

Physics of Crystal Growth

This text introduces the physical principles of how and why crystals grow.

The first three chapters recall the fundamental properties of crystal surfaces at equilibrium. The next six chapters describe simple models and basic concepts of crystal growth including diffusion, thermal smoothing of a surface, and applications to semiconductors. Following chapters examine more complex topics such as kinetic roughness, growth instabilities, and elastic effects. A brief closing chapter looks back at the crucial contributions of crystal growth in electronics during this century. The book focuses on growth using molecular beam epitaxy. Throughout, the emphasis is on the role played by modern statistical physics. Informative appendices, interesting exercises and an extensive bibliography reinforce the text.

This book will be of interest to graduate students and researchers in statistical physics, materials science, surface physics and solid state physics. It will also be suitable for use as a coursebook at beginning graduate level.

Collection Aléa-Saclay: Monographs and Texts in Statistical Physics

General editor: Claude Godrèche

- C. Godrèche (ed.): Solids far from equilibrium
- P. Peretto: An introduction to the modeling of neural networks
- C. Godrèche and P. Manneville (eds.): Hydrodynamics and nonlinear instabilities
- A. Pimpinelli and J. Villain: Physics of crystal growth
- D. H. Rothman and S. Zaleski: Lattice-gas cellular automata
- B. Chopard and M. Droz: Cellular automata modeling of physical systems

Physics of Crystal Growth

Alberto Pimpinelli Université Blaise Pascal – Clermont-Ferrand II

Jacques Villain
Centre d'Études Nucléaires de Grenoble

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town,
Singapore, São Paulo, Delhi, Tokyo, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521440677

© Cambridge University Press 1998

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 1998

A catalogue record for this publication is available from the British Library

Library of Congress cataloguing in publication data
Pimpinelli, Alberto.

Physics of crystal growth /Alberto Pimpinelli, Jacques Villain.
p. cm. – (Collection Alea – Saclay: 4)
Includes bibliographical references and index.
ISBN 0 521 55198 6. – ISBN 0 521 55855 7 (pbk.)

1. Solids – Surfaces. 2. Crystal growth. 3. Statistical physics.
I. Villain, Jacques. II. Title. III. Series.
QC176.8.S8P56 1997
548'.5 – dc21 96-51772 CIP

ISBN 978-0-521-55198-4 Hardback ISBN 978-0-521-55855-6 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Information regarding prices, travel timetables, and other factual information given in this work is correct at the time of first printing but Cambridge University Press does not guarantee the accuracy of such information thereafter.

Contents

	Preface	xiii
	List of symbols	xv
1	Morphology of a crystal surface	1
1.1	A high-symmetry surface observed with a microscope	2
1.2	In situ microscopy and diffraction	7
1.3	Step free energy and thermal roughness of a surface	7
1.4	The roughening transition	10
1.5	Smooth and rough surfaces	12
1.6	The SOS model and other models	15
1.7	Roughening transition of a vicinal crystal surface	16
1.8	The roughening transition: a very weak transition	17
1.9	Conclusion	21
2	Surface free energy, step free energy, and chemical potential	23
2.1	Surface tension	23
2.2	Small surface fluctuations and surface rigidity	26
2.3	Singularities of the surface tension	27
2.4	Chemical potential	28
2.5	Step line tension and step chemical potential	33
2.6	Step line tension close to a high-symmetry direction at low T	35
2.7	Thermal fluctuations at the midpoint of a line of tension γ	37
2.8	The case of a compressible solid body	38
2.9	Step-step interactions	39
3	The equilibrium crystal shape	43
3.1	Equilibrium shape: general principles	43
3.2	The Wulff construction	46
3.3	The Legendre transformation	47

vii

V111	Contents	
3.4	Legendre transform and crystal shape	48
3.5	Surface shape near a facet	50
3.6	The double tangent construction	51
3.7	The shape of a two-dimensional crystal	53
3.8	Adsorption of impurities and the equilibrium shape	55
3.9	Pedal, taupins and Legendre transform	56
3.10	Conclusion	57
4	Growth and dissolution crystal shapes: Frank's model	60
4.1	Frank's model	61
4.2	Kinematic Wulff's construction	62
4.3	Stability of self-similar shapes	64
4.4	Frank's theorem	66
4.5	Examples	66
4.6	Experiments	69
4.7	Roughening and faceting	69
4.8	Conclusion	69
5	Crystal growth: the abc	70
5.1	The different types of heterogrowth	70
5.2	Wetting	73
5.3	Commensurate and incommensurate growth	73
5.4	Effects of the elasticity of the solid	75
5.5	Nucleation, steps, dislocations, Frank-Read sources	75
5.6	Supersaturation	78
5.7	Kinetic roughening during growth at small supersaturation	79
5.8	Evaporation rate, saturating vapour pressure, cohesive energy, and	0.1
5.0	sticking coefficient	81
5.9	Growth from the vapour	83
5.10	Segregation, interdiffusion, buffer layers	84
6	Growth and evaporation of a stepped surface	88
6.1	General equations	89
6.2	The quasi-static approximation	90
6.3	The case without evaporation: validity of the BCF model	92
6.4	The Schwoebel effect	94
6.5	Advacancies and evaporation	97
6.6	Validity of the BCF model in the case of evaporation	98
6.7	Step bunching and macrosteps	100
7	Diffusion	111
7.1	Mass diffusion and tracer diffusion	112
7.2	Conservation law and current density	114

	Contents	ix
7.3	Vacancies and interstitial defects in a bulk solid	114
7.4	Surface diffusion	116
7.5	Diffusion under the effect of a chemical potential gradient	117
7.6	Diffusion of radioactive tracers	119
7.7	Activation energy	119
7.8	Surface melting	123
7.9	Calculation of the diffusion constant	124
7.10	Diffusion of big adsorbed clusters	124
8	Thermal smoothing of a surface	130
8.1	General features	131
8.2	The three ways to transport matter	132
8.3	Smoothing of a surface above its roughening transition	133
8.4	Thermal smoothing due to diffusion in the bulk solid	136
8.5	Smoothing below the roughening transition	137
8.6	Smoothing of a macroscopic profile below T_R	140
8.7	Grooves parallel to a high-symmetry orientation	142
9	Silicon and other semiconducting materials	144
9.1	The crystal structure	144
9.2	The (001) face of semiconductors	146
9.3	Surface reconstruction	147
9.4	Anisotropy of surface diffusion and sticking at steps	148
9.5	Crystalline growth vs. amorphous growth	148
9.6	The binary compounds AB	149
9.7	Step and kink structure	150
9.8	The (111) face of semiconductors	150
9.9	Orders of magnitude	151
10	Growth instabilities of a planar front	156
10.1	Diffusion limited aggregation: shape instabilities	156
10.2	Linear stability analysis: the Bales-Zangwill instability	158
10.3	Stabilizing effects: line or surface tension	162
10.4	Stability of a regular array of straight steps: the general case	164
10.5	The case of MBE growth without evaporation	167
10.6	Beyond the linear stability analysis: cellular instabilities	168
10.7	The Mullins-Sekerka instability	170
10.8	Growth instabilities in metallurgy	174
10.9	Dendrites	176
10.10	Conclusion	177
11	Nucleation and the adatom diffusion length	181
11.1	The definition of the diffusion length	182

X	Contents	
11.2	The nucleation process	183
11.3	Adatom lifetime and adatom density	185
11.4	Adatom-adatom and adatom-island collisions	185
11.5	The case $i^* = 1$	186
11.6	Numerical simulations and controversies	187
11.7	Experiments	188
11.8	The case $i^* = 2$	190
11.9	Generalization	194
11.10	Diffraction oscillations in MBE	195
11.11	Critical nucleus size and numerical simulations	196
11.12	Surfactants	197
12	Growth roughness at long lengthscales in the linear	
	approximation	201
12.1	What is a rough surface?	201
12.2	Random fluctuations and healing mechanisms	202
12.3	A subject of fundamental, rather than technological, interest	204
12.4	The linear approximation (Edwards & Wilkinson 1982)	205
12.5	Lower and upper critical dimensions	206
12.6	Correlation length	207
12,7	Scaling behaviour and exponents	208
13	The Kardar-Parisi-Zhang equation	211
13.1	The most general growth equation	211
13.2	Relevant and irrelevant terms in (13.1): the KPZ equation	213
13.3	Upper critical dimension and exponents	215
13.4	Behaviour of λ near solid-fluid equilibrium	217
13.5	A relation between the exponents of the KPZ model	218
13.6	Numerical values of the coefficients λ and ν	219
13.7	The KPZ model without fluctuations ($\delta f = 0$)	219
14	Growth without evaporation	221
14.1	Where λ is shown to vanish in the KPZ equation	221
14.2	Diffusion bias and the Eaglesham-Gilmer instability	222
14.3	A theorist's problem: the case $\lambda = v = 0$	224
14.4	Calculation of the roughness exponents	225
14.5	Numerical simulations	227
14.6	The Montréal model	227
14.7	Conclusion	228
15	Elastic interactions between defects on a crystal surface	230
15.1	Introduction	231
15.2	Elastic interaction between two adatoms at a distance r	232

	Contents	xi
15.3	Interaction between two parallel rows of adatoms	234
15.4	Interaction between two semi-infinite adsorbed layers	236
15.5	Steps on a clean surface	238
15.6	More general formulae for elastic interactions	241
15.7	Instability of a constrained adsorbate	243
16	General equations of an elastic solid	249
16.1	Memento of elasticity in a bulk solid	249
16.2	Elasticity with an interface	252
16.3	The isotropic solid	255
16.4	Homogeneous solid under uniform hydrostatic pressure	256
16.5	Free energy	257
16.6	The equilibrium free energy as a surface integral	259
16.7	Solid adsorbate in epitaxy with a semi-infinite crystal	261
16.8	The Grinfeld instability	264
16.9	Dynamics of the Grinfeld instability	268
16.10	Surface stress and surface tension: Shuttleworth relation	268
16.11	Force dipoles, adatoms and steps	270
17	Technology, crystal growth and surface science	277
17.1	Introduction	277
17.2	The first half of the twentieth century: the age of the radio	278
17.3	The third quarter of the twentieth century: the age of transistors	278
17.4	The last quarter of the twentieth century: the age of chips	281
17.5	MOSFETS and memories	282
17.6	From electronics to optics	284
17.7	Semiconductor lasers	285
17.8	Quantum wells	287
	Appendix A - From the discrete Gaussian model to	
	the two-dimensional Coulomb gas	289
	Appendix B – The renormalization group applied to the two-dimensional Coulomb gas	293
	· ·	293
	Appendix C – Entropic interaction between steps or other linear defects	296
	other linear defects	290
	Appendix D - Wulff's theorem finally proved	300
	Appendix E - Proof of Frank's theorem	304
	Appendix F - Step flow with a Schwoebel effect	309
	Appendix G – Dispersion relations for the fluctuations	212
	of a train of steps	312

Index

xii	Contents	
	Appendix H – Adatom diffusion length ℓ_s and nucleation	316
	Appendix I – The Edwards-Wilkinson model	319
	Appendix J – Calculation of the coefficients of (13.1) for a stepped surface	322
	Appendix K – Molecular beam epitaxy, the KPZ model, the Edwards-Wilkinson model, and similar models	324
	Appendix L - Renormalization of the KPZ model	326
	Appendix M – Elasticity in a discrete lattice	332
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	335
	Appendix O – Elastic dipoles in the z direction	342
	Appendix P - Elastic constants of a cubic crystal	345
	References	347

374

Preface

In writing a preface, an author is faced with the question: what is this book of mine? Of course, in the end only the reader will decide what it really is. The scope of this preface, as of all prefaces, is to say what it was intended to be.

This book tries to offer a reasonably complete description of the physical phenomena which make solid materials grow in a certain way, homogeneous or not, rough or smooth. These phenomena belong to chemistry, quantum physics, mechanics, statistical mechanics. However, chemistry, mechanics and quantum physics are essentially the same during growth as they are at equilibrium. The statistical aspects are quite different. For this reason, the authors have insisted on statistical mechanics.

Another reason to emphasize the statistical mechanical concepts is that they will probably survive. The concepts developed many years ago by Frank, or more recently by Kardar, Parisi and Zhang are still valid while, for instance, quantum mechanical calculations of the relevant energy parameters will certainly evolve a lot in the next few years. We have not considered it useful to devote too many pages to them, but we have tried to present the frame in which the data can be inserted, as soon as they are known.

However, although emphasis is on statistical mechanics, other aspects are not ignored, even though they may have been treated somewhat superficially. The reader will find more detailed information in an extensive bibliography, where all titles are given in extenso, thus making its use much easier

This book is mainly devoted to growth, and therefore to non-equilibrium processes. Nevertheless, we have tried to make it self-contained and to incorporate some elements of equilibrium surface physics, for instance the roughening transition and the equilibrium shape. The reader eager to know more will again find the necessary references in the bibliography.

xiii

xiv Preface

The authors are theorists and their book is mainly devoted to theory. Few details are given on experimental methods, but many experimental pictures (mostly from scanning tunneling microscopy) show how real materials do behave. In this domain, too, an abundant bibliography is available.

Although the responsability for all which is written here—good or bad—is completely ours, we owe a lot to all those who contributed to our understanding of the subject. We wish to thank J.M. Bermond, H. Bonzel, J.-P. Bucher, J. Chevrier, G. Comsa, J. Ernst, J. Frenken, M. Hanbücken, J.C. Heyraud, K. Kern, R. Kern, M. Lagally, J. Lapujoulade, J.J. Métois, B. Mutafschiev and E. Williams, whose experimental works revealed to us all the beauty of Surface Physics and Crystal Growth—and often contributed to the iconographic asset of the book. We are also very grateful to D. Wolf, Ph. Nozières, R. Kern again, J. Krug, P. Jensen, J. Langer, C. Misbah, L. Sander, D. Vvedensky and A. Zangwill, who shared with us some of their secrets. Special thanks are due to P. Politi and M. Schroeder, whose untiring reading of preliminary versions has been a source of most valuable suggestions and improvements. A good share of the chapters on elasticity has much profited from the competence of C. Duport, who corrected all our formulae, and even explained some of them to us!

We thank and beg pardon to all who are omitted here either for space or memory limitations. A final thank is due to the people in Cambridge University Press, and most of all to R. Neal, for waiting patiently for the completion of this work.

List of symbols

DLA: Diffusion limited aggregation (section 11.2)

MBE: Molecular beam epitaxy

ML: Monolayer

RHEED: Reflection high-energy electron diffraction

a: lattice constant or atomic distance (usually taken equal to 1 in this book).

 A_{α} , $A_{\alpha\gamma}$, A: kinetic coefficients in sections 13.1 and 13.2

A(t): amplitude appearing in section 13.7 B: a thermodynamic coefficient in (2.38)

 $B_{\alpha\gamma}$: kinetic coefficient in chapter 13

C: a constant (section 15.7)

d: dimension of the space (usually 3)

d': surface dimension d-1

d' = D/D', d'' = D/D'': see (6.20)

 d_c^u : upper critical dimension (section 12.4)

 d_c^{ℓ} : lower critical dimension (section 12.4)

 d_f : fractal dimension of a fractal terrace (section 11.2)

 $ilde{D}$: Fick diffusion constant (sections 7.1, 8.4)

 $ilde{D}_s$, $ilde{D}$: surface Fick diffusion constant

D*: tracer diffusion constant (section 7.1)

D_{int}: diffusion constant of interstitials

 $D_{\rm vac}$: diffusion constant of vacancies in section 7.3.

 D_s^0 : see eq. (7.13)

 D_0 : see eq. (11.28)

 D_2 : diffusion constant of dimers at a surface (sections 7.10 and 11.8)

D', D": step kinetic coefficients (section 6.4)

 D_s (D when no ambiguity is possible): surface diffusion constant of adatoms

e: basis of Napierian logarithms

E: Young modulus

 E_2 : binding energy of a dimer (section 11.8)

ΧV

xvi

List of symbols

 $\delta \mathbf{f}^{\text{ext}}$, $\delta \mathbf{F}^{\text{ext}}$: elementary external forces (chapter 16)

 F_{α}^{ext} : External force

F: beam intensity in MBE

F_R: force acting at point R

g: gravity (in chapter 1)

 $G(\mathbf{R})$: height-height correlation function at equilibrium, eq. (1.4)

 $G(\mathbf{r},t)$ height-height correlation function during growth, eq. (12.1)

h: amplitude of the modulation of a surface, height of a defect

i*: critical size of a cluster of adatoms (section 11.2)

js: surface current density of adatoms

 $\mathbf{j}_{s}^{\text{adat}}$: the current density of adatoms (section 7.5)

j^{advac}: current density of advacancies (section 7.5)

 \mathbf{j}_k : two-dimensional Fourier transform of the surface adatom current density

 $\mathbf{k} = (k_x, k_y)$: a vector of the two-dimensional reciprocal space

k_B: the Boltzmann constant

K: bulk modulus (section 16.4)

K: kinetic coefficient defined by (12.6)

 L_x , L_y : sample sizes in the x and y directions

L: linear size of a system

L: wavelength of a modulation (chapter 8)

 $m_{\alpha\gamma}$, m: force dipole moment, eq. (15.2)

M: a point at the surface of a solid

n: unit vector normal to a surface at a point, directed outward

N: number of particles in a physical system

N: quantity related to the size of the surface in section 2.6.

N(t): cluster density (section 11.6)

 $p_{\alpha\gamma}$, p_0 : stress

 $p_j(\mathbf{r},t)$: probability that the j-th impurity is at \mathbf{r} at time t (section 7.1)

 $\mathbf{q} = (q_x, q_y)$: a vector of the two-dimensional reciprocal space

 r_1 : characteristic length (chapter 8)

R: radius of a terrace (section 8.5)

R: radius of curvature of a line or of a surface (chapter 10)

R, r: a point of the two-dimensional (chapter 1) or three-dimensional space

dS: surface element (chapter 2)

S: surface of a crystal (chapters 3 and 4)

t: time

T: temperature

 T_M : melting temperature.

 T_R : roughening transition temperature

u(r): atomic displacement at point r

v, v(n): velocity of the surface of a crystal (chapter 5)

v: velocity of a step

v = V/N: volume per atom (chapter 2)

List of symbols

xvii

```
v_g: volume per atom in the vapour (chapter 2)
  v_{\ell}: volume per atom in the liquid (chapter 2).
  V: volume
  \delta V: volume element (section 16.1)
   W: energy or free energy barrier
   W_0: energy of a kink on a step (section 1.8)
   W_0: energy barrier (section 15.7)
  w_0: energy of a chemical bond (section 15.5)
   W_{\rm a}: adatom creation energy or free energy, see eq. (7.14a)
   W_{\rm adv}: see eq. (7.14b)
   W_1: energy of a step per bond
   W_{\rm sd}: activation energy for surface diffusion (eq. (7.13) and section 11.8)
   W_{\rm int}(r): interaction energy between defects at distance r (chapter 15)
   W_{coh}: cohesive energy
  x, y, z: coordinates of a point in the three-dimensional space.
  x_s = \sqrt{D_s \tau_v} = 1/\kappa: average adatom diffusion length before desorption
  y': derivative dy/dx
  \tilde{z}: dynamical "critical exponent" for the correlation length (eq. 12.14)
  z_a(t); Fourier transform of z(\mathbf{r},t)
  j_s, D_s, \Lambda_s, \tilde{D}_s: section 8.4
  \alpha, \gamma: coordinates x, y or z
  a: kinetic coefficient (eq. 7.8)
  a: critical exponent for the spatial decay of the correlation function (eq.
  β: critical exponent for the temporal decay of the correlation function (eq.
12.18)
   \beta = 1/(k_B T)
   \gamma: free energy of a step per unit length or per atom (line tension)
   \tilde{\gamma} \equiv \gamma(\theta) + d^2 \gamma / d\theta^2: step stiffness (section 2.4)
   y: exponent defined in section 11.9
   \Gamma(\mathbf{r} - \mathbf{r}'): elastic Green function (eq. 15.10)
   \Gamma: a step, in chapter 10
   \delta a: misfit (section 15.4)
   \delta \mathscr{F}, \delta \mu, etc.: increment of \mathscr{F}, \mu, etc. from some reference value
   \delta\Sigma: surface element (section 16.1)
   \Delta F: "supersaturation" F - \rho_0/\tau_v
   \Delta' and \Delta'': kinetic coefficients defined in section 6.4
   \epsilon: Interaction energy between steps (section 1.7)
   \epsilon_{\alpha\nu}(\mathbf{r}): strain
   \epsilon(t): amplitude of a modulation in eq. (10.14) (called \eta in eq. (10.7))
   \zeta: Poisson ratio (eq. 6.12)
   ζ: in section 10.6, a control parameter
   \eta: amplitude of a modulation in eq. (10.7) (called \epsilon in eq. (10.14))
```


xviii

List of symbols

```
\theta: value of an angle
  \kappa = 1/x_s: inverse evaporation length of an adatom (eq. 6.6)
  λ: capillary length (chapter 1)
  λ: Lamé coefficient (chapters 15 and 6).
  λ: kinetic coefficient in the KPZ equation (13.4)
  \lambda: a constant (e.g. in section 4.2)
  \Lambda_s, \Lambda: surface diffusion constant of advacancies (section 6.5)
  μ: Lamé coefficient (chapters 15 and 16)
  μ: chemical potential (elsewhere)
  v(t): number of sites visited by a diffusing adatom in time t (sections 6.3,
11.4)
  v: kinetic coefficient defined by (12.6)
  \xi(t): correlation length (section 12.6)
  (\Pi): tangent plane to the crystal surface (chapter 3)
  \rho(\mathbf{r},t), \rho_1, \rho_s: adatom density (occupied sites/surface sites)
  \rho_n: surface density of clusters of n atoms (section 11.4).
  \rho_0: equilibrium density of adatoms. (section 6.5)
  \bar{p}: see section 6.3
  \rho_{\rm int}({\bf r},t): concentration of interstitials
  \sigma_0: equilibrium density of advavancies (section 6.5)
  \sigma, \sigma(\mathbf{n}): free energy of a surface per unit length or per atom (surface ten-
  \sigma(\mathbf{r}): density of advacancies
  \Sigma: Wulff's plot (section 3.2)
  \tilde{\sigma}: surface rigidity, formula (2.5)
   1/\tau_v: evaporation probability of an adatom per unit time (section 6.1)
   1/\tau_{\rm nuc}: nucleation rate of new terraces (section 11.2)
   1/\tau_k: the rate of emission of "gradatoms" (problem 10.6)
   \phi(z_x, z_y): the projected free energy density per unit area (eq. 2.2)
   \varphi\left(\{\epsilon(\mathbf{r})\}\right): elastic free energy density (section 16.5)
   \varphi_p: components of an eigenvector of the transfer matrix in Appendix C
   \Phi: Gibbs free energy or free enthalpy \mathscr{F} + PV (chapters 2 and 16)
   ω: decay rate of a modulation, see eq. (10.15)
   \Omega: atomic area, generally set equal to 1 in this book
   \Omega: Grand potential \mathscr{F} + PV - \mu N
   \Omega_{\alpha \nu}^{\zeta\zeta}: elastic constants
   	ilde{\Omega}_{RR'}^{lpha\gamma}: "discretized elastic constants", eq. (16.25)
   \ell: distance between steps
   \ell_s: adatom diffusion length before nucleation of a terrace (section 11.1)
   \ell_s: length on which diffusion is able to heal the surface (chapter 12)
   d\mathscr{A}: elementary projected area dxdy (section 16.8)
   \mathscr{A}: total projected area L_x L_y
```


List of symbols

xix

F: free energy

 \mathscr{G} : Gibbs free energy $\mathscr{G} = \mathscr{F} + PV$.

 ${\mathcal N}$: number of lattice sites on a surface in section 14.6

 \simeq : nearly equal to (e.g. $\sin x \simeq x$ for small x)

 \sim : proportional to (e.g. $10x \sim x$)

 \approx : of the order of magnitude of (e.g. $10 \approx 1$)

cot: cotangent

 z_x, z_α : partial derivative $\partial z/\partial x$, $\partial z/\partial x_\alpha$

 v_{α} , j_{α} , R_{α} : the components of the vectors \mathbf{v} , \mathbf{j} , \mathbf{R}

 $\langle \chi \rangle$: average value of a quantity χ

|z|: absolute value of z

 \dot{z} , $\dot{\rho}$, etc.: derivative of z, ρ , etc., with respect to time

 $(hk\ell)$: orientation of a crystal surface. E.g. the (001) face, the (111) orientation

[$hk\ell$]: orientation of a crystal axis. E.g. [110] steps

 $\{hk\ell\}$: set of crystal planes which are crystallographically equivalent. E.g. (cubic crystal): the $\{001\}$ orientations are the (001), (010) and (100) planes.