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Preface

Over the past two decades, photonics, the use of photons for engineering applications,
has gradually become established as a well-defined engineering discipline. Photonics
has developed from studies in crystal optics, guided-wave optics, nonlinear optics,
lasers, and semiconductor optoelectronics. Though many excellent books exist on each
of these subjects, and several have been written specifically to address photonics, it
is still difficult to find one book where the diverse core subjects that are central to
the study of photonic devices are presented with a good balance of breadth and depth
of coverage. Through my teaching of undergraduate courses, I have found it very
effective to introduce the field of photonics to undergraduate students using the rigorous,
systematic approach of this book. Through my experience of working with graduate
students in research, I have found that such a book is very much needed to prepare
a solid foundation for graduate students who intend to major, or minor, in photonics.
Through my teaching experience, I have found it highly desirable and beneficial for both
instructors and students to have ample examples and problems that are well thought out
and fully integrated with the subjects covered in the text. This book is written to address
these needs.

I began this project in early 1994 after many years of teaching undergraduate and
graduate courses in lasers, nonlinear optics, quantum electronics, and quantum mechan-
ics. Though I had already accumulated a large collection of classnotes and problem sets
when I started this project, it still took me exactly nine years to finish writing this book,
with fully one-third of that time devoted to the work on examples and problems. Then,
it took another year to prepare the figures. My students, both those in my classes and
those in my research group, have been highly collaborative with the writing of this
book. Throughout this process, I have taught various parts in different undergraduate
and graduate courses to several hundred students. These students range from junior
undergraduates to second-year graduates majoring in the diverse fields of photonics,
solid-state electronics, electromagnetics, materials engineering, mechanical engineer-
ing, bioengineering, physics, chemistry, and many other disciplines. Many of their
suggestions and feedback have been incorporated. All of the equations, examples, and
problem solutions have been checked by several highly capable students. All of the
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xxviii Preface

figures were produced, originally, by my graduate students. The manuscript underwent
three major and numerous minor revisions before the book was finalized.

Objectives

This book is written for advanced undergraduate students and new graduate students
who are interested in studying photonics as an engineering subject. A novice graduate
student who plans to major in photonics can study this book thoroughly over a one-
year period to lay a very solid foundation. It is also intended for practicing engineers
and scientists who wish to broaden or deepen their knowledge in the principles of
photonic devices. The objectives of this book are for a student (1) to obtain a good
understanding of the core theory of photonic devices through coherent coverage of the
subject, (2) to develop a deep physical insight into the principles of photonic devices
through descriptive and illustrative approaches, (3) to gain realistic concepts of the
functions of practical devices through numerical examples and discussions, and (4)
to lay a solid foundation for further study and research in the photonics field through
rigorous analytical treatment of the subject.

Guiding principles

To fulfill the objectives through a consistent approach, I followed several guidelines
that I laid down for myself at the beginning of this project:

1. To address the subject at the device level, as the book title suggests. The physics
and principles of devices are treated in depth, but the fabrication and processing
of devices are not touched. The functions and characteristics of devices are also
emphasized, but specific applications in subsystems and systems are not discussed
for the reason that they are too diverse and vary quickly as time goes on.

2. To cover both bulk and guided-wave devices, with sufficient emphasis on guided-
wave devices to reflect the development of photonics into integrated photonics.

3. To use a macroscopic treatment with two central approaches: (a) to treat the optical
properties of materials through reference to the susceptibility tensor, χ, and permit-
tivity tensor, ε; and (b) to treat the interaction of optical waves using coupled-wave
theory for bulk devices and coupled-mode theory for guided-wave devices. With
these approaches, it is possible to treat the majority of devices in great depth with-
out ever touching quantum mechanics. For topics that necessitate an understanding
of quantum concepts, I have adopted an approach that requires as little quantum
mechanics background from the students as possible.
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xxix Scope and structure

4. To balance both physics and engineering aspects with descriptive and analytical
approaches to a significant, and consistent, depth throughout the entire book.

5. To concentrate on selected key topics and address them with sufficient rigor and
thoroughness. On the one hand, analytical formulations and results that can be used
at the level of practical applications and research are obtained. On the other, detailed
and tedious mathematical derivations are avoided in favor of developing physical
insight through an emphasis on the physical meanings of the analytical results.

6. To make the tables and figures useful and informative by using real data if possible
while avoiding tedious details. Thus, the majority of the figures depicted in the book
can be generated by the reader with realistic data using the analytical formulations
obtained in the text.

7. To develop the concepts and data of working devices into realistic examples and
problems.

Scope and structure

Photonics is a diverse field that can be addressed at various levels from many different
perspectives. The scope and structure of this book are basically set by the guiding
principles delineated above. This book focuses on the core topics of photonics at the
device level covering both bulk and guided-wave devices. The entire book, as well as
each chapter, is highly structured. Except for the general prerequisites described below,
this book is written to be self-contained. General background and formulations that are
needed for more than one chapter are provided in a few properly located individual
chapters. Specific background needed only for the topics addressed within a particular
chapter is provided at the start of each chapter. This arrangement allows the chapters and
sections covering advanced topics to be treated as modules that can be added or dropped
independently in a course or a study plan. Thus a minimum number of prerequisites
are needed of the reader to begin studying any part of this book.

This book is divided into five parts. The first part consists of only one chapter that
provides the relevant background in electromagnetics and optics for the entire book.
This part also introducesχ and ε as the central concept for describing optical properties
of materials. Part II covers four chapters on waveguides and couplers and lays the found-
ation for guided-wave devices. This part also develops coupled-wave and coupled-mode
theories, which are used to formulate optical interactions throughout the entire book.
Part III consists of four chapters covering devices based on electro-optics, magneto-
optics, acousto-optics, and nonlinear optics. The fourth part contains two chapters on
general discussions of laser amplifiers and laser oscillators. Fiber amplifiers and fiber
lasers are specifically discussed in depth. Part V covers optoelectronic devices in three
chapters. One chapter, i.e., Chapter 12, provides the background on semiconductors
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xxx Preface

relevant to optoelectronics. The other two chapters in Part V cover semiconductor
lasers, LEDs, and photodetectors.

All chapters are organized in a consistent manner that mirrors the structure of the
book. Basically, each begins with a general introduction of the underlying fundamental
physics of the topics covered in the chapter, followed by general formulations of the
physical effects. The principles and functions of bulk devices are then discussed. In the
final section, or sections, of a chapter, guided-wave devices are addressed.

Symbols and units

Consistent symbols and notations are used throughout the entire book. The symbols
and notations are chosen based on two criteria: (1) they are the same as those commonly
used in the literature, whenever possible; and (2) they are intuitive to recognize and
easy to distinguish. I also choose not to use many special fonts; thus, script is the only
special font used. However, in a book like this that covers a diverse range of topics, it is
inevitable that one quickly runs into a situation that a particular symbol is commonly
used in the literature to represent two or more different meanings on different occasions.
Whenever there is no confusion, I still choose to use the common symbol for different
meanings. Otherwise, I choose to use subscripts and superscripts to clarify the meaning
of the symbols. The system of symbols and notations followed throughout this book is
described in Appendix A, and a partial list of symbols is presented later among these
preliminary pages.

The SI metric system, which is summarized in Appendix C, is used. The values of
some important fundamental physical constants in SI units are listed in Appendix D.
Values of all the parameters listed in the tables throughout the chapters in this book are
commonly given in SI units. On some rare occasions when the value of a parameter is
not quoted in an SI unit, a conversion to the SI unit is given in the text.

Examples and problems

There are a total of 164 examples and more than 600 problems in the book. The examples
and problems justly take up about one-third of the volume of this book as they took me
about one-third of the time spent on this entire project. All examples and problems are
originally generated and they are evenly distributed across the entire book. To illustrate
the concepts developed in the text, most examples are realistic numerical problems based
on working devices. Problems are tied closely to the text and examples. There are four
types of problems: (1) qualitative questions on general concepts, (2) analytical steps
leading to important results presented in the text because filling such steps by the reader
enhances understanding, (3) further development of certain concepts covered in the text
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xxxi Prerequisites and use of the book

into an advanced level beyond the general depth of the text, and (4) practical numerical
problems reduced from realistic working devices. The problems are collected at the
end of each chapter and are identified with the relevant section. They are not grouped
by type, but are arranged in an order that parallels the presentation of the text. This
arrangement, though not what I prefer, facilitates adding or dropping a particular topic
module in a course syllabus or study plan.

Bibliography and reading lists

Though this book is intended to be self-contained, a reader always gains a deeper
understanding and a different perspective of a topic by reading other books and jour-
nal articles. To maintain the coherence of the presentation in the text and to avoid
unnecessarily distracting a reader, references and footnotes are rarely used. Instead, a
bibliography containing reference books and a list of useful journal articles for advanced
reading are placed at the end of each chapter. The reference books in a bibliography
are meant to help a reader obtain a different perspective or further information on a
particular topic. The journal articles listed in a reading list are meant for a reader to
go beyond the level of the presentation in this book. The bibliographies and reading
lists are rather extensive, but are carefully selected to limit their sizes to a manageable
level.

Prerequisites and use of the book

The prerequisites of this book include background knowledge in optics covered in a
college-level general physics course, a foundation in electromagnetic waves preferably
in an electromagnetics course, and some background in semiconductors and quantum
physics obtained in an introductory solid-state electronics course. In my experience, it
is possible for a student who has only minimal background in these areas to succeed
in an undergraduate course using this book if the background chapters of this book are
studied thoroughly. Within the book, the prerequisites of each section are listed in a
table in Appendix B.

This book can be used in a one-year undergraduate course by dropping advanced
sections, and thus cutting about one-third of the material in the book, while covering
every chapter. It can also be used in a one-year intensive graduate course covering all
sections. I also envision this book as being used at different levels in different courses,
including one-quarter or one-semester courses, depending on the interest and emphasis
of a particular curriculum. The modular structure of this book and the table of prerequi-
sites given in Appendix B make it very easy for an instructor to put together a specific
course syllabus and for an independent reader to make up a study plan.
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and Tyan-Lin Wang shared the efforts to produce all of the electronic files for the figures
from my drafts. They applied their research abilities and skills to generate many original
plots based on real data of materials and devices. Two of them, Sze-Chun Chan and
Margaret C. Chiang, made the extraordinary efforts of finalizing all figures uniformly.
I am truly blessed with these highly capable and supporting students. Their crucial
contributions to the completion of this project are most appreciated. Thanks are also
due to my copy editor, Lesley Thomas, and production editor, Joseph Bottrill, for their
numerous valuable suggestions and professional efforts at the final stage of this project.
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