radioactivity. In the mid-1970s he became the Australian Representative on the International Committee for Radionuclide Metrology (an independent organisation of specialists) and was invited to represent Australia on the Consultative Committee for Standards for the Measurement of Ionising Radiations on the International Committee for Weights and Measures, Paris. He has published some 50 research papers with other members of the group and for six years was honorary Australasian Editor of the *International Journal of Applied Radiation and Isotopes*. He is currently Honorary Consultant for Nuclear Medicine at the Royal Prince Alfred Hospital and an Honorary Consultant in the School of Mechanical and Manufacturing Engineering at the University of New South Wales. It was largely for his contributions to radionuclide metrology that he was named (in 1994 in Paris), Chevalier de l’Ordre National du Mérite and, in 1999, was made a Member of the General Division of the Order of Australia (AM).

Dr Airey is a physical chemist who has been extensively involved in research into the applications of radioactivity and radiation to industry and the environment. From 1986 to 1990, he was posted to the International Atomic Energy Agency where he coordinated a range of programs involving these applications in Asia and the Pacific. He is currently Australian National Counterpart for selected IAEA projects. Prior to his appointment to the IAEA and on his return, Dr Airey was responsible for coordinating an international OECD Nuclear Energy Agency project concerned with the evaluation of uranium deposits as natural analogues of radioactive waste repositories. From 1992 to 1999, he was ANSTO’s representative on the independent Safety Review Committee. Dr Airey is a past president of the Australian Nuclear Association and has published over sixty research papers and technical reports.
PRACTICAL APPLICATIONS OF RADIOACTIVITY
AND NUCLEAR RADIATIONS

An introductory text for engineers, scientists,
teachers and students

G. C. LOWENTHAL
University of New South Wales

P. L. AIREY
Australian Nuclear Science and Technology Organisation
Contents

List of illustrations page xvii
List of tables xxii
Foreword xxiii
Preface xxv

Chapter 1: Atoms, nuclides and radionuclides 1

1.1 Introduction 1
 1.1.1 Radioactivity, from the 1890s to the 1990s 1
 1.1.2 On the scope and content of this text 3
 1.1.3 Joining a large scale enterprise 4
 Nuclear power and nuclear radiation applications 4
 Figures from Japan 4
 The role of research reactors 5

1.2 An historic interlude: from atoms to nuclei 5
 1.2.1 When atoms ceased to be atoms 5
 1.2.2 The atomic nucleus 7

1.3 Nuclei, nuclear stability and nuclear radiations 8
 1.3.1 The birth of isotopes 8
 1.3.2 Mass–energy conversions and the half life 9
 1.3.3 From natural to man-made radioisotopes 11
 1.3.4 The role of the neutron-to-proton ratio 13
 1.3.5 An introduction to properties of radiations emitted during radioactive decays 15
 1.3.6 Another nuclear radiation: the neutron 17
vi

Contents

1.4 Activation processes 19
 1.4.1 Nuclear fission reactors 19
 1.4.2 Thermal neutron activations 21
 1.4.3 Activation and decay 22
 1.4.4 Other activation processes 22
 The production of neutron-poor radionuclides 22
 Positron emitters for nuclear medicine 23

1.5 Short and long half lives and their uses 24
 1.5.1 Generators for short half life radionuclides 24
 1.5.2 Isomeric decays with applications to nuclear medicine 25
 1.5.3 Radionuclides with very long half lives 26
 1.5.4 The energetics of decays by alpha and beta particle emissions 27

1.6 Parent half lives and daughter half lives 29
 1.6.1 Three cases 29
 1.6.2 Decay chain calculations 29
 1.6.3 Transient and secular equilibrium 30

Chapter 2: Units and standards for radioactivity and radiation dosimetry and rules for radiation protection 32

2.1 Introduction 32

2.2 Units and standards of radioactivity 32
 2.2.1 A summary of their characteristics 32
 2.2.2 The curie and the becquerel 34
 2.2.3 Secondary standards and secondary standard instruments 35
 2.2.4 In-house standards 36

2.3 Radioactivity standards 37
 2.3.1 Comments on their production and their purpose 37
 2.3.2 The international dimension of radioactivity standards 37

2.4 Radiation dosimetry for radiation protection 38
 2.4.1 Absorbed dose limitations 38
 2.4.2 Units for exposure, absorbed and equivalent dose 39
 2.4.3 Weighting factors, W_R and W_T 40
Contents

2.5 Dose limits 43
2.5.1 The linear hypothesis and the ALARA principle 43
2.5.2 Deterministic and stochastic effects 44
2.5.3 Background doses and their relevance for radiation protection 46

2.6 Radiation protection in the laboratory 49
2.6.1 Classifications of sources and of laboratories 49
2.6.2 Time, distance and shielding 50
2.6.3 Coping with radioactive waste 51
2.6.4 The radiation advisory officer 51
2.6.5 Radiation monitors 52
2.6.6 Guarding against radioactive contamination 54

2.7 Dose rates from alpha, beta and gamma ray emitting radionuclides 54
2.7.1 Rules-of-thumb for work with alpha and beta particles 54
2.7.2 Dose rates from X and gamma radiations 55

The dose equivalent rate constant, \(D_{eq}\) 55
Dose calculations 56

Chapter 3: Properties of radiations emitted from radionuclides 59

3.1 Tools for applications 59

3.2 Properties of alpha particles 59
3.2.1 The nature and origin of alpha particles 59
3.2.2 Alpha particle interactions with matter 61
3.2.3 Ionisation intensities of alpha particles 62

3.3 Properties of beta particles 63
3.3.1 Beta particles and electrons 63
3.3.2 Beta particle applications 65
3.3.3 The scattering and backscattering of beta particles 65
3.3.4 An introduction to beta particle spectra 66
3.3.5 Surface density 67

3.4 Properties of gamma rays and X rays 68
3.4.1 Gamma rays and their decay data 68
3.4.2 X rays 69
3.4.3 Three types of gamma ray interactions 70
3.4.4 Photon attenuation, an overview 72
3.4.5 Attenuation equations for narrow beam geometry 73
3.4.6 Photon attenuation measurements using μ_m 74

3.5 Pulse height spectra due to alpha particles and gamma rays 75

3.5.1 The response of detectors 75
3.5.2 Alpha particle spectra 77
3.5.3 Gamma ray spectra 78

3.6 Electron capture (EC), gamma rays and conversion electrons 79

3.6.1 EC decays and their use as quasi-pure gamma ray emitters 79
3.6.2 The internal conversion process 81

3.7 The role of mass energy in determining nuclear decays 82

3.7.1 Neutron-poor radionuclides 82
3.7.2 Positron decay and positron tomography 82
3.7.3 Multi gamma ray emitters 84
3.7.4 Three-pronged decays 87

3.8 Bremsstrahlung 88

3.8.1 Its origin 88
3.8.2 Bremsstrahlung intensities 88

3.9 Fluorescent radiations 89

3.9.1 Fluorescent X rays 89
3.9.2 Inner shell transitions 91
3.9.3 Auger electrons and fluorescent yields 94

Chapter 4: Nuclear radiations from a user’s perspective 95

4.1 The penetrating power of nuclear radiations 95

4.2 Radioactive sources 96

4.2.1 Radionuclides and their decay schemes 96
4.2.2 Source making and counting procedures 97

Laborentry equipment 97

Procedures for making thin sources 98

4.2.3 Sealed sources 99
4.2.4 Liquid scintillation counting to minimise source self-absorption 100
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3 Gamma ray applications</td>
<td>101</td>
</tr>
<tr>
<td>4.3.1 The role of electronic instruments</td>
<td>101</td>
</tr>
<tr>
<td>4.3.2 NIM bin and portable equipment</td>
<td>103</td>
</tr>
<tr>
<td>4.3.3 Comments on instrumentation and its supply</td>
<td>104</td>
</tr>
<tr>
<td>4.4 Gamma ray counting with NaI(Tl) detectors</td>
<td>106</td>
</tr>
<tr>
<td>4.4.1 Further comments on NaI(Tl) detectors</td>
<td>106</td>
</tr>
<tr>
<td>NaI(Tl), an inorganic scintillation detector</td>
<td>106</td>
</tr>
<tr>
<td>Selected characteristics of integral assemblies</td>
<td>106</td>
</tr>
<tr>
<td>Total efficiencies and peak-to-total ratios</td>
<td>107</td>
</tr>
<tr>
<td>4.4.2 Integral counting</td>
<td>108</td>
</tr>
<tr>
<td>4.4.3 Peak counting</td>
<td>110</td>
</tr>
<tr>
<td>4.4.4 Precautions to avoid errors due to Compton scatter</td>
<td>110</td>
</tr>
<tr>
<td>4.5 Corrections and precautions, part 1</td>
<td>113</td>
</tr>
<tr>
<td>4.5.1 A summary</td>
<td>113</td>
</tr>
<tr>
<td>4.5.2 Dead time corrections</td>
<td>113</td>
</tr>
<tr>
<td>4.5.3 Pulse pile-up, random and coincidence summing</td>
<td>114</td>
</tr>
<tr>
<td>Randomly occurring effects</td>
<td>114</td>
</tr>
<tr>
<td>Coincidence summing</td>
<td>116</td>
</tr>
<tr>
<td>4.5.4 Decay corrections</td>
<td>117</td>
</tr>
<tr>
<td>4.6 Corrections and precautions, part 2</td>
<td>117</td>
</tr>
<tr>
<td>4.6.1 Unwanted radiations, a summary</td>
<td>117</td>
</tr>
<tr>
<td>4.6.2 Radioactive parents and daughters</td>
<td>117</td>
</tr>
<tr>
<td>4.6.3 Radionuclidic impurities</td>
<td>118</td>
</tr>
<tr>
<td>4.6.4 The gamma ray background</td>
<td>119</td>
</tr>
<tr>
<td>4.6.5 The alpha and beta particle background</td>
<td>121</td>
</tr>
</tbody>
</table>

Chapter 5: Ionising radiation detectors

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Radiation detectors, a summary</td>
<td>123</td>
</tr>
<tr>
<td>5.2 Characteristics of ionisation detectors</td>
<td>123</td>
</tr>
<tr>
<td>5.2.1 Saturation currents and gas multiplication</td>
<td>123</td>
</tr>
<tr>
<td>5.2.2 Three saturation chambers</td>
<td>124</td>
</tr>
<tr>
<td>5.2.3 Parallel plate and cylindrical chambers</td>
<td>126</td>
</tr>
<tr>
<td>5.3 Proportional and Geiger–Müller counters</td>
<td>126</td>
</tr>
<tr>
<td>5.3.1 Thin wire counters</td>
<td>126</td>
</tr>
<tr>
<td>Operating principles</td>
<td>126</td>
</tr>
</tbody>
</table>
Contents

Ion multiplication by collision 128

5.3.2 The Geiger–Müller counter 130

5.3.3 The proportional counter 131

The proportional region 131
Unsealed \(4\pi\) windowless proportional counting 132
Alpha and beta particle counting 132

5.4 Other detectors and detection methods 132

5.4.1 A matter of emphasis 132

5.4.2 Liquid scintillation (LS) counting 133

Introduction 133
Quenching agents 133
Comments on LS counting procedures 135

5.4.3 Microcalorimetry for routine activity measurements 136

Counting decays with thermal power 136
Microcalorimetry for nuclear radiation applications 136

5.4.4 Neutron detection for scientific and industrial applications 138

An overview 138
Proportional counting 138
Measurements using high-intensity neutrons 139

5.5 An introduction to semiconductor detectors 139

5.5.1 A few historical highlights on energy spectrometry 139

5.5.2 Characteristics of germanium and silicon detectors 140

5.5.3 Lithium drifted and high-purity germanium detectors 143

5.5.4 Further comments on silicon detectors 143

5.5.5 Detectors made from crystals of semiconducting compounds 144

5.5.6 Energy resolution 145

5.5.7 A postscript on semiconducting detectors 146

Chapter 6: Radioactivity and count rate measurements and the presentation of results 147

6.1 An introduction to radioactivity measurements 147

6.1.1 Problems 147

6.1.2 A role for secondary standard instruments 148

6.2 Comments on the preparation of radioactivity standards 149

6.2.1 Problems with beta particle emitters 149
6.2.2 Accurate radioactivity measurements 149

6.3 4πγ pressurised ionisation chambers 151
6.3.1 Introduction 151
6.3.2 Two types of 4πγ pressurised ionisation chambers 151
6.3.3 Dose calibrators 153
6.3.4 General purpose pressurised ionisation chambers 155
 Their role as precision instruments 155
 Activity calibrations 156
 The calibration graph 159

6.4 Gamma ray spectrometers and gamma ray spectrometry 159
6.4.1 Towards multi gamma ray spectrometry 159
6.4.2 Escape peaks 160
6.4.3 Energy calibrations 162
6.4.4 Energy resolution 162
6.4.5 Full energy peak efficiency calibration 163
 Introduction 163
 Preparatory procedures 163
 The calibration 163
6.4.6 Secondary standard instruments: strong and weak points 164

6.5 Results, part 1: collecting the data 166
6.5.1 Five components for a complete result 166
6.5.2 Errors and uncertainties 167

6.6 Results, part 2: Poisson and Gaussian statistics 168
6.6.1 A first look at statistical distributions 168
6.6.2 The Poisson distribution 169
6.6.3 Gaussian statistics 171
6.6.4 Confidence limits 174

6.7 Other characteristics of results and statistical tests 175
6.7.1 Count rates and their combination 175
6.7.2 Tests for accuracy and consistency 176
 Accuracy 176
 Consistency 177
6.7.3 Tests for randomness 177

6.8 Moving on to applications 179
<table>
<thead>
<tr>
<th>Chapter 7: Industrial applications of radioisotopes and radiation</th>
<th>181</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>181</td>
</tr>
<tr>
<td>7.1.1 A change of emphasis</td>
<td>181</td>
</tr>
<tr>
<td>7.1.2 An overview of industrial applications</td>
<td>181</td>
</tr>
<tr>
<td>Summary</td>
<td>181</td>
</tr>
<tr>
<td>Optimisation and control of processes in industrial plant</td>
<td>182</td>
</tr>
<tr>
<td>Plant diagnostics</td>
<td>182</td>
</tr>
<tr>
<td>Testing and inspection of materials</td>
<td>182</td>
</tr>
<tr>
<td>Composition and structure of materials</td>
<td>183</td>
</tr>
<tr>
<td>Modification and syntheses of materials</td>
<td>183</td>
</tr>
<tr>
<td>Environmental applications</td>
<td>183</td>
</tr>
<tr>
<td>7.2 Scientific and industrial applications of gamma rays</td>
<td>186</td>
</tr>
<tr>
<td>7.2.1 Applications employing gamma ray attenuation</td>
<td>186</td>
</tr>
<tr>
<td>Nucleonic gauges</td>
<td>186</td>
</tr>
<tr>
<td>Level gauges</td>
<td>187</td>
</tr>
<tr>
<td>Optimum choice of the radioactive source</td>
<td>187</td>
</tr>
<tr>
<td>Density gauges</td>
<td>189</td>
</tr>
<tr>
<td>Mineral processing</td>
<td>192</td>
</tr>
<tr>
<td>Coastal engineering</td>
<td>192</td>
</tr>
<tr>
<td>Radiography</td>
<td>192</td>
</tr>
<tr>
<td>Computerised tomography (CT)</td>
<td>193</td>
</tr>
<tr>
<td>Column scanning</td>
<td>198</td>
</tr>
<tr>
<td>On-line measurement of ash in coal</td>
<td>198</td>
</tr>
<tr>
<td>7.2.2 Applications based on gamma ray backscatter</td>
<td>201</td>
</tr>
<tr>
<td>Backscatter gauges</td>
<td>201</td>
</tr>
<tr>
<td>Borehole logging using backscattered γ rays</td>
<td>201</td>
</tr>
<tr>
<td>7.2.3 Applications based on X ray fluorescence</td>
<td>204</td>
</tr>
<tr>
<td>Introduction</td>
<td>204</td>
</tr>
<tr>
<td>X ray fluorescence analysis</td>
<td>204</td>
</tr>
<tr>
<td>Portable X ray fluorescence gauges</td>
<td>206</td>
</tr>
<tr>
<td>Applications to the mineral processing industry</td>
<td>207</td>
</tr>
<tr>
<td>7.3 Scientific and industrial applications of beta particles and electrons</td>
<td>207</td>
</tr>
<tr>
<td>7.3.1 Attenuation of beams of beta particles and electrons</td>
<td>207</td>
</tr>
<tr>
<td>Applications in paper manufacture</td>
<td>208</td>
</tr>
<tr>
<td>7.3.2 Industrial applications of beta particle backscatter</td>
<td>208</td>
</tr>
<tr>
<td>7.3.3 Special applications: electron microscopy</td>
<td>209</td>
</tr>
</tbody>
</table>
7.4 Scientific and industrial applications of neutrons

7.4.1 Comments on work with neutrons and neutron doses

7.4.2 Industrial applications of neutron sources

 Neutron sources
 Neutron moderation
 Neutron backscatter gauges
 Neutron moisture meters
 Borehole logging with neutrons
 Neutron radiography

7.4.3 Neutron diffraction

7.4.4 Neutron activation analysis (NAA)

 An overview
 Prompt neutron activation analysis
 Instrumented neutron activation analysis
 Other comments

7.5 Scientific and industrial applications of protons and alpha particles

7.5.1 Introduction

7.5.2 Multi element analyses

7.5.3 Thin layer activation

7.5.4 Smoke detectors

7.6 Scientific and industrial applications of the absorption of radiation

7.6.1 The chemical effects of radiation

7.6.2 Radiation chemistry of aqueous solutions

 Basic processes
 Chemical dosimetry

7.6.3 Industrial applications of high-energy radiation

 Introductory comment
 Radiation induced polymerisation
 Effects of high-energy radiation on polymers

7.6.4 Radiation sterilisation

 Introduction
 Sterilisation of disposable medical products
 Other applications

7.6.5 Food irradiation

Chapter 8: Application of tracer technology to industry and the environment
8.1 Introduction 232
 8.1.1 Radiotracers come on the scene 232
 8.1.2 Radiotracers: their advantages and their problems 233
 \textit{The advantages of radiotracers, a summary} 233
 Radiation safety 235
 8.1.3 The evolution of radiotracer applications 237
 \textit{Early examples of tracer applications} 237
 Recent advances 237

8.2 Tracer applications in the field 238
 8.2.1 The general concept of the radiotracer experiment 238
 8.2.2 Choice of the optimum radiotracer: general considerations 240
 \textit{Introduction} 240
 Water tracing 241
 Sand and sediment tracing 242
 Industrial tracing 242
 8.2.3 Isotope injections 243
 8.2.4 Tracer detection and monitoring in the field 243
 \textit{Field monitoring systems} 243
 The role of scattered radiation in the monitoring of radiotracers 244
 Accurate field measurements 245

8.3 Applications of tracer technology to flow studies 246
 8.3.1 General principles 246
 \textit{Introduction} 246
 Residence time distribution (RTD) 246
 Mean residence time (MRT) 247
 Complete mixing 247
 8.3.2 Flow rate measurements: an overview 248
 8.3.3 Flow rate measurements: transit time techniques 248
 \textit{Pulse velocity method} 248
 Correlation methods 250
 8.3.4 Flow rate measurements: tracer dilution methods 250
 \textit{Introduction} 250
 Tracer injection at a constant rate 250
 8.3.5 Flow rate measurements: total sample method 252
 Principle of the method 252
 Case study: gas flow rate measurement 252
Contents

Optimising accuracy

8.3.6 Flow rate measurements: total count method 253
8.3.7 Residence time distribution 255
8.3.8 Residence time distribution: idealised plug flow 255
8.3.9 Residence time distribution: idealised stirred flow 257
 Stirred flow
 An example from the gold extraction industry 258
8.3.10 A comment on modelling complex flows 258

8.4 Industrial applications of tracers: case studies 260
 8.4.1 Introduction 260
 8.4.2 Fluidised catalytic cracking unit 260
 8.4.3 Radiotracers in the iron and steel industry 262
 8.4.4 Inventories
 Accurate measurements of activity ratios 263
 Mercury inventories 264

8.5 Conclusions 265

Chapter 9: Radionuclides to protect the environment 267

9.1 Introduction 267

9.2 The investigation of environmental systems 272
 9.2.1 Numerical modelling 272
 9.2.2 Applications of radioisotopes 278

9.3 Environmental applications of radioisotopes 279
 9.3.1 Introduction 279
 9.3.2 River flow measurements
 The total sample method using tritium 279
 The total count method 281
 9.3.3 Studies of the dispersion of contaminants
 Competition for environmental resources 284
 Dispersion of contaminants 284
 An analytical treatment of dispersion 286
 9.3.4 A case study: sewage dispersion 286
 9.3.5 Applications of tracer techniques to sediment and sand tracing
 Measurements of migration rates 289
Contents

Coastal engineering demonstrations 289
Detector calibration 292
Suspended sediment gauges 293

9.4 Applications of naturally occurring radioisotopes 294
9.4.1 Man-made versus environmental radioisotopes 294
9.4.2 Erosion studies 294
 A new use for caesium-137 294
 Procedures and applications 295
 An interesting result 297
 Other techniques 297
9.4.3 Groundwater 298
 Introduction 298
 Groundwater resource evaluation 298
 Locations of recharge areas 299
 The dating of underground water 300
 Accelerator mass spectrometry 301
9.4.4 Oceanography 301

9.5 Nuclear waste disposal 302
9.5.1 The need for complete isolation 302
9.5.2 Natural analogues 303
 Multi-barrier systems 303
 A natural analogue of the leaching of fission products from spent fuel 303
9.5.3 Regulatory requirements 304

9.6 Summary and conclusions 304

Appendices

1 Glossary of technical terms 306
2 A selection of references to texts on health physics and radiation protection 311
3 Comments on the availability of nuclear data on the Internet 312
4 Application of tracer techniques to fluid dynamics 315
5 Dispersion processes 320

References 323
Index 331
Illustrations

1.1 The periodic table of the chemical elements page 2
1.2 The binding energies per nucleon as functions of the mass number A 10
1.3 A small section from a Chart of Nuclides 12
1.4 A proton vs. neutron diagram showing stable nuclides and the limits for unstable nuclides 13
1.5 The three decay chains of radionuclides occurring in nature 16
1.6 (a) An americium–beryllium (α,n) neutron source, (b) Neutron energy spectra 18
1.7 (a)–(c) Three parent–daughter decays 28
2.1 A calibration graph for a pressurised ionisation chamber 36
2.2 Radon concentrations in the air of uranium mines, 1983 to 1989 45
2.3 Doses absorbed by Australian radiation workers from four occupational groups 45
3.1 A photon spectrum due to the α particle decay of americium-241 to neptunium-237 obtained with a NaI(Tl) detector 60
3.2 (a) Ranges of α particles in air, (b) ranges of electrons in light materials 62
3.3 (a) The path of alpha particles through matter, (b) the path of beta particles through matter 62
3.4 The decay schemes for (a) 32P, (b) 60Co, (c) 137Cs, 137mBa. (d) The γ-ray spectrum following 137Cs decay 64
3.5 The backscatter of beta particles 66
3.6 Pulse height spectra due to (a) positrons, (b) to (d) negatrons, (e) alpha particles and (f) gamma rays 67
3.7 (a) The linear attenuation coefficient, μ_l, for aluminium and lead (b) A plot of the mass attenuation coefficient μ_m for the elements H, Al, Fe and Pb 71
List of illustrations

3.8 (a) A schematic diagram of a Compton scatter event, (b) Energies of Compton scatter edges (E_C) and backscatter peaks (E_R) as functions of the γ ray energies 72

3.9 (a) Decay scheme of barium-133, (b) The 133Ba spectrum obtained with a Ge(Li) detector. (c) The 133Ba spectrum obtained with a NaI(Tl) detector 76

3.10 Pulse height spectra due to samples of uranium ore obtained with a NaI(Tl) detector and a Ge(Li) detector 77

3.11 Decay schemes of three electron capture decays: (a) chromium-51, (b) manganese-54, (c) iron-55 80

3.12 The fluorescent yields in the K shell (ω_K) as a function of the Z number of the element 81

3.13 Three decay schemes illustrating different decay modes: (a) nitrogen-13, (b) copper-64, (c) zinc-65 83

3.14 (a) The pulse height spectrum of europium-152 obtained with a Ge(Li) detector. (b) The pulse height spectrum of 57Co obtained with a Ge(Li) detector. (c) The pulse height spectrum of 57Co obtained with a HPGe detector 86

3.15 The gamma ray spectrum of gold-198 in conditions of intense Compton scatter 87

3.16 (a) The origin of KX rays emitted by nickel, (b) The energies of K, L and M X rays for the element nickel 90

4.1 Three types of gamma ray interactions, γ_1, γ_2, γ_3 in NaI(Tl) detectors 102

4.2 Block diagram of a circuit used for the signal processing of pulses due to gamma rays detected in a NaI(Tl) crystal 102

4.3 The full energy peak at 1172 keV due to 60Co, using a single channel analyser 103

4.4 Total efficiencies for NaI(Tl) detectors as functions of gamma ray energies and detector dimensions 107

4.5 Peak-to-total ratios obtained with NaI(Tl) detectors 108

4.6 Gamma ray detection (a) subject to narrow beam geometry, (b) subject to broad beam geometry and (c) build-up factors in iron 111

4.7 The effect of Compton scatter on a technetium-99m pulse height spectrum (a) for a thin source in air, and (b) for 99mTc dissolved in a water phantom 112

4.8 Pulse distortions due to (a) pile-up, (b) and (c) summing 115

4.9 Spectra of background radiations obtained with an unshielded 50 x 50 mm NaI(Tl) detector in a hospital laboratory 120
List of illustrations xix

4.10 Countrates of alpha and beta particles in a 4π proportional gas flow counter as a function of the polarising voltage 122

5.1 (a) to (c) Three designs of ionisation chambers operated in the saturation region. (d) A plot of the recombination and saturation region 125

5.2 (a) A thin wire ionisation chamber for use as a proportional or GM counter, (b) A plot of countrate vs. applied voltage for gaseous ionisation detectors 127

5.3 (a) A schematic diagram of a GM detector, (b) Dead time and recovery time in a GM detector, (c) Counting plateau of a GM detector 129

5.4 (a) Quenching of a tritium spectrum in a liquid scintillation spectrometer, (b) A circuit for LS counting using two detectors connected through a coincidence unit 134

5.5 (a) Simplified schematic diagrams of components of a twin cup micro calorimeter, (b) a calorimetric measurement of the activity of a 192Ir wire 136

5.6 Schematic diagrams of (a) a high purity germanium detector, (b) a gallium arsenide (GaAs) semiconducting compound detector 140

5.7 Americium-241 photon spectra obtained with a GaAs detector at (a) 122 K, (b) 295 K 141

6.1 (a) The 4π proportional counter, (b) a simplified block diagram of apparatus for 4πβ-γ coincidence counting 150

6.2 (a) A pressurised ionisation chamber outside its lead cover, (b) the same chamber in cross section 153

6.3 A photograph of a dose calibrator showing the pressurised ionisation chamber, the Perspex frame used to insert the source and the signal processing unit 154

6.4 (a) A line diagram of a pressurised 4πγ ionisation chamber, (b) variations in the ionisation current as a point source is moved axially and radially from the centre of the chamber 156

6.5 Calibration graphs for two general purpose 4πγ pressurised ionisation chambers filled respectively with 2 MPa of argon and 2 MPa of nitrogen 157

6.6 Photon spectra including escape peaks: (a) Single and double escape peaks following pair production, (b) Iodine KX ray escape peak obtained with a NaI(Tl) detectors 160

6.7 Calibration graph for a Ge(Li) detector. (a) Log-log plot for the energy range 100 to 1500 keV. (b) Deviations from a linear fit to the calibration graph 161
List of illustrations

xx

6.8 An adjustable frame to ensure an accurately reproducible source-detector distance for \(\gamma \) ray spectrometry 164
6.9 Comparisons of plots of Poisson and Gauss distributions when the means of the countrates are respectively 5 and 20 cps 170
6.10 Plot of a Poisson distribution for a mean of 2.5 cps 171
6.11 Plot of a continuous Gaussian distribution for counts between \(-\infty \) and \(+\infty \), showing the areas \(m \pm 1\sigma \), \(m \pm 2\sigma \), \(m \pm 3\sigma \) 173
6.12 Two histograms showing data for respectively (a) 10 s, (b) 100 s counts for a countrate of about 1.1 cps 176
7.1 Nucleonic level gauge 186
7.2 The attenuation of a collimated gamma ray beam due to Compton scatter 188
7.3 Four applications of gamma ray attenuation 191
7.4 The principles of gamma radiography 194
7.5 The scanning, rotation configuration for the first generation CT scanner 197
7.6 Gamma transmission scanning of a distillation column 199
7.7 The ‘on-belt’ analysis of ash in coal 200
7.8 Gamma and neutron backscatter gauges 202
7.9 Borehole logging using (a) \(\gamma-\gamma \), (b) neutron backscatter techniques 203
7.10 X ray fluorescence analysis 205
7.11 Study of wear rate using thin layer activation. 225
8.1 The principle of the tracer investigation 241
8.2 Schematic representation of field monitoring equipment 244
8.3 Flow rate measurements: the pulse velocity or ‘point to point’ method 249
8.4 Flow rate measurements: the continuous dilution method 251
8.5 Gas flow using tracer dilution techniques 253
8.6 RTD under a range of flow conditions 256
8.7 RTD study in the gold extraction industry 259
8.8 Fluidised catalytic cracking unit (FCCU) 261
8.9 Blast furnace study 263
9.1 The gauging of rivers using dilution methods 280
9.2 Field calibration geometries 282
9.3 The dispersion of a tracer injected as a pulse 285
9.4 A sewage outfall with multiple diffusers 288
9.5 Application of tracer techniques to sediment migration 290
9.6 Application of environmental \(^{137}\text{Cs} \) to erosion measurements 296
9.7 Application of environmental isotopes to groundwater studies 299
Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Naturally occurring radioisotopes in the crust of the earth with very long half lives and at very low concentrations</td>
<td>14</td>
</tr>
<tr>
<td>1.2</td>
<td>Products of radioactive decays</td>
<td>15</td>
</tr>
<tr>
<td>2.1</td>
<td>(a) Radiation weighting factors (w_R), and the (Q) values they replaced. (b) Tissue weighting factors, (w_T)</td>
<td>41</td>
</tr>
<tr>
<td>2.2</td>
<td>Glossary of terms used in connection with radiation dosimetry and radiation protection</td>
<td>42</td>
</tr>
<tr>
<td>2.3</td>
<td>Dose limits for radiation workers and members of the public</td>
<td>44</td>
</tr>
<tr>
<td>2.4</td>
<td>Whole body threshold dose capable of producing somatic effects</td>
<td>46</td>
</tr>
<tr>
<td>2.5</td>
<td>Average dose rates due to the natural and man-made background of ionising radiations in industrialised countries</td>
<td>47</td>
</tr>
<tr>
<td>2.6</td>
<td>Dose equivalent rate constants (D_{eq}) for soft tissue for selected radionuclides</td>
<td>57</td>
</tr>
<tr>
<td>3.1</td>
<td>Positron emitters for applications</td>
<td>84</td>
</tr>
<tr>
<td>3.2</td>
<td>Atomic electron-binding energies and fluorescent X ray energies for the atoms of selected elements</td>
<td>92</td>
</tr>
<tr>
<td>4.1</td>
<td>Summary of decay data for phosphorus-32, cobalt-60, caesium-137 and barium-137m</td>
<td>96</td>
</tr>
<tr>
<td>4.2</td>
<td>Selected gamma ray intensities and energies emitted by uranium-238, thorium-232 and their radioactive daughters</td>
<td>120</td>
</tr>
<tr>
<td>5.1</td>
<td>First ionisation potential ((E)) and the average energy needed to create ion pairs in selected gases ((W))</td>
<td>131</td>
</tr>
<tr>
<td>5.2</td>
<td>Radioactivity measurements in two types of microcalorimeter</td>
<td>137</td>
</tr>
<tr>
<td>5.3</td>
<td>Selected properties of semiconducting crystals</td>
<td>142</td>
</tr>
<tr>
<td>6.1</td>
<td>Data for the operation of (4\pi \gamma) pressurised ionisation chambers</td>
<td>152</td>
</tr>
<tr>
<td>6.2</td>
<td>Characteristics of pressurised ionisation chambers and of argon and nitrogen when used as detection media</td>
<td>158</td>
</tr>
</tbody>
</table>
List of tables

6.3 Corrections and uncertainties applying to a calorimetry 168
measurement of the activity of phosphorus-32
6.4 Confidence limits and Student t factors 172
6.5 A selection of Chi-squared values 178
7.1 Industrial applications of gamma rays 184
7.2 Industrial applications of radioisotopes in Australia 185
1989–1999
7.3 Half thicknesses of aluminium, iron and lead at selected γ ray 189
energies
7.4 Radioisotopes used as X or γ ray sources 195
7.5 Industrial applications of beta particles and electrons 210
7.6 Applications of neutrons to science and industry 213
7.7 Radioisotope neutron sources 214
7.8 Energies of major photopeaks from selected elements 221
7.9 Dosimetry systems 227
8.1 Gamma ray emitters extensively employed for applications 234
8.2 Pure or nearly pure β particle emitters supplied as sealed 236
sources for transmission or backscatter measurements
8.3 Applications of radio tracer technologies in industry 239
8.4 Fluid dynamic investigations using tracers 246
9.1 Applications of tracer technology to the environment 268
9.2 Environmental radioisotopes and their applications 273
9.3 The mixing lengths in rivers 283
Foreword

I welcome the publication of the book *Practical Applications of Radioactivity and Nuclear Radiations – An introductory text for engineers, scientists, teachers and students* by Drs Gerhart Lowenthal and Peter Airey.

This book aims to provide readily accessible information on the applications of nuclear science and technology to industry, the environment and scientific research. It is tailored to students and non-specialists who seek to be informed, and may eventually wish to contribute to this world-wide endeavour. Emphasis is placed on the science underpinning the applications.

An objective of international bodies such as the Forum for Nuclear Cooperation in Asia (FNCA) and the International Atomic Energy Agency (IAEA) is to extend the benefits of nuclear related technologies across national boundaries. One of the authors (P.A.) was involved for a number of years in this endeavour through the IAEA.

I am pleased to endorse this book as a further step in this on-going quest.

Dr Sueo Machi
FNCA Coordinator, Japan
Former Deputy Director General, Nuclear Science and Applications, IAEA

The discovery of X rays and radioactivity in the 1890s had a profound effect on the century which was to follow. After more than one hundred years of endeavour which has been both marred by conflict and enriched by high achievement, we enter the new millennium with a more mature understanding of the benefits that nuclear technology can bring to mankind. These extend to medicine, agriculture, industry, the environment and the exploration for natural resources.

The potential for nuclear and isotope techniques to contribute to the
advance of scientific knowledge appears unbounded. As shown by examples in the book, these techniques contribute to our understanding of the structure of modern materials, the dynamics of biological systems, the complexity of many ecosystems and the dating of terrestrial processes from the recent past back almost to the formation of the earth.

This book is written for students and non-specialist scientific workers and aims to raise the awareness of the practical application of isotopes and radiation to industry and the environment. I support its publication. I believe that people everywhere will continue to benefit from the safe applications of nuclear science and technology in the years ahead.

Professor Helen M. Garnett
Chief Executive
Australian Nuclear Science and Technology Organisation.
Preface

Radionuclides and the emitted radiations have long been applied routinely throughout all branches of engineering and the technologies to obtain useful results, many of which could not have been obtained by other means.

As with the application of any other tool or technique, problems can be encountered. Practitioners working with radioactivity face health risks but long-standing records show that, overall, risks in the nuclear industries have been consistently smaller than those faced by workers in most other industries. This is so not least thanks to easily followed, legally backed precautions, developed over the decades to ensure safe operating conditions during all nuclear radiation applications carried out within the common sense rules devised for that purpose.

This book was written for workers and students as yet largely unfamiliar with the nuclear sciences and with the advantages in numerous fields which quickly become apparent on employing nuclear radiations. The potential of nuclear science and engineering for enhancing, e.g. the effectiveness of nuclear power production and of radioactive tracers is far from exhausted. Today’s beginners could have a highly rewarding way ahead of them.

A useful overview of the contents can be readily obtained by scanning the chapter and section headings in the table of Contents. The bibliography contains over 120 references to assist practitioners looking for more detailed and/or more specialised information than could be included here. The latest information about nuclear data and specialist techniques is available via the Internet, with web sites and other comments listed in Appendix 3.

One of us (P.A.) spent four years with the International Atomic Energy Agency (Vienna, Austria) involved with the applications of radioisotopes and radiation to industry, medicine, agriculture and the environment in Asia and the Pacific. The knowledge and dedication of many colleagues both at the

xxv
Preface

IAEA and in its Member States experienced during these years and since has greatly benefited the writing of this book.

We gratefully acknowledge the contributions from many colleagues who read sections of this text, making constructive suggestions and pointing out inadequate explanations and errors. There is Dr D.D. Hoppes, formerly of the USA National Institute of Standards and Technology, Gaithersburg (NIST), USA and Dr J.S. Charlton, former General Manager, Tracerco (Australasia). To our regret we can no longer thank Dr A. Rytz, formerly of the International Bureau of Weights and Measures (BPIM), Paris, France, who died early in 1999 and is sadly missed. Overseas colleagues who helped us materially with abstracts from their publications were Dr W.B. Mann (NIST, USA), Dr K. Debertin (Germany), and Drs T. Genka, H. Miyahara, Y. Kawada, Y. Hino and Professor T. Watanabe (Japan).

We are deeply indebted to colleagues at the Australian Nuclear Science and Technology Organisation (ANSTO) of Lucas Heights, NSW, who have been engaged on applications of nuclear radiations for two and more decades and assisted us in numerous ways. In particular, advice on X and gamma ray spectroscopy came from Dr D. Alexiev and Mr A.A. Williams. Special thanks are due to the radiotracer team at ANSTO, including Mr T. Kluss, Dr C. Hughes and Mr G. Spelman. Assistance came also from Dr B. Perczuk, School of Physics, University of New South Wales.

Other helpful suggestions came from Mr A. Fleischman and Mrs J. Towson of the Australian Radiation Protection Society and Mr J.S. Watt, Chief Research Scientist in the Commonwealth Scientific and Industrial Research Organisation. We also acknowledge valuable technical assistance from Mr S. Eberl of the Royal Prince Alfred Hospital (RPAH), Sydney, Mr A.W.L. Hu, Miss Adrienne Walker and Mr W. Hu all of the School of Mechanical and Manufacturing Engineering, University of New South Wales.

A very special “thank you” goes to the extremely helpful and valuable secretarial assistance from Mrs Diane Augee, also at the School of Mechanical and Manufacturing Engineering, UNSW. Mrs Augee could not protect us from our oversights though she did so in a good many cases. She always made sure that the text was throughout well arranged, clearly expressed and correctly spelled.

We acknowledge with most sincere gratitude support over the many years while writing this book from the Chief Executive, ANSTO (Professor H.M. Garnett) and the Director, Environmental Division, ANSTO (Professor A. Henderson-Sellers), and from the School of Mechanical and Manufacturing Engineering, UNSW (Professor B.E. Milton and later Professor K.P. Byrne).
Preface

and the Dean of Engineering (Professor M.S. Wainwright). G.L. also received substantial support at the Department of Positron Emission Tomography and Nuclear Medicine, Royal Prince Alfred Hospital, Sydney (Professor M.J. Fulham and earlier Professor J. Morris). Finally, our apologies go to colleagues whom we failed to mention, to our readers who will have to put up with remaining errors, and to our wives who put up with the demands the book made on our time and assisted us in every way.