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1
Introduction to Molecular Modeling

ALEXANDER F. IZMAILOV AND ALLAN S. MYERSON

1.1. Introduction

In recent years modeling methods based on computer simulation have become a
useful tool in solving many scientific and engineering problems. Moreover, with
the introduction of powerful workstations the impact of applications of compu-
ter simulation is expected to increase enormously in the next few years. To some
extent, computer-based modeling methods have filled the long existing gap
between experimental and theoretical divisions of natural sciences such as phy-
sics, chemistry, and biology. Such a dramatic role for computer simulation
methods is due to the statistically exact character of information that they pro-
vide about the exactly defined model systems under study. The term “‘statistically
exact information” means ‘“information known within the range defined by
standard deviation of some statistical distribution law.” This deviation can
usually be reduced to an extent required by the problem under study. The
term ‘“‘exactly defined model” means that all parameters required to specify
the model Hamiltonian are known exactly.

Let us specify the role of computer-based simulation with respect to informa-
tion obtained by analytical derivation and experiment:

1. The analytically exact information is available only for a few theoretical models
that allow exact analytical solutions. The most celebrated example of such a
model in statistical physics is the two-dimensional Ising model for the nearest-
neighbor interacting spins in the absence of external fields. Its analytically exact
solution was obtained by Onsager (1944). However, in the majority of other cases,
where exact analytical solutions are not known, it is customary to use different
approximations. And it is often the case that these approximations are uncontrol-
lable. The same Ising model in the three-dimensional case does not have an exact
solution. Needless to say, even less is known about the models with more realistic
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States of America. Copyright © 1999 Cambridge University Press. All Rights reserved. ISBN
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2 A. F. Izmailov and A. S. Myerson

intermolecular potentials. Therefore, computer simulation is often used to verify
different approximations involved in analytical solutions.

2. The experimentally exact information is also never available because it is impos-
sible to completely define the Hamiltonian of an experimental system. In some
important experimental problems, such as nucleation, the Hamiltonian is very
often unknown because one or more mechanisms can be triggering the observed
result. Nucleation can be triggered either by the intrinsic system properties
(metastability) or by unknown impurities present in experimental systems.
Therefore, modeling models based on computer simulation are required in
order to understand the relative role of metastability and impurities on the
nucleation phenomenon.

This brief discussion illustrates that very often there is not enough information to
link theory and experiment. Thus, analytical approximations involved in the
description of an experimentally observed phenomenon are not necessarily
related to the real driving forces of this phenomenon. Computer-based modeling
methods provide a unique opportunity to build a “coherence bridge” between
the analytical approximations involved in the solution of major problems and the
experimental information available.

This chapter serves a much simpler goal than review of the modern modeling
methods based on computer simulation. We will try to present some basic con-
cepts of statistical mechanics (Section 1.2), thermodynamics (Section 1.3), inter-
molecular interactions (Section 1.4) and the Monte Carlo method (Section 1.5)
which underlie all major modeling methods based on computer simulation
(Section 1.6).

1.2. Basics of Statistical Mechanics

1.2.1. Statistical Distributions

Let a given macroscopic system have 2N degrees of freedom, that is each of N
particles (molecules) constituting the system of volume V, will be described by its
coordinate ¢, and moment p,(n = 1, ..., N). Therefore, all various states of the
system under consideration can be represented by points in the phase space P
with 2N coordinates {¢q,,p,;n=1,..., N}. A state of the system changes with
time and, consequently, the point in space P representing this state, also known
as the phase point, moves along a curve known as a phase trajectory.

Let us also introduce the probability w(q; p) = w(qy, ..., qN; P1»-- ., py) that
the system state is represented by a point belonging to the infinitesimal 2N-
dimensional interval {[g,; ¢, +dq,1 ® [p,; p, +dp,Jsn=1,..., N}

N
daxq: p) = p(q; p)dqdp; p(g: p) = p(q1. - - q: p1s - -py)- dgdp = [ [ dg,dp,.
n=1

(1.1)
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where p(q; p) is the probability density in space P also known as the statistical
distribution function. This function must obviously satisfy the normalization con-
dition:

/ dolq. p) = / p(q. p)dgdp = 1, (12)
P P

which simply expresses the fact that the sum of probabilities of all states must be
unity.

It is clear that at any time instant, #, phase points, representing states of a
closed system, are distributed in phase space according to the same statistical
distribution function p(g; p). Therefore, the movement of these points in phase
space can be formally described by applying the continuity equation expressing
the fact of constancy of the total number of phase points (system states):

W@mzfo@mihfﬂ£Q@Q=o (1.3)

dr oq, dt op, dt

n=1

This equation, known as the Lioville equation, states that the distribution func-
tion is constant along the phase trajectories.

If the statistical distribution is known, one can calculate the probabilities of
various values of any physical quantities depending on the system states. One
also can calculate the mean of any such quantity f(g; p):

(f) = /P Sf(q; p)da(q; p) = /P f(q, p)p(g; p)dqdp, (1.4)

where the sign (...) designates the average over an ensemble of phase points.

It is understandable that in a sufficiently long time, 7, the phase trajectory
passes many times through each infinitesimal volume AgAg of the phase space.
Let At(g; p) be the part of the total time T during which the system states belong
to the phase space volume AgAg. Then, when the total time t goes to infinity, the
ratio At(q; p)/t tends to the limit:

At(q; p)
—= (1.5)

Aw(g; p) = lim
T—>00

It is important to note that, by virtue of relations (1.4) and (1.5), the averaging
with respect to the distribution function, also known as statistical averaging
allows one to drop the necessity of following the variation of physical quantity
f(gq; p) with time in order to determine its mean value:

(f) = lim L rf(t)dz. (1.6)
0

T—00 T
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Relationship (1.6) is known as the ergodic theorem and was first formulated by
Boltzmann (see textbook by Landau and Lifshitz (1988) for details).

1.2.2. Ensembles

The statistical distribution function p(gq; p) can be expressed entirely in terms of
some combinations of the variables ¢ and p, which remain constant when a
system moves as a closed system. These combinations are known as mechanical
invariants or integrals of motion, which remain constant during the motion of a
system state in phase space. The distribution function, being constructed from
mechanical invariants, is, therefore, itself a mechanical invariant.

It is possible to restrict significantly the number of mechanical invariants on
which the function p(g; p) can depend. In order to demonstrate this, we have to
take into account the fact that the distribution function p; ,(¢; p) for a non-
overlapping combination of two subsystems is equal to the product of distri-
bution functions p;(g; p) and p,(g; p) describing each subsystem:

p1+2(q; p) = pi(q; P)P2(q; p)

Hence, we obtain:

log[p1_»(q; p)] = log[pi(q; p)] + log[p2(q; p)], (1.7)

that is, the logarithm of the distribution function is an additive quantity. We
reach the conclusion, therefore, that the logarithm of the distribution function
must not be merely a mechanical invariant, but an additive mechanical invariant.
As we know from mechanics, there exist only seven independent additive
mechanical invariants: the energy E(g; p), three components of the momentum
vector P(q; p), and three components of the angular momentum vector M(q; p).
The only additive combination of these quantities is a linear combination of the
form:

loglpi(q: P)] = o + & cEf(q; p) + % p - Pi(q; p) + %m0 - Mi(q; ), j=1,2,
(1.8)

where coefficients o;, ; ¢, &; p and «; 5, are some constants of the j subsystem.
Conditions required for the determination of these constants include normal-
ization for o; and seven constant values of the additive mechanical invariants for
o g, % p and a;y. Therefore, the values of additive mechanical invariants
(energy, momentum, and angular momentum) completely define the statistical
properties of a closed system, that is, the statistical distribution function p;(q; p)
and the mean values of any physical quantity related to them.

The correct way of determining the distribution function for a closed system
is:

p(g; p) = const 8[Ey — E(q; p)] 8[Py — P(q; p)] {M — M(q; p)), (1.9)
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where E,, Py and M, are some given values of E(g; p), P(g; p) and M(q; p). The
presence of the Dirac delta function ensures that the distribution function p(q; p)
is zero at all points in phase space where one or more of seven quantities E(gq; p),
P(q; p) or M(q; p) is not equal to the given values E,, P, or M,. The statistical
distribution p(q; p) defined by expression (1.9) is known as microcanonical dis-
tribution describing the microcanonical ensemble of system states. The momen-
tum and angular momentum of the closed system depend on its motion as a
whole (uniform translation and uniform rotation). Therefore, one may conclude
that a statistical state executing a given motion depends only on its energy. In
consequence, energy is of great importance in statistical physics. Thus, the
Jj-subsystem distribution function acquires the following simple form:

In[pi(q; P)] = o; + ;g E(q; p), j=1,2. (1.10)

Therefore, the microcanonical distribution function can be simplified as follows:

P ) = Zah(Vi N) [y — E(g: )l Zuc Vi N) = p(N) / / S[Ey — E(q: p)ldadp,
(1.11)

where Z,.(V; N) is some normalization constant and p(N) is the degeneracy
factor giving the relative number of indistinguishable configurations in phase
space (see Section 2.2.3). The closed systems considered above are not of sub-
stantial interest in physics. It is much more important to study systems that
interact with their environment, by energy or/and matter exchange. Therefore,
let us first consider systems that can exchange energy with their environment. In
this case, equation (1.11) is no longer satisfied and an expression for the distri-
bution function p(g; p) can be derived directly from relationships given by
equations (1.7) and (1.10), which yield:

o(q: p) = Z7'(B: Vi N)e PECP) 7 (B Vi N) = p(N) / / e PE@P dgdp, (1.12)

where 8 is a constant, whose physical meaning will be described later. The result
given by expression (1.12) is one of the most important in statistical physics. It
gives the statistical distribution of any macroscopic subsystem that is a compara-
tively small part of a large closed system. The distribution (1.12), known as the
Gibbs distribution or canonical distribution, describes the canonical ensemble of
system states (phase points).

So far, we have always tacitly assumed that the number of particles in a system
is some given constant and have deliberately passed over the fact that in reality
particles may be exchanged between a system and its environment. In other
words, the number of particles N in the system will fluctuate about its mean
value (N). The distribution function now depends not only on the energy of the
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state but also on the number of particles N in the system. Equation (1.10),
therefore, acquires the form:

In[p;(q; p; N)) = &; + o g Ej(q; p) + aj N, j=1,2. (1.13)

An expression for the distribution function p(g; p; N) can be derived directly
from relationship (1.13) yielding:

p(g; s N) = Zyo (s V)V EO L 7, (B Vs )

> 1.14
— Zp(N)//eﬂ[MN—E(q;p:N)]dqdp’ ( )
N=0

where © is a constant that will be defined later. The distribution p(g; p; N),
known as the grand canonical distribution, describes the grand canonical ensemble
of system states.

1.2.3. Partition Functions

The normalization constants Z,,.(V; N), Z.(B; V; N) and Zy(B; V; n) intro-
duced by relationships (1.11), (1.12), and (1.13) respectively are known as parti-
tion functions. The partition function can be obtained by summing up the
Boltzmann factors, exp[—BE(q; p)], over all states. For systems possessing con-
tinuous spectra, the summation over states is substituted by integration over
phase space. As will be demonstrated later, the partition function serves as the
connection between macroscopic quantities and microscopic states.

The states of a classical system are continuously distributed in phase space
and, therefore, cannot be counted. In order to determine the classical analog of a
quantum state, let us take into account that the uncertainty AgAq in the deter-
mination of any quantum state is restricted from below (see Landau and Lifshitz
(1980) for details):

AqAp ~ I*N(Heisenberg uncertainty principle), (1.15)

where 7 is the Planck constant (h = 6.6256 - 10727 erg - sec) and s is a degree of
freedom of each molecule constituting the system (s = 3 for a one-atom mole-
cule, s = 5 for a rigid two-atom molecule, etc.). In other words, any phase point
located in a cell of volume /#*" cannot be distinguished from any other point
located in the same cell. Moreover, there is another source of uncertainty. In
quantum mechanics it is impossible to distinguish phase-space configurations
such as (A) state S; belongs to cell C; and state S, belongs to cell C, and (B)
state S belongs to cell C, and state S, belongs to cell Cy. Therefore, the system
containing N particles can possess N! indistinguishable configurations (N! differ-
ent permutations over N cells) of the same states in phase space. The expression
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for the degeneracy factor p(NV), first introduced in expression (1.11), has the
form:

1

PN) = (1.16)

1.2.3.1. The Microcanonical Ensemble

In this case the system under consideration is closed (there is neither energy nor
matter exchange with the environment). Given expressions (1.10) and (1.11), it is
straightforward to derive the following expression for the partition function in
the case of a microcanonical ensemble:

1
ZoelViN) = v [ [ 0 — B ldady. (1.17)

1.2.3.2. The Canonical Ensemble

In this case, the system under consideration is “‘semi-closed” (there is energy but
no matter exchange with the environment). Given expressions (1.10) and (1.11),
it is straightforward to derive the following expression for the partition function
in the case of a canonical ensemble:

1 e
Z(B: Vi N) vy / f e PE@P dqdp. (1.18)

In classical statistics, the energy E(q, p) can be written as the sum of the potential
U(q) and kinetic K(p) energies. The potential energy is dependent on the inter-
action between the system molecules and is a function of their coordinates. The
kinetic energy is a quadratic function of the momenta of the molecules.
Therefore, the probability dw(q; p) introduced by relations (1.1) and (1.2) can
be presented as the product of two factors:

daw(q; p) = const - eV De K0 q4dp, (1.19)

where the first factor depends only on the molecular coordinates and the second
only on their momenta. Equation (1.14) allows the conclusion that the probabil-
ities for molecular coordinates and momenta are independent and the probabil-
ity of one does not influence probability of the various values of the other. Thus,
the probabilities dw(q) and dw(p) of the various values of the molecular coordi-
nates and momenta can be written in the form:

dw(g) = consty, - ¢~V @dg, dw(p) consty - e XPdp, (1.20)

where const = constyconstg. Since the sum of probabilities of all possible values
of the momenta and coordinates must be unity, each of the probabilities dw(q)
and dw(p) has to be normalized separately by integrating over the coordinates
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and momenta, respectively. Therefore, normalization allows the determination
of constants const;; and constg.

Let us consider the probability distribution for the molecular momenta. The
kinetic energy of the entire system is equal to the sum of the kinetic energies of all
molecules in the system. This means that the probability dw(p) can be expressed
as the product of factors, with each factor dependent on the momentum of only
one molecule. This means that the momentum probabilities of different mole-
cules are independent (the momentum of one molecule does not affect the prob-
abilities of various momenta of any other molecule). The probability distribution
for the momentum of each individual molecule can, therefore, be written.

For a molecule of mass m the kinetic energy K(p) is: K(p) =
K(py, py:p-) = P>+ pf + p2)/(2m), where p,, Py, and p. are the Cartesian coor-
dinates of its momentum. Thus, the probability dw(p) = dw(py, p,, p-) acquires
the form:

pr+pr+p?

dp.dp.dp.. 1.21
Sk, T ) p.dp,dp. (1.21)

da(py, py, p-) = constg exp(—

The normalization constant constx can be easily found to be consty =
(2mmkzT)"*/*. Changing from momenta to velocities, p = mw, one can write
the corresponding velocity probability dw(v) = dw(vy, v, v.) as follows:

da(vy, v, v.) = p(vy, vy, v)dvy, dvy, dv., p(vy, vy, v,)

RN 0 SR ) (122)
P 2sT '

- (2nkBT

The distribution function p(vy, vy, v.) is known in the literature as the Maxwell-
Boltzmann distribution.

1.2.3.3. The Grand Canonical Ensemble

In this case the system under consideration is open (there are both the energy and
matter exchanges with the environment). Given expressions (1.21) and (1.22), the
following expression can be derived for the partition function in the case of a
grand canonical ensemble:

2 PN EPT.
ZoB: Vi)=Y g / / e PEGrN qdp. (1.23)
N=0 :

This relationship for partition function is sometimes rewritten in terms of the
fugacity, z = eP*:

00 ZN .
Zu(B:Viz) =) g f / e PN dgdp, (1.24)
N=0 .
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In this section we have introduced three different ensembles that describe a
system in thermodynamic equilibrium. The microcanonical ensemble describes
a closed system, the internal energy E(g; p) of which is fixed: E(g; p) = Ey. The
canonical ensemble describes a ‘“‘semi-closed” system, the energy of which is not
fixed. However, the mean internal energy, (E) of the canonical ensemble is fixed.
The grand canonical ensemble describes an open system, the energy and number
of particles of which are not fixed. However, the mean energy (E) and the
number of particles (V) of a grand canonical ensemble are fixed.

It is important to note that the forms of partition function (1.17), (1.18), and
(1.24) obtained for the equilibrium microcanonical, canonical, and grand cano-
nical ensembles correspond to the maximum entropy achievable in a state of
thermodynamic equilibrium (see Sections 1.3.1 and 1.3.2).

1.2.4. Relationship between Statistical Mechanics and
Thermodynamics

Classical thermodynamics is based on many empirical results, which have been
studied, systemized, generalized, and formulated in the form of the Three Laws of
Thermodynamics. These laws allow derivation of many useful relationships
between different quantities characterizing various mechanical and thermal pro-
cesses. However, there is a flaw inherent in thermodynamics. Thermodynamics
provides relationships between various quantities, but does not provide methods
to determine their absolute values. For example, thermodynamics establishes a
functional relationship between the heat capacity Cy at constant volume V and
the heat capacity Cp at constant pressure P. If Cp is known, then Cy can be
determined theoretically without need for experiments. However, thermo-
dynamics alone provides no method to allow determination of the value of
Cp itself. This is the role of statistical mechanics.

Therefore, statistical mechanics allows solution of the following two major
problems:

1. derivation of expressions for macroscopic thermodynamic quantities from micro-
scopic mechanics (for example, from the molecular energy levels that can be
determined by spectroscopic methods);

2. derivation of microscopic properties (for example, the nature of intermolecular
interactions) from the measurable macroscopic quantities.

All quantities used in thermodynamics can be divided into three major groups.
The first group contains external quantities, parameters such as volume 7, num-
ber of particles N, external fields (gravitational, electromagnetic), etc., the abso-
lute values of which are fixed either by the external environment or by an
experimentalist. The second group contains mechanical quantities, such as inter-
nal energy E and pressure P. The third group is specific to thermodynamics and
contains thermal quantities, parameters such as temperature, entropy, etc. These
quantities do not have any microscopic meaning and can be defined exclusively
on the macroscopic level. For example, one can define the molecular energy, but
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it is impossible to define the temperature of a single molecule. Therefore, thermal
quantities are defined by the entire ensemble.

For the sake of simplicity, let us consider the most widely used case of cano-
nical ensemble and introduce the function H.(B; V'; N):

Z.(B; Vi N) = ¢ PHBVN), (1.25)

There exists the following important relationship:

0 0
[aﬂ (BH(p ))} L= T apAB VN
1 :

= Z BV N) / / E(g; p)e” """ dqdp = (E),

(1.26)

where the brackets [...];- y designate an expression taken at constant V" and N.
Relationship (1.26) is easily recognizable in traditional thermodynamics if one
accepts the following treatments:

1. B=1/kyT is the inverse temperature (ky = 1.38054 x 10™'%rg/K is the
Boltzmann constant).

2. H.B; V; N) is the Helmholtz free energy of the canonical ensemble (see Section
1.3.8).

Thus, within the framework of statistical mechanics the Helmholtz free energy of
canonical ensemble H.(8; V'; N) can be defined as follows:

H.(B; V; N) = —kgT In[Z.(8; V; N)]. (1.27)

The same considerations carried out for the grand canonical ensemble allow
derivation of another important relationship:

B [3ch(ﬁ; V; u)}
p=|———
T,V

. (1.28)

where u is the chemical potential for one molecule. Therefore, basic relationships
(1.26) and (1.28) provide the linkage between statistical mechanics and thermo-
dynamics.

1.2.5. Fluctuations

Let us consider the most widely utilized case of the canonical ensemble. The
normalization condition for this ensemble can be rewritten as:

1 - .
//eﬁ[Hc(ﬂ, ViN-EGPdgdp = 1. (1.29)

NN
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Differentiation of this relationship twice with respect to 8 gives:

2

] e 9
W//eﬂ[H°(‘3’V‘N) E(""’)]{(@(ﬂlﬂ(ﬁ; Vi N)) —E(q;p))

, (1.30)
+ 8—}32[/31‘10(/9; Vi N)]} dgdp = 0.
Now, taking into account relationship (1.26) for (E), we obtain:
(E—(E)’) = (E) —(E)’ = —83—;[;3Hc(ﬂ; ViN) = —i?, (1.31)
where
(E2) = h“"‘}N! / / EXq: p)e BV -Eanlgydy.

It is important to note that differentiation with respect to g in expressions (1.30)
and (1.31) is carried out at constant volume V. Therefore, expression (1.31) can
be rewritten as follows:

(E — (E))*) = (E*) — (E)?* = kg T*Cy, where C)y = [%] . (1.32)
|4

Relationship (1.32) is fundamental since it relates fluctuations of the microscopic
energy to a macroscopic measurable quantity, such as the heat capacity at con-
stant volume. Cy and E are additive quantities (see Section 1.2.2 for the defini-
tion of additivity), that is, they are proportional to N. Therefore, the relative
contribution of fluctuations can be quantitatively estimated from the ratio:

o e N
(E)((E (E))) ~ =N""'". (1.33)

This ratio demonstrates that, even though the energy fluctuations are quite
sizable in absolute value (~ N I/ 2), their contribution is negligible compared to
the mean internal energy (E) ~ N itself.

To conclude this section let us note that the problem of fluctuations is not
always trivial because of their small relative value. There is a non-zero prob-
ability of the existence of huge local fluctuations confined within small volumes.
Such huge fluctuations are extremely important in consideration of many phy-
sical phenomena such as light scattering, nucleation, phase transition, plasma
oscillations, etc.
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1.3. Equilibrium Thermodynamics

Thermodynamic variables can be defined as variables describing macroscopic
states of matter. They include those that have both thermodynamic and purely
mechanical significance, such as energy and volume. There are also variables of
another kind, such as entropy and temperature, that originate from statistical
laws and have no meaning when applied to nonmacroscopic systems.
Thermodynamic variables are subjected to fluctuations. However, these fluctua-
tions are negligible because thermodynamic variables are varying only with the
macroscopic state of matter (see Section 1.2.5).

1.3.1. Entropy

Let us consider a closed system of energy FE in statistical equilibrium, that is in a
state obtained in the result of all possible relaxation processes which could occur
in the system. Its N, subsystems of energies E;(j = 1, ..., N,) can be described in
terms of the statistical distributions p(E;) considered as some functions of energy.
Therefore, the probability Aw(E;) for the j subsystem to have energy in the
interval [E;, E; + AE;] can be given by the following expression:

dr(&)
dE;

Aw(E)) = p(E)AT(E)), AT(E)) = AE, j=1,...,N, (134

where I'(E)) is a number of the j-subsystem states with energies less than or equal
to E; and AI'(E)) is a number of the j-subsystem states corresponding to the
energy interval AE;. The interval AE; is equal in order of magnitude to the mean
energy fluctuation of the j subsystem. The quantity AT'(E)) represents the “degree
of broadening” of a macroscopic state of energy E with respect to microscopic
states and by virtue of this is usually called the statistical weight of the macro-
scopic state of the j subsystem. The normalization condition for the probability
Aw(E)) is:

/ dw(E) = / p(E)dT(E) = 1. (1.35)

The concept of statistical equilibrium implies that the function p(E;) has a very
sharp maximum at E; = (E;), being appreciably different from zero only in
the immediate neighborhood of this point. Therefore, condition (1.35) can be
rewritten in the following simple form:

dI'((E)))

dE

P((E))AT((E;) = 1, where AT((E})) = AE;. (1.36)

The definition (equation (1.10)) of the distribution function for the j subsystem,
p((E;)), acquires the form:
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log[p({Ej))] = o; + a; g(E)). (1.37)

It is important to emphasize that log[op({E;))] is a linear function of (Ej).
The logarithm of statistical weight AT'(E)):

S; = log[AT(E))], (1.38)

is known as the j-subsystem entropy. The entropy, like the statistical weight itself,
is dimensionless. Because the number of states AT'(E;) is not less than unity,
the entropy cannot be negative. Substituting equations (1.36) and (1.37) into
equation (1.38) results in an expression for the entropy:

S; = —loglp((E))] = —(loglp(E)]) = —p(E;) loglp(E))]. (1.39)

Let us now return to the closed system as a whole. The statistical weight of the
system, AT'(E), defined as the product of its subsystem weights, yields the follow-
ing expression for the entropy of a closed system:

=z

S NY
=1

S=)8==_ n(E)loglp(E), (1.40)
1 J

~.
Il

showing that the entropy is an additive quantity.
The microcanonical ensemble describing a closed system has the form (see
equation (1.11)):

Ny N,
AW(E) = Znid(Ey — E)[ [ AT(E),  where E =) E;. (1.41)
j=1 =1
If equation (1.38) is taken into account, this expression can be rewritten as
follows:

N, Ny
AW(E) = Zye8(Ey — E)e® [ [ AE;,  where S = S(E)). (1.42)

J=1 Jj=1

Expression (1.42) emphasizes that the quantity Aw(E) is the probability that the
subsystems of a closed system have energies in given intervals {[E;, E; + AE}];
j=1,...,N,}. The factor §(Ey — E) ensures that the total system energy E has
the given value E,.

Attention should be drawn to the significance of time in the definition of
entropy. The entropy is a quantity that describes the average properties of the
system over some non-zero interval of time (Af). In order to determine the
entropy for the given (A7) we have to imagine the system divided into subsystems
so small that their relaxation times are small in comparison with (A¢). Since these
subsystems have to be macroscopic, when the intervals (Af) are too short, the
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concept of entropy becomes meaningless so that it is not possible to speak of an
“instantaneous’ value of entropy.

1.3.2. The Law of Entropy Increase

If at some initial states a closed system is not in statistical equilibrium, its
macroscopic state will vary in time until eventually the system reaches equili-
brium. It follows from equation (1.42), which expresses the probability of energy
distribution between the system subsystems, that this probability is an increasing
function of time. This increase in probability is significant because it is exponen-
tial with respect to entropy. On the basis of this result, it may be concluded that
any process occurring in a nonequilibrium system develops in such a way that the
system continuously passes from states of lower entropy to those of higher
entropy until finally the entropy reaches its maximum possible value, which
corresponds to complete statistical equilibrium. Therefore, if a closed system is
in a nonequilibrium state at some time, the most probable path for the system to
take as it moves towards equilibrium is the path that results in an increase in
entropy. The concept of the “most probable” evolution path means that the
probability of transition to states of higher entropy is much higher than the
probability of any other path. If decreases in entropy due to negligible fluctua-
tions are ignored, one can formulate the law of entropy increase as:

if at some time instant the entropy of a closed system does not have its maximum
value, then at subsequent instants the entropy will not decrease; it will increase or at
least remain constant.

It follows from the law of entropy increase that all processes occurring within
macroscopic systems can be divided into irreversible and reversible processes. The
irreversible processes are those that are accompanied by an increase in entropy of
the closed system as a whole. The reversible processes are those in which the
entropy of the closed system as a whole remains constant.

The law of entropy increase or the second law of thermodynamics was discov-
ered by R. Clausius in 1865. Its statistical explanation was first given by
L. Boltzmann in the 1870s. Other interesting details and consequences of the
second law of thermodynamics can be found in Haase (1969).

1.3.3. Adiabatic Processes

There is a special class of interactions between a system and its environment that
consists only in a change in the external conditions. By external conditions we
mean various external fields. In practice, the external conditions are most often
determined by the fact that the system must have a prescribed volume V. The
presence of finite volume can be regarded as a particular type of external field,
because the walls limiting the volume are equivalent to an infinite potential
barrier that prevents the molecules of the system from escaping. If the system
is subjected only to such interactions which result in changes in external condi-
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tions, it is said to be thermally isolated. 1t should be emphasized that, although a
thermally isolated system does not interact directly with other systems, its energy
may vary with time, that is, the thermally isolated system is ‘‘semi-closed” and its
description can be given in terms of the canonical ensemble (see Sections 1.2.2
and 1.2.3).

Let us suppose that the system is thermally isolated and is subjected to a
process due to variations in external conditions that vary sufficiently slowly.
Such a process is known as an adiabatic process. The main characteristic of
such a process is that the system entropy remains unchanged, that is, the adia-
batic process is reversible.

1.3.4. Temperature

Let us consider two subsystems in thermodynamic equilibrium (statistical equili-
brium), forming a closed system. For a given energy E, the entropy S of this
system has its maximum value. The energy £ = E| + E,, where E| and E, are the
energies of the first and second subsystems, respectively, and the entropy S of the
system S = S|(E)) + S»(E,). The entropy of each subsystem is a function of its
energy. The condition for the maximum entropy at thermodynamic equilibrium
is given by the equation:

ds  ds; dS,dE, dS, dS,
dE, dE, dE,dE, dE, dE, (£ 1 const). (1.43)

Thus, if the system is in a state of thermodynamic equilibrium, the derivative of
entropy with respect to energy is the same for every one of its subsystems, and
constant throughout the system. Thermodynamic variable, which is the recipro-
cal of the derivative of system entropy S with respect to its energy E, is known as
the system temperature T:

Z=_. (1.44)

The temperatures of subsystems in thermodynamic equilibrium are equal:
T, = T,. Like entropy, the temperature is a purely statistical quantity having
meaning only for macroscopic systems.

1.3.5. Pressure

The macroscopic state of a system at rest in thermodynamic equilibrium is
entirely determined by only two variables, for example by the energy E and
volume V. All other thermodynamic variables can be expressed as functions of
these two. To demonstrate this let us derive an expression for pressure in an
adiabatic process (constant entropy process). For this purpose, let us first
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calculate the force F exerted by the system on the surface bounding its volume.
The force acting on the surface element dA4 is:

_[EM] _ _[2E| oV _ _[9E
F_[ or ]S_ [31/}38" a [aV]SdA, (149

where dV = or - dA, E(r) is the system energy as a function of the radius vector r
of the surface element dA4 and the symbol [.. ] designates an expression taken at
constant entropy. The requirement of constant entropy emphasizes that the
process resulting in the force F applied to the surface area d4 is adiabatic.
Hence, the force applied to the surface element is normal to this element and
proportional to its area. Its magnitude per unit area is:

OE
P= _<W>S' (1.46)

This quantity is known as pressure.

1.3.6. Internal Energy

Internal energy E of a thermodynamic system can be defined as the total system
energy with the kinetic and potential energies of the system as a whole sub-
tracted. This energy can be experimentally measured in two different ways:

1.3.6.1. Measuring the Work W Done on the Given System by
External Forces

Negative work (W < 0) means that the system itself does work equal to | W] on
some external object (for example in expanding). In this case the system is
assumed to be thermally isolated. Therefore, any change of its energy is due to
the work done on it. If it is assumed that the system is in a state of mechanical
equilibrium, i.e. at each time instant the pressure P is constant throughout the
system, the work done on the system per unit time is:

dw dv
—=—-P—. 1.47
dt dt (1.47)
In compression dV/dt < 0, so that dW /d¢ > 0. Result (1.47) is applicable to
both reversible and irreversible conditions.

1.3.6.2. Measuring the Energy Q which the System Gains or
Loses by Direct Transfer

This energy change occurs in addition to the work done and it assumes that the
system is not thermally isolated. The energy quantity Q is known as heat gained
or lost by the system.
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Therefore, the change in the internal energy of the thermodynamic system per
unit time may be presented in the form:

dE dQ dv
< -a Tar (1.48)
Let us assume that at every time instant during the process the system may be
regarded as being in a state of thermal equilibrium at given internal energy and
volume. This does not necessarily mean that the process is reversible because the
system may not be in equilibrium with its environment. Taking into account
equations (1.44) and (1.46) for the partial differentials of function
E = E(S, V), we can see that dQ = T'dS. Therefore, the relationship (1.48) can
be rewritten as follows:

%:T%—P%, ordE=T7dS — PdV. (1.49)
It is important to note that the work dWW and heat dQ gained by the system
during an infinitesimal change of the system state are not total differentials. Only
their sum dE = dW + dQ, that is, the change of internal energy dE is the total
differential. It therefore makes sense to introduce the concept of internal energy
E at a given state and it is meaningless to speak about the heat Q which system
possesses in a given state. The internal energy of the system at equilibrium
cannot be divided into mechanical and thermal parts. However, such a division
is possible when the system goes from one state into another.

The relationship (1.49) expresses the first law of thermodynamics. As can be
seen from equation (1.49), this law is just a statement of internal energy con-
servation, which specifies two ways for the energy to change: as work done on, or
by, the system and as heat flowing into, or out of, the system.

1.3.7. Enthalpy

If the volume of a system remains constant during a process, then dE£ = dQ (see
equation (1.49)). The quantity of heat gained by the system is equal to the change
of its internal energy. If the process occurs at constant pressure, the quantity of
heat gained or lost during the process can be written as the following differential:

dQ =dR = d(E + PV) = TdS + VdP, (1.50)

since d(VP) = VdP + PdV. The quantity R = E + VP is known as the enthalpy
or heat function of the system. The change of the enthalpy in a process occurring
at constant pressure is, therefore, equal to the quantity of heat gained or lost by
the system. It follows from expression (1.50) that:

oR oR
T= (%)f (ﬁ)s' (131
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If the system is thermally isolated (which does not imply that the system is a
closed one), then dQ = 0. This means that R = const, that is, the enthalpy is
conserved in processes occurring at constant pressure and involving a thermally
isolated system.

1.3.8. The Helmholtz Free Energy

The work done on a thermodynamic system in an infinitesimal isothermal rever-
sible change of the system state can be given as follows:

dW = dH = d(E — TS) = —SdT — PdV, (1.52)

since d(7'S) = TdS + SdT. The quantity H = E — TS is another function of the
system state, known as the Helmholtz free energy of the thermodynamic system
that possesses the total differential. Therefore, the work done on the system in a
reversible isothermal process is equal to the change in its Helmholtz free energy.
It follows from expression (1.52) that:

oH oH
s=-(2) . re-(2). 059

Utilizing the relationship £ = F 4+ TS one can express the internal energy in
terms of the Helmholtz free energy as follows:

B OH\ [ 8 (H
penr(2) —[2(9)] 059

1.3.9. The Gibbs Free Energy

One additional total differential dF, with respect to pressure P, and temperature
T, still remains for consideration. Its derivation is straightforward:

dF = d(E — TS+ PV) = d(R— TS) = d(H + PV) = —SdT + VdP. (1.55)

The quantity F introduced by this relationship is known as the Gibbs free energy
of the thermodynamic system. It follows from expression (1.55) that:

oF oF
S= ‘(a—r)g V= (a—P)T' (1:56

The enthalpy R is expressed in terms of the Gibbs free energy F in the same way
as the internal energy E is expressed in terms of the Helmholtz free energy H (see

equation (1.54)):
R=F_—T oF __T2i_1
<82>P [82 <Z)i|P' (1.57)
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1.3.10. “Open” Thermodynamic Systems

Equations (1.49), (1.50), (1.52), and (1.55) demonstrate that if one knows any of
the thermodynamic quantities, internal energy E, enthalpy R, the Helmholtz free
energy H, or the Gibbs free energy F, as a function of the corresponding two
thermodynamic variables, then by taking the partial derivatives of that quantity
one can determine all the remaining thermodynamic quantities.

Thermodynamic quantities R, H, and F also have the property of additivity as
previously shown for energy E and entropy S. This property follows directly
from their definitions (see equations (1.50), (1.52), and (1.55)) if one assumes that
pressure and temperature are constants throughout a system in an equilibrium
state. The additivity of a quantity signifies that when the amount of matter (such
as the number N of particles) is changed by a given factor, the quantity is
changed by the same factor. In other words, one can state that the additive
thermodynamic quantities are some linear functions with respect to the additive
variables.

Let us express the internal energy E of the system as a function of entropy S,
volume ¥V, and number of particles N. Since S and V are themselves additive, this
function has to have the following form:

SV
ES,V,N)=Nfg|l—=.—=). 1.58
5.V = ¥ ) (1.59)
The quantity E is presented as the most general linear function in S, V, and N.
The same considerations allow one to conclude that the enthalpy R, which is a
function of entropy S, pressure P, and number of particles &V, has the following
form:

R(S, P, N) = Nfz (}f, P). (1.59)

The Helmholtz and Gibbs free energies, which are the functions of 7, V, N and
P, T, N, respectively, allow the following forms:

H(T,V,N)= NfH(T, %), (P, T,N)= Nfg(P, T). (1.60)

In the foregoing discussions we have assumed that the number of particles N is a
parameter with a given constant value. Let us now consider N as an independent
variable of an “open” thermodynamic system. Then the expressions for the total
differentials of the thermodynamic quantities have to contain terms proportional
to dNV:

dE = TdS — PdV + udN, (1.61)
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