Photonic Devices

Photonic devices lie at the heart of the communications revolution, and have become a large and important part of the electronic engineering field, so much so that many colleges now treat this as a subject in its own right. With this in mind, the author has put together a unique textbook covering every major photonic device, and striking a careful balance between theoretical and practical concepts. The book assumes a basic knowledge of optics, semiconductors, and electromagnetic waves; many of the key background concepts are reviewed in the first chapter. Devices covered include optical fibers, couplers, electro-optic devices, magneto-optic devices, acousto-optic devices, nonlinear optical devices, optical amplifiers, lasers, light-emitting diodes, and photodetectors. Problems are included at the end of each chapter and a solutions set is available. The book is ideal for senior undergraduate and graduate courses, but being device-driven it is also an excellent reference for engineers.

Jia-Ming Liu is Professor of Electrical Engineering at the University of California, Los Angeles. He received his Ph.D. degree in applied physics from Harvard University in 1982. His research interests are in the areas of nonlinear optics, ultrafast optics, photonic devices, optical wave propagation, nonlinear laser dynamics, and chaotic communications. Dr. Liu has written about 200 scientific publications and holds eight US patents. He is a fellow of the Optical Society of America and the American Physical Society.

Photonic Devices

Jia-Ming Liu

Professor of Electrical Engineering University of California, Los Angeles

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press The Edinburgh Building, Cambridge CB2 2RU, UK

www.cambridge.org information on this title: www.cambridge.org/9780521551953

© Cambridge University Press 2005

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2005

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this book is available from the British Library

Library of Congress Cataloging in Publication data Liu, Jia-Ming, 1953– Photonic devices / Jia-Ming Liu. p. cm. Includes bibliographical references and index. ISBN-13 978-0-521-55195-3 hardback 1. Optoelectronic devices. 2. Photonics. I. Title. TK8304.L58 2004 621.381/045 – dc22 2004046564

ISBN-13 978-0-521-55195-3 hardback ISBN-10 0-521-55195-1 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this book, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To my family

Contents

<i>page</i> xii
xxvi
xxvii
xxxii
xxxiii
xlix

Part I Background

1

1	General background	3
1.1	Optical fields and Maxwell's equations	3
1.2	Harmonic fields	12
1.3	Linear optical susceptibility	15
1.4	Polarization of light	16
1.5	Propagation in an isotropic medium	21
1.6	Propagation in an anisotropic medium	25
1.7	Gaussian beam	40
1.8	Reflection and refraction	44
1.9	Phase velocity, group velocity, and dispersion	49
1.10	Material dispersion	52
1.11	Photon nature of light	56
	Problems	57
	Select bibliography	68

Part II Waveguides and couplers

2	Optical waveguides	73
2.1	Waveguide modes	73
2.2	Field equations	78

vii

71

Cambridge University Press 0521551951 - Photonic Devices Jia-Ming Liu Frontmatter <u>More information</u>

viii Cont	Contents		
2.3	Wave equations	79	
2.3	*	82	
2.5	Step-index planar waveguides	84	
2.6		95	
2.7		99	
2.8	1 0	105	
	Problems	110	
	Select bibliography	117	
	Advanced reading list	117	
3	Optical fibers	119	
3.1	Step-index fibers	120	
3.2	Weakly guiding fibers	128	
3.3	Graded-index fibers	136	
3.4	Attenuation in fibers	141	
3.5	Dispersion in fibers	147	
	Problems	156	
	Select bibliography	162	
	Advanced reading list	163	
4	Coupling of waves and modes	164	
4.1	Coupled-wave theory	164	
4.2	Coupled-mode theory	167	
4.3	Two-mode coupling	173	
	Problems	186	
	Select bibliography	189	
	Advanced reading list	189	
5	Optical couplers	190	
5.1	Grating waveguide couplers	190	
5.2	Directional couplers	202	
5.3	Surface input and output couplers	214	
	Problems	225	
	Select bibliography	234	
	Advanced reading list	234	
Part III No	onlinear photonics	235	
6	Electro-optic devices	237	

6	Electro-optic devices	237
6.1	Electro-optic effects	237

6.2 Pockels effect

241

Conte	ents	
6.3	Electro-optic modulators	25
6.4	Guided-wave electro-optic modulators	25
6.5	Traveling-wave modulators	27-
	Problems	279
	Select bibliography	28
	Advanced reading list	288
7	Magneto-optic devices	289
7.1	Magneto-optic effects	289
7.2	Faraday effect	290
7.3	Magneto-optic Kerr effect	304
7.4	Optical isolators and circulators	308
7.5	Magneto-optic modulators and sensors	317
7.6	Magneto-optic recording	326
7.7	Guided-wave magneto-optic devices	331
	Problems	344
	Select bibliography	354
	Advanced reading list	355
8	Acousto-optic devices	35'
8.1	Elastic waves	357
8.2	Photoelastic effect	360
8.3	Acousto-optic diffraction	369
8.4	Acousto-optic modulators	388
8.5	Acousto-optic deflectors	401
8.6	Acousto-optic tunable filters	412
8.7	Guided-wave acousto-optic devices	416
	Problems	426
	Select bibliography	440
	Advanced reading list	440
9	Nonlinear optical devices	44]
9.1	Optical nonlinearity	441
9.2	Nonlinear optical susceptibilities	446
9.3	Nonlinear optical interactions	458
9.4	Coupled-wave analysis	470
9.5	Phase matching	479
9.6	Optical frequency converters	496
9.7	Nonlinear optical modulators and switches	514
9.8	Bistable optical devices	522
9.9	Raman and Brillouin devices	531
9.10	Nonlinear optical interactions in waveguides	548

X	Contents	
	9.11 Guided-wave optical frequency converters	550
	9.12 Guided-wave all-optical modulators and switches	555
	Problems	572
	Select bibliography	606
	Advanced reading list	607
Part	IV Lasers	611
	10 Laser amplifiers	613
	10.1 Optical transitions	613
	10.2 Optical absorption and amplification	628
	10.3 Population inversion and optical gain	637
	10.4 Laser amplifiers	651
	10.5 Rare-earth ion-doped fiber amplifiers	664
	Problems	675
	Select bibliography	682
	Advanced reading list	683
	11 Laser oscillators	684
	11.1 Resonant optical cavities	684
	11.2 Laser oscillation	699
	11.3 Laser power	709
	11.4 Pulsed lasers	718
	11.5 Optical fiber lasers	740
	Problems	746
	Select bibliography	754
	Advanced reading list	755
Part	V Semiconductor optoelectronics	757
	12 Semiconductor basics	759
	12.1 Semiconductors	759
	12.2 Electron and hole concentrations	768
	12.3 Carrier recombination	778
	12.4 Current density	785
	12.5 Semiconductor junctions	789
	Problems	809
	Select bibliography	814
	Advanced reading list	815

xi	Conten	ts	
	13	Semiconductor lasers and light-emitting diodes	816
	13.1	Radiative recombination	816
	13.2	Band-to-band optical transitions	821
	13.3	Optical gain	829
	13.4	Spontaneous emission	835
	13.5	Junction structures	838
	13.6	Lateral structures	852
	13.7	Light-emitting diodes	860
	13.8	Semiconductor optical amplifiers	875
	13.9	Semiconductor lasers	877
	13.10	Semiconductor laser characteristics	899
		Problems	913
		Select bibliography	922
		Advanced reading list	923
	14	Photodetectors	926
	14.1	Photodetector noise	927
	14.2	Photodetector performance parameters	935
	14.3	Photoemissive detectors	944
	14.4	Photoconductive detectors	955
	14.5	Junction photodiodes	966
	14.6	Avalanche photodiodes	986
	14.7	Guided-wave photodetectors	998
		Problems	1008
		Select bibliography	1016
		Advanced reading list	1017
	Apper	<i>ndix A</i> Symbols and notations	1018
	Apper	<i>ndix B</i> Table of prerequisites	1025
	Apper	<i>ndix C</i> SI metric system	1027
	Apper	ndix D Fundamental physical constants	1029
		ndix E Fourier-transform relations	1030
	Index		1033

Figures

1.1	Nonlocal responses in time and space.	page 8
1.2	Boundary between two media of different optical properties.	9
1.3	Boundary surface and unit surface normal vector.	10
1.4	Field of an elliptically polarized optical wave.	18
1.5	Field of linearly polarized optical wave.	19
1.6	Fields of left- and right-circularly polarized optical waves.	20
1.7	Relationships of E, D, H, B, k, and S in an isotropic medium.	22
1.8	Index ellipsoid and its relationship with the coordinate system.	29
1.9	Evolution of the polarization state of an optical wave propagating along the	
	principal axis \hat{z} of an anisotropic crystal that has $n_x \neq n_y$.	32
1.10	Relationships among the direction of wave propagation and the polarization	
	directions of ordinary and extraordinary waves.	34
1.11	Determination of the indices of refraction for the ordinary and extraordinary	
	waves in a uniaxial crystal using the index ellipsoid.	35
1.12	Relationships of E , D , H , B , k , and S in an anisotropic medium for (<i>a</i>) an	
	ordinary wave and (b) an extraordinary wave.	37
1.13	(a) Wave propagation and walk-off in a uniaxial crystal. (b) Birefringent	
	plate acting as a polarizing beam splitter for a normally incident wave.	38
1.14	Gaussian beam characteristics.	41
1.15	Intensity patterns of Hermite-Gaussian modes.	43
1.16	Reflection and refraction of a TE-polarized wave at the interface of two	
	isotropic dielectric media.	45
1.17	Reflection and refraction of a TM-polarized wave at the interface of two	
	isotropic dielectric media.	46
1.18	Reflectance of TE and TM waves at an interface of lossless media as a	
	function of the angle of incidence for external reflection and internal	
	reflection.	48
1.19	Reflectance of TE and TM waves at an interface of lossy or amplifying	
	media as a function of the angle of incidence for external reflection.	48
1.20	Wave packet composed of two frequency components showing the carrier	
	and the envelope.	50

xiii	List of figures	
1.21	Real and imaginary parts, χ' and χ'' , respectively, of susceptibility for a	
	medium with (a) a loss and (b) a gain near a resonance frequency.	53
1.22	Real and imaginary parts of ϵ as functions of ω for a medium in its normal	
	state over a spectral range covering a few resonance frequencies.	55
1.23	Stack of parallel flat glass plates.	65
1.24	Prism retroreflector.	66
2.1	(a) Nonplanar waveguide of two-dimensional transverse optical	
	confinement. (b) Planar waveguide of one-dimensional transverse optical	
	confinement.	74
2.2	Index profiles of a step-index planar waveguide and a graded-index planar	
	waveguide.	74
	Modes of an asymmetric planar step-index waveguide.	76
	Three-layer planar slab waveguide.	84
2.5	Allowed values of normalized guide index b as functions of the V number	
	and the asymmetry factor $a_{\rm E}$ for the first three guided TE modes.	88
2.6	Mode propagation constant β as a function of optical frequency ω for a	
	given step-index dielectric waveguide.	89
	Transverse mode field distributions.	90
2.8	Confinement factors of the fundamental TE and TM modes of a symmetric	
	slab waveguide as a function of the waveguide V number.	94
2.9	Field patterns and intensity distributions of the first few guided modes of a	
	symmetric slab waveguide.	95
	Graphic solutions for the eigenvalues of guided TE and TM modes.	97
	Symmetric slab waveguide.	98
2.12	Two types of graded-index planar waveguides: (<i>a</i>) smooth graded-index	
	waveguide and (b) step-bounded graded-index waveguide.	99
2.13	Standing wave patterns for guided modes of (a) smooth graded-index	
	planar waveguide and (b) step-bounded graded-index planar	101
0.1.4	waveguide.	101
	Representative channel waveguides.	106
	Basic concept of the effective index method.	107
	Strip-loaded waveguide for the effective index method.	109
	Total internal reflection.	110
	Seven-layer symmetric slab waveguide.	114
	Symmetric GaAs/AlGaAs slab waveguide.	115
	Rib waveguide.	117
	Step-index optical fiber with a core radius a .	120
3.2	Leading orders of the Bessel functions $J_m(x)$ and the modified Bessel functions $K_m(x)$	100
^ ^ ^	functions $K_m(x)$.	123
3.3	Graphic solutions of V_c for (a) TE _{0n} , TM _{0n} , HE _{1n} , and EH _{1n} modes and (b)	107
	HE_{2n} modes.	127

xiv	List of figures	
3.4	Field line patterns and intensity distributions for several leading modes of a	
	circular fiber.	130
3.5	Intensity profiles of a few LP modes.	134
3.6	Confinement factors of leading LP modes.	135
3.7	Graded-index fiber.	136
3.8	Spectral dependence of loss mechanisms and total attenuation in a fiber.	145
3.9	(a) Index of refraction n and group index N and (b) group-velocity	
	dispersion D as a function of wavelength for pure silica and germania–	
	silica.	148
3.10	Normalized propagation constant b as a function of fiber V number for some	
	LP modes of a weakly guiding step-index fiber.	149
3.11	Waveguide group delay parameter and waveguide dispersion parameter as a	
	function of fiber V number.	150
3.12	(a) Effective index of refraction and group index and (b) group-velocity	
	dispersion of the fundamental mode as a function of wavelength.	151
3.13	Index profile and dispersion characteristics of a dispersion flattened fiber.	155
4.1	Representation of a multiple-waveguide structure in terms of a combination	
	of individual single waveguides.	171
4.2	Schematic diagram of three coupled waveguides showing the decomposition	
	into individual waveguides plus the corresponding perturbation for each of	
	them.	172
4.3	Codirectional coupling between two modes (a) in the same waveguide and	
	(b) in two parallel waveguides.	176
4.4	Periodic power exchange between two codirectionally coupled modes.	178
4.5	Contradirectional coupling between two modes (a) in the same waveguide	
	and (b) in two parallel waveguides.	178
4.6	Power exchange between two contradirectionally coupled modes.	180
4.7	Effect of phase mismatch on codirectional coupling.	184
4.8	Effect of phase mismatch on contradirectional coupling.	185
5.1	Structures of planar grating waveguide couplers.	191
5.2	Reflectance and transmittance of a distributed Bragg reflector as a function	
	of effective coupler length.	199
5.3	Dispersion relation showing the coupling of contradirectional modes in a	
	grating waveguide coupler.	200
5.4	Schematic diagram of a two-channel directional coupler and its index profile.	202
5.5	Symmetric directional coupler.	205
5.6	Evolution of supermode fields and total fields in (<i>a</i>) an asymmetric and (<i>b</i>) a	
	symmetric dual-channel directional coupler.	208
5.7	Dispersion relation showing the coupling of the fields in an asymmetric	
	dual-channel directional coupler.	210
5.8	Cross state and parallel state of a directional-coupler optical switch.	213

XV

Cambridge University Press 0521551951 - Photonic Devices Jia-Ming Liu Frontmatter <u>More information</u>

List of figures

5.9	Schematic illustration of a directional coupler as a TE-TM polarization	
	splitter.	213
	Phase mismatch between a waveguide mode and a free-propagating field.	215
	Input and output coupling using prism couplers.	216
5.12	Prism for surface coupling.	217
5.13	Input and output coupling using grating couplers.	220
5.14	Phase-matched coupling between a guided mode and radiation fields.	221
5.15	Phase-matching diagram of surface input coupling through a first-order	
	grating.	223
	InGaAsP/InP DFB waveguide.	227
5.17	Codirectional coupler consisting of two identical symmetric slab	
	waveguides.	229
5.18	Dual-channel asymmetric directional coupler with a grating of period Λ .	230
5.19	Fiber-optic frequency filter consisting of two different single-mode fibers	
	modulated by a fiber grating.	230
5.20	3-dB directional coupler.	231
5.21	Prism surface coupler.	232
5.22	Grating surface coupler for input coupling at normal incidence.	233
5.23	Grating surface coupler on a GaAs waveguide.	233
6.1	Transformation of index ellipsoid by electro-optic effect.	241
6.2	(a) LiNbO ₃ transverse electro-optic phase modulator. (b) LiNbO ₃	
	longitudinal electro-optic phase modulator.	250
6.3	(a) LiNbO ₃ transverse electro-optic polarization modulator. (b) GaAs	
	longitudinal electro-optic polarization modulator.	254
6.4	GaAs longitudinal electro-optic amplitude modulator.	258
6.5	Transmission characteristics of the electro-optic amplitude modulator.	259
6.6	Configurations for applying a modulation field to a buried waveguide	
	through surface-loading electrodes.	260
6.7	Waveguide phase modulators.	261
6.8	Mach–Zehnder waveguide interferometric modulator using Y junctions.	263
6.9	Balanced-bridge interferometers.	263
6.10	Schematic structure and switching diagram of an electro-optic uniform- $\Delta\beta$	
	directional coupler switch.	267
6.11	Schematic structure and switching diagram of a reversed- $\Delta\beta$ directional	
	coupler switch.	269
6.12	Evolution of power flow in (<i>a</i>) a two-section directional coupler with	
	uniform $\Delta\beta$ and (b) a reversed- $\Delta\beta$ directional coupler.	270
6.13	Waveguide polarization modulator using a periodic electrode for phase	
	matching between TE-like and TM-like modes.	271
6.14	Three configurations for <i>z</i> -propagating waveguide polarization modulators	
	on LiNbO ₃ .	274

xvi	List of figures	
6.15	Traveling-wave phase modulator.	275
6.16	Symmetric Mach–Zehnder electro-optic waveguide modulator with 3-dB	
	couplers.	284
6.17	Single-pole-double-throw electro-optic switch with Y-junction input and	
	3-dB coupler output.	285
7.1	Positive Faraday rotation for an optical wave propagating in (a) the	
	parallel direction and (b) the antiparallel direction with respect to H_0 ,	
	or M_0 .	302
7.2	Three configurations of magneto-optic Kerr effect.	304
7.3	Polar Kerr effect at normal incidence.	306
7.4	Diagrammatic illustration of an optical isolator.	309
7.5	Diagrammatic illustration of a four-port optical circulator and its looping	
	function.	310
7.6	Schematic illustration of bidirectional transmission in a single fiber	
	transmission line using two circulators.	310
7.7	Basic structure and principle of polarization-dependent optical isolators.	311
	Two-stage cascaded optical isolator.	314
	Polarization-independent optical isolator and its principle of operation.	315
	Polarization-independent optical isolator used in a fiber transmission line	
	and its principle of operation.	315
7.11	Polarization-dependent circulator.	316
	Four-port polarization-independent optical circulator.	317
	Dual-quadrature polarimetric detection scheme for the measurement of the	
	Faraday rotation angle.	319
7.14	Magneto-optic current sensors of linked type.	320
	Magneto-optic current sensors of unlinked type.	321
	Pixel configuration and current-controlled switching process in a	
	magneto-optic spatial light modulator.	323
7.17	Transmission-mode magneto-optic spatial light modulator in binary	
	operation.	324
7.18	Temperature-dependent characteristics of magnetization and coercivity of a	
	rare-earth transition-metal alloy.	327
7.19	Multilayer structure and tracking pregrooves of a magneto-optic disk.	328
	(a) Schematics of a magneto-optic recording head assembly. (b) Field	
	decomposition of the Kerr-rotated reflected light for the differential	
	photodetectors.	330
7 21	Nonreciprocal TE–TM mode converter with a magnetic YIG waveguide on a	550
,.21	GGG substrate.	332
7 22	Nonreciprocal phase shifter for the TM mode in a planar magneto-optic	552
1.22	waveguide.	335
		555

xvii	List of figures	
7.23	Implementation of 45° Faraday rotators using (<i>a</i>) a phase-matched	
	nonreciprocal magneto-optic TE-TM mode converter and (b) a	
	nonreciprocal magneto-optic TE-TM mode converter with a finite phase	
	mismatch.	338
7.24	Optical isolators using unidirectional TE-TM mode converters.	341
7.25	Optical isolator using a nonreciprocal phase shifter in an asymmetric	
	Mach-Zehnder waveguide interferometer.	342
7.26	Optical circulator using a nonreciprocal phase shifter in a balanced-bridge	
	interferometer.	343
7.27	Optical circulator using a nonreciprocal phase shifter in a directional coupler	
	switch.	344
8.1	Spatial variations of displacement vectors for (<i>a</i>) longitudinal acoustic wave,	
	(b) transverse acoustic wave, (c) quasi-longitudinal acoustic wave, and (d)	
	quasi-transverse acoustic wave.	359
8.2	Configuration and wavevector diagram for Raman–Nath diffraction in an	
	isotropic medium.	371
8.3	Raman–Nath diffraction efficiencies of a few leading diffraction orders.	374
	Phase-matching configurations for Bragg diffraction from a traveling	
	acoustic wave.	377
8.5	Angles of incidence and diffraction as a function of the dimensionless	
	normalized acoustic frequency, \hat{f} .	380
8.6	Cascading process in Raman-Nath diffraction from a standing acoustic	
	wave.	385
8.7	Cascading process in Bragg diffraction from a standing acoustic wave.	386
8.8	Typical solid-state acousto-optic modulator operating with a traveling	
	acoustic wave in the Bragg regime.	390
8.9	Amplitude modulation signals carried by a traveling acoustic wave.	391
8.10	Typical solid-state acousto-optic modulator operating with a standing	
	acoustic wave in the Bragg regime.	398
8.11	Basic principle of an acousto-optic deflector illustrating the deflection range	
	and the number of resolvable spots.	402
8.12	Phase-matching diagram of a nonbirefringent acousto-optic deflector.	405
8.13	Tangential phase-matching scheme for a birefringent acousto-optic	
	deflector.	408
8.14	Optimum phase-matching scheme for a birefringent acousto-optic deflector	
	of a large bandwidth.	409
8.15	Phased-array transducer for acoustic beam steering in an acousto-optic	
	deflector.	411
8.16	Configurations for collinear acousto-optic tunable filters.	414
8.17	Generation of a surface acoustic wave by an interdigital transducer.	417

xviii	List of figures	
8.18	Basic configurations for coplanar and collinear guided-wave acousto-optic	100
0.10	devices.	420
8.19	Phased-array interdigital transducer for the generation of a surface acoustic	423
e 20	wave.	423 424
	Multiple tilted interdigital transducers of staggered center frequencies. (<i>a</i>) Curved interdigital transducer with tapered electrodes. (<i>b</i>) Tilted-finger	424
0.21	chirped interdigital transducer.	424
91	Sum-frequency generation and second-harmonic generation.	461
	Difference-frequency generation and optical rectification.	461
	Optical parametric generation.	462
	Third-order parametric frequency conversion processes.	464
	Stokes and anti-Stokes transitions for stimulated Raman scattering.	465
	Third-order processes for field-induced susceptibility changes.	466
	Resonant transitions for two-photon absorption.	469
	Wavevectors, phase mismatch, and planes of constant phase and	
	amplitude for three parametrically interacting optical waves in a	
	nonlinear crystal.	473
9.9	Collinear and noncollinear phase matching for a second-order process.	480
	Different phase-matching methods in the region of normal dispersion for	
	second-harmonic generation.	482
9.11	Angle-tuning curves for type I and type II collinear phase matching in	
	$LiNbO_3$ with a fixed pump wavelength at 527 nm.	486
9.12	Walk-off between (a) an ordinary beam and an extraordinary beam and	
	(b) two extraordinary beams when the beams propagate collinearly.	487
9.13	Temperature-tuning curves for type I and type II collinear phase matching in	
	LiNbO ₃ with a fixed pump wavelength at 527 nm.	489
9.14	Structures with periodic sign reversal of the nonlinear susceptibility for	
	quasi-phase matching.	492
9.15	Effect of phase mismatch on the efficiency of sum-frequency generation in	
	the low-efficiency limit.	497
9.16	Intensities of the fundamental and second-harmonic waves as a function of	
	interaction length in a second-harmonic generator with perfect phase	
	matching.	501
9.17	(a) A third-harmonic generator consisting of a second-harmonic generator	
	and a sum-frequency generator in cascade. (b) A fourth-harmonic generator	
	consisting of two second-harmonic generators in cascade.	504
9.18	(a) Schematics of an optical parametric up-converter. (b) Intensity variations	
	of the interacting optical waves as a function of interaction length.	507
9.19	(a) Schematics of an OPA. (b) Intensity variations of the pump, signal, and	
	idler waves of an OPA with a strong pump as a function of interaction length	
	in the case of perfect phase matching.	508

xix	List of figures	
9.20	Schematic diagrams of a doubly resonant OPO and a singly resonant OPO.	511
9.21	Transmission windows of various nonlinear optical crystals for frequency converters and wavelengths of several lasers that can be used as pump	511
	sources.	514
9.22	Nonlinear refraction caused by a Kerr lens as a function of beam intensity and the location of the Kerr lens with respect to the beam waist.	517
9.23	Nonlinear optical polarization modulator and nonlinear optical amplitude modulator.	519
9 24	Transmittance of an optical wave through a saturable absorber as a function	519
7.27	of the input light intensity normalized to the saturation intensity.	522
9.25	Generic characteristic for intensity bistability.	523
	Intrinsic bistable optical devices using optical feedback in the configurations	
	of a Fabry–Perot cavity and a ring cavity.	525
9.27	Graphic illustration of the bistable characteristic of a dispersive bistable	
	device with a Fabry–Perot cavity.	527
9.28	Characteristics of a dispersive nonlinear device with an optical Kerr medium	
	in a Fabry–Perot cavity.	528
9.29	Characteristics of an absorptive nonlinear device with a saturable absorber in	
	a Fabry–Perot cavity.	531
9.30	Generation of a Stokes optical wave and a material excitation wave by a	
	pump optical wave with phase-matching condition in (a) a Raman Stokes	
	process and (b) a Brillouin Stokes process.	532
	Spectrum of the Raman gain factor of fused silica.	534
9.32	Codirectional Raman amplifier and contradirectional Raman or Brillouin	
0.00	amplifier.	538
9.33	Power-dependent field distribution characteristics of a nonlinear mode mixer	5(0)
0.24	with a linear differential phase shift of $2n\pi$.	560
	Mode mixer for all-optical switching between separate waveguides. Single-input, all-optical Mach–Zehnder interferometers.	560 561
	Three-input, symmetric all-optical Mach–Zehnder interferometers.	562
	Nonlinear optical loop mirrors.	565
	Nonlinear directional couplers.	568
	Coupling efficiency of a symmetric nonlinear directional coupler as a	200
	function of interaction length <i>l</i> .	570
9.40	Coupling efficiency as a function of input power for two symmetric	
	nonlinear directional couplers of fixed lengths $l = l_c^{PM}$ and $l = 2l_c^{PM}$.	571
9.41	Crystal axes and field directions in a GaAs laser structure.	576
9.42	Second-harmonic generation with two nonlinear crystals in tandem.	588
9.43	Bidirectional Raman amplification.	600
9.44	All-optical sampling device.	605

XX	List of figures	
10.1	Absorption, stimulated emission, and spontaneous emission of photons and	614
10.2	resonant transitions in a material.	614
10.2	Contributions of various relaxation rates to the radiative and nonradiative	617
10.2	lifetimes, and to the fluorescence lifetimes, of upper and lower laser levels.	617
	Energy levels of Nd : YAG.	618
10.4	Normalized Lorentzian and Gaussian lineshape functions of the same FWHM.	621
10.5	Resonant transitions in the interaction of a radiation field with two atomic	
	levels.	624
10.6	Upper and lower laser levels of the ruby laser.	629
10.7	Splitting of the upper and lower transition levels into respective	
	quasi-continuous bands of sublevels.	632
10.8	Spectra of the absorption and emission cross-sections of Ti : sapphire at	
	room temperature.	633
10.9	(a) Pumping scheme of a true two-level system. (b) Pumping scheme of a	
	quasi-two-level system.	640
10.10	Energy levels of a three-level system.	641
10.11	Energy levels of a four-level system.	642
10.12	Energy levels of the three-level ruby laser.	647
10.13	Single-pass, traveling-wave laser amplifiers with various pumping	
	arrangements.	652
10.14	Gain of a laser amplifier as a function of input signal power for a few	
	different values of the unsaturated power gain.	654
	Schematics of a double-pass end-pumped Nd : YAG amplifier.	657
	Energy levels of praseodymium, neodymium, and erbium ions.	666
10.17	Absorption and emission cross-section spectra of Er^{3+} in (<i>a</i>) an	
	Al_2O_3/P_2O_5 -silica fiber and (<i>b</i>) an Al_2O_3/GeO_2 -silica fiber.	667
10.18	Use of a fiber amplifier as a power amplifier, an optical repeater, and an	
	optical preamplifier in a fiber-optic communication system.	668
	Pump power evolution and gain variation in an EDFA.	672
	Schematics of a few common laser cavity structures.	686
	Passive laser cavities under optical injection.	688
11.3	Normalized transmittance of a passive cavity as a function of the round-trip	600
	phase shift in the cavity.	689
11.4	Cavity resonance frequencies associated with different longitudinal and	(0 0
11.5	transverse modes.	692
	Fabry–Perot cavity containing an optical gain medium.	694
	Schematics of a fiber-coupled, end-pumped Nd : YAG microchip laser.	698 705
	Frequency-pulling effect for laser modes.	705 707
	Gain saturation in a laser in the case of homogeneous broadening.	/0/
11.9	Spectral hole burning effect in the gain saturation of a laser in the case of	700
	inhomogeneous broadening.	708

xxi	List of figures	
11.10	Typical characteristics of the output power of a single-mode laser as a	
	function of pump power.	714
11.11	Temporal evolutions of gain parameter and intracavity photon density in a	
	gain-switched laser.	720
11.12	Temporal evolutions of cavity loss rate, gain parameter, and intracavity	
	photon density in a Q-switched laser.	722
11.13	(a) Field and intensity variations of a laser caused by beating between two	
	longitudinal modes of constant phases. (b) Field and intensity variations of a	
	laser with multiple longitudinal modes locked in phase.	729
11.14	Spectral field distribution, spectral intensity distribution, temporal field	
	variation, and temporal intensity variation of a completely mode-locked	
11.15	laser.	731
11.15	Comparison between a transiently pulsed laser and a regeneratively pulsed	706
11.16	laser.	736
	Representative mode-locking techniques.	738
	Fiber laser cavity configurations.	741
11.18	Fiber DBR laser and fiber DFB laser for single-longitudinal-mode laser oscillation.	742
12.1		742 760
	Energy band structures of Si and GaAs.	760 764
	Lattice constant versus bandgap for III–V compound semiconductors. Fermi–Dirac integral of order 1/2, $F_{1/2}(\xi)$, as a function of the variable ξ .	704 771
	Carrier recombination processes in a semiconductor.	779
	Spontaneous carrier recombination lifetime as a function of excess carrier	11)
12.5	density.	785
12.6	Energy bands and built-in electrostatic potential for a p–n homojunction in	100
	thermal equilibrium.	791
12.7	Energy bands and built-in electrostatic potential for a p–N heterojunction in	
	thermal equilibrium.	791
12.8	Energy bands and built-in electrostatic potential for a P–n heterojunction in	
	thermal equilibrium.	791
12.9	Spatial distributions of the p and n regions, the energy bands, and the	
	electrostatic potential of an abrupt p-n homojunction (a) in thermal	
	equilibrium, (b) under forward bias, and (c) under reverse bias.	797
12.10	Spatial distribution of the space-charge density in the depletion layer of an	
	abrupt p–n junction (a) in thermal equilibrium, (b) under forward bias, and	
	(c) under reverse bias.	799
12.11	Spatial distributions of the electron and hole concentrations of an abrupt p-n	
	junction (a) in thermal equilibrium, (b) under forward bias, and (c) under	
	reverse bias.	802
12.12	Current–voltage characteristics of an ideal junction diode and a realistic	
10.10	junction diode.	806
12.13	Graded-gap $Al_x Ga_{1-x} As$ structure with a linearly graded bandgap.	812

xxii	List of figures	
13.1	Isoelectronic trapping levels of N and Zn,O centers in GaP.	818
13.2	Spontaneous carrier lifetime τ_s , radiative carrier lifetime τ_{rad} , and internal	
	quantum efficiency η_i as a function of excess carrier density.	820
13.3	Direct optical transitions in a direct-gap semiconductor.	822
13.4	Indirect optical transitions and direct optical transitions in an indirect-gap semiconductor.	823
13.5	Direct band-to-band optical transition at 850 nm optical wavelength in intrinsic GaAs at 300 K.	828
13.6	Quasi-Fermi levels of GaAs at 300 K at transparency.	832
	 (a) Gain and absorption spectra of GaAs as a function of photon energy at various levels of normalized excess carrier density. (b) Peak optical gain coefficient and gain-peak photon energy as a function of carrier density. 	833
13.8	Quasi-Fermi levels of GaAs at 300 K with an injected electron-hole pair	
	concentration of $N = 2.83 \times 10^{24} \text{ m}^{-3}$.	835
13.9	Spontaneous emission spectra of GaAs (a) in thermal equilibrium and (b) at various levels of normalized excess carrier density.	836
13.10	Energy bands, excess carrier distribution, refractive index profile, and	
	distribution of a horizontally propagating optical field of a p-n	
	homostructure device under forward bias.	840
13.11	Energy bands, excess carrier distribution, refractive index profile, and	
	distribution of a horizontally propagating optical field of a P-p-n single	
	heterostructure device under forward bias.	842
13.12	Energy bands, excess carrier distribution, refractive index profile, and	
	distribution of a horizontally propagating optical field of a P-p-N double	
	heterostructure under forward bias.	843
13.13	Quantized energy levels and corresponding subbands of a semiconductor	
	quantum well.	845
13.14	Energy bands and refractive index profiles of graded-index separate	
	confinement heterostructures.	852
13.15	Broad-area surface-emitting device and small-area surface-emitting device.	853
13.16	Broad-area edge-emitting device and stripe-geometry edge-emitting device.	854
13.17	Basic structure, excess carrier distribution, refractive index profile, and	
	lateral optical field distribution of a gain-guided stripe-geometry device.	855
13.18	Structures of gain-guided devices.	856
13.19	Basic structure, excess carrier distribution, refractive index profile, and	
	lateral optical field distribution of an index-guided stripe-geometry device.	858
13.20	Structures of index-guided devices.	859
13.21	Photopic luminous efficiency function, $V(\lambda)$, plotted in linear scale and	
	logarithmic scale.	862
13.22	Extraction efficiencies of surface-emitting LEDs that have different windows	
	and different substrates.	867

xxiii

Cambridge University Press 0521551951 - Photonic Devices Jia-Ming Liu Frontmatter <u>More information</u>

List of figures

12.02		
13.23	Construction of an LED encapsulated in plastic epoxy with a spherical dome lens.	868
13.24	Surface-emitting Burrus-type LED for fiber-optic applications.	869
	Stripe-geometry edge-emitting LED.	869
	Typical light–current characteristics of an LED.	871
	Representative emission spectrum of an LED.	873
	Normalized current-modulation frequency response of an LED.	874
13.29	Basic structure of a solitary SOA.	875
13.30	Structure of an edge-emitting Fabry-Perot semiconductor laser with cleaved	
	facets.	881
13.31	Structure of an edge-emitting distributed Bragg reflector (DBR)	
	semiconductor laser with two Bragg reflectors.	883
13.32	Structures of edge-emitting distributed feedback (DFB) semiconductor	
	lasers.	887
13.33	(a) Value of $\mu = \Delta v_{\rm SB}/2\Delta v_{\rm L}$, which defines the stop band and the	
	fundamental mode frequencies, and (b) value of $\alpha_{\text{out}}l = (\Gamma g_{\text{th}} - \overline{\alpha})l$, which	
	defines the fundamental mode threshold, as a function of the value of $ \kappa l$ for	000
12.24	a non-phase-shifted DFB laser.	890
15.54	Longitudinal mode spectra of a non-phase-shifted DFB laser of $ \kappa l = 1.5$ and $ \kappa l = 1$.	890
13 35	Structure of a folded-cavity surface-emitting laser (FCSEL).	890 893
	Structure of a grating-coupled surface-emitting laser (GCSEL).	894
	Structure of a vertical-cavity surface-emitting laser (VCSEL).	895
	Light–current characteristics of (a) a single-mode semiconductor laser at	070
	different temperatures and (b) a multimode semiconductor laser at a given	
	temperature.	904
13.39	Representative emission spectra of (<i>a</i>) a multimode semiconductor laser and	
	(b) a single-frequency semiconductor laser.	907
13.40	Normalized current-modulation frequency response of a semiconductor	
	laser.	910
14.1	Typical response characteristics as a function of the power of the input	
	optical signal for (a) a photodetector with an output current signal and (b) a	
	photodetector with an output voltage signal.	941
14.2	Typical responses of a photodetector to (a) an impulse signal and (b) a	
	square-pulse signal.	943
14.3	Photon energy requirement for photoemission from the surface of (a) a	
	metal, (b) a nondegenerate semiconductor, (c) an n-type degenerate	046
1 / /	semiconductor, and (d) a p-type degenerate semiconductor.	946 047
	Energy levels and photoemission in an NEA photocathode.	947 948
	Spectral responsivity of representative photocathodes.	948 949
14.0	Basic circuitry and small-signal equivalent circuit of a vacuum photodiode.	949

xxiv	List of figures	
14.7	Configurations and structures of (a) a side-on reflection-mode PMT with a circular-cage structure and (b) a head-on transmission-mode PMT with a	
	box-and-grid structure.	950
14.8	Basic circuitry and small-signal equivalent circuit of a photomultiplier.	951
14.9	Optical transitions for (a) intrinsic photoconductivity, (b) n-type extrinsic	
	photoconductivity, and (c) p-type extrinsic photoconductivity.	956
14.10	Specific detectivity, D^* , of representative photoconductive detectors as a	
	function of optical wavelength.	957
14.11	Simple geometry of a photoconductive detector.	958
14.12	Basic circuitry and small-signal equivalent circuit of a photoconductive	
	detector.	962
	Typical frequency response of a photoconductive detector.	965
14.14	Structure of a high-speed MSM photoconductor with interdigital	
	electrodes.	965
14.15	Spectral responsivity of representative photodiodes as a function of optical	
	wavelength.	967
	Photoexcitation and energy-band gradient of a p-n photodiode.	968
14.17	Current–voltage characteristics of a junction photodiode at various power levels of optical illumination operating in (<i>a</i>) photoconductive mode and (<i>b</i>)	
	photovoltaic mode.	970
14.18	Small-signal equivalent circuit and noise equivalent circuit of a junction	
	photodiode.	971
14.19	(a) Total frequency response of a photodiode for a fixed value of $\tau_{tr} = 50$ ps but for a few different values of τ_{RC} . (b) Dependence of the ratio of	
	$f_{\rm 3dB}/f_{\rm 3dB}^{\rm ph}$ on the ratio of $\tau_{\rm RC}/\tau_{\rm tr}$.	974
14.20	Structure and internal field distribution of a p–n photodiode and a p–i–n photodiode.	976
14.21	Schematic cross-sectional structures of a vertical p-i-n photodiode and a	
	lateral p–i–n photodiode.	977
14.22	Cutoff frequency and bandwidth-efficiency product of an InGaAs/InP	
	p-i-n photodiode for 1.3 µm wavelength.	979
14.23	Structures of heterojunction photodiodes.	980
14.24	Schottky junctions at (a) the interface of a metal and an n-type	
	semiconductor with $\phi_s < \phi_m$ and (b) the interface of a metal and a p-type	
	semiconductor with $\phi_{\rm s} > \phi_{\rm m}$.	981
14.25	Photodiodes with multiple optical passes to increase quantum efficiency.	985
14.26	Avalanche multiplication of electrons and holes through impact ionization in	
	a semiconductor in the presence of a high electric field.	986
	Small-signal equivalent circuit and noise equivalent circuit of an APD.	989
14.28	Structure and field distribution of a reach-through Si APD.	994

XXV	List of figures	
14.29	Structures and field distributions of a heterojunction InGaAs/InP SAM APD	
	and a superlattice InGaAs/InP SAM APD.	995
14.30	Band diagrams of a graded-gap staircase APD.	997
14.31	Schematic structures of waveguide photodetectors.	1000
14.32	Schematic structures of traveling-wave photodetectors.	1003

Tables

1.1	Electromagnetic spectrum	page 4
1.2	Linear optical properties of crystals	39
3.1	Fiber modes	132
6.1	Matrix form of Pockels coefficients for noncentrosymmetric point groups	243
6.2	Properties of representative electro-optic crystals	245
7.1	Verdet constants of representative paramagnetic and diamagnetic materials	
	at 300 K	299
7.2	Specific Faraday rotation of representative ferromagnetic and ferrimagnetic	
	materials at 300 K	301
8.1	Matrix form of elasto-optic coefficients for all point groups	361
8.2	Properties of representative acousto-optic materials	366
9.1	Nonvanishing elements of the second-order nonlinear susceptibility tensor	
	for noncentrosymmetric point groups	452
9.2	Nonvanishing elements of the third-order nonlinear susceptibility tensor for	
	cubic and isotropic materials	454
9.3	Properties of representative nonlinear crystals	457
9.4	Second-order nonlinear optical processes	460
9.5	Third-order nonlinear optical processes	464
9.6	Two types of birefringent phase matching for uniaxial crystals	481
10.1	Characteristics of some laser materials	627
10.2	Some optical transitions in three rare-earth ions	666
12.1	Properties of some important semiconductors	762
12.2	Electronic properties of some intrinsic semiconductors at 300K	786
13.1	Basic characteristics of III-V semiconductor LEDs	861
13.2	Major III-V semiconductor lasers	878
C.1	SI base units	1027
C.2	SI derived units	1027
C.3	Metric prefixes	1028
D.1	Physical constants	1029
E.1	Fourier-transform relations	1031

xxvi

Preface

Over the past two decades, photonics, the use of photons for engineering applications, has gradually become established as a well-defined engineering discipline. Photonics has developed from studies in crystal optics, guided-wave optics, nonlinear optics, lasers, and semiconductor optoelectronics. Though many excellent books exist on each of these subjects, and several have been written specifically to address photonics, it is still difficult to find one book where the diverse core subjects that are central to the study of photonic devices are presented with a good balance of breadth and depth of coverage. Through my teaching of undergraduate courses, I have found it very effective to introduce the field of photonics to undergraduate students using the rigorous, systematic approach of this book. Through my experience of working with graduate students in research, I have found that such a book is very much needed to prepare a solid foundation for graduate students who intend to major, or minor, in photonics. Through my teaching experience, I have found it highly desirable and beneficial for both instructors and students to have ample examples and problems that are well thought out and fully integrated with the subjects covered in the text. This book is written to address these needs.

I began this project in early 1994 after many years of teaching undergraduate and graduate courses in lasers, nonlinear optics, quantum electronics, and quantum mechanics. Though I had already accumulated a large collection of classnotes and problem sets when I started this project, it still took me exactly nine years to finish writing this book, with fully one-third of that time devoted to the work on examples and problems. Then, it took another year to prepare the figures. My students, both those in my classes and those in my research group, have been highly collaborative with the writing of this book. Throughout this process, I have taught various parts in different undergraduate and graduate courses to several hundred students. These students range from junior undergraduates to second-year graduates majoring in the diverse fields of photonics, solid-state electronics, electromagnetics, materials engineering, mechanical engineering, bioengineering, physics, chemistry, and many other disciplines. Many of their suggestions and feedback have been incorporated. All of the equations, examples, and problem solutions have been checked by several highly capable students. All of the

xxvii

xxviii Preface

figures were produced, originally, by my graduate students. The manuscript underwent three major and numerous minor revisions before the book was finalized.

Objectives

This book is written for advanced undergraduate students and new graduate students who are interested in studying photonics as an engineering subject. A novice graduate student who plans to major in photonics can study this book thoroughly over a one-year period to lay a very solid foundation. It is also intended for practicing engineers and scientists who wish to broaden or deepen their knowledge in the principles of photonic devices. The objectives of this book are for a student (1) to obtain a good understanding of the core theory of photonic devices through coherent coverage of the subject, (2) to develop a deep physical insight into the principles of photonic devices through descriptive and illustrative approaches, (3) to gain realistic concepts of the functions of practical devices through numerical examples and discussions, and (4) to lay a solid foundation for further study and research in the photonics field through rigorous analytical treatment of the subject.

Guiding principles

To fulfill the objectives through a consistent approach, I followed several guidelines that I laid down for myself at the beginning of this project:

- 1. To address the subject at the device level, as the book title suggests. The physics and principles of devices are treated in depth, but the fabrication and processing of devices are not touched. The functions and characteristics of devices are also emphasized, but specific applications in subsystems and systems are not discussed for the reason that they are too diverse and vary quickly as time goes on.
- 2. To cover both bulk and guided-wave devices, with sufficient emphasis on guidedwave devices to reflect the development of photonics into integrated photonics.
- 3. To use a macroscopic treatment with two central approaches: (a) to treat the optical properties of materials through reference to the susceptibility tensor, χ , and permittivity tensor, ϵ ; and (b) to treat the interaction of optical waves using coupled-wave theory for bulk devices and coupled-mode theory for guided-wave devices. With these approaches, it is possible to treat the majority of devices in great depth without ever touching quantum mechanics. For topics that necessitate an understanding of quantum concepts, I have adopted an approach that requires as little quantum mechanics background from the students as possible.

xxix Scope and structure

- 4. To balance both physics and engineering aspects with descriptive and analytical approaches to a significant, and consistent, depth throughout the entire book.
- 5. To concentrate on selected key topics and address them with sufficient rigor and thoroughness. On the one hand, analytical formulations and results that can be used at the level of practical applications and research are obtained. On the other, detailed and tedious mathematical derivations are avoided in favor of developing physical insight through an emphasis on the physical meanings of the analytical results.
- 6. To make the tables and figures useful and informative by using real data if possible while avoiding tedious details. Thus, the majority of the figures depicted in the book can be generated by the reader with realistic data using the analytical formulations obtained in the text.
- 7. To develop the concepts and data of working devices into realistic examples and problems.

Scope and structure

Photonics is a diverse field that can be addressed at various levels from many different perspectives. The scope and structure of this book are basically set by the guiding principles delineated above. This book focuses on the core topics of photonics at the device level covering both bulk and guided-wave devices. The entire book, as well as each chapter, is highly structured. Except for the general prerequisites described below, this book is written to be self-contained. General background and formulations that are needed for more than one chapter are provided in a few properly located individual chapters. Specific background needed only for the topics addressed within a particular chapter is provided at the start of each chapter. This arrangement allows the chapters and sections covering advanced topics to be treated as modules that can be added or dropped independently in a course or a study plan. Thus a minimum number of prerequisites are needed of the reader to begin studying any part of this book.

This book is divided into five parts. The first part consists of only one chapter that provides the relevant background in electromagnetics and optics for the entire book. This part also introduces χ and ϵ as the central concept for describing optical properties of materials. Part II covers four chapters on waveguides and couplers and lays the foundation for guided-wave devices. This part also develops coupled-wave and coupled-mode theories, which are used to formulate optical interactions throughout the entire book. Part III consists of four chapters covering devices based on electro-optics, magneto-optics, acousto-optics, and nonlinear optics. The fourth part contains two chapters on general discussions of laser amplifiers and laser oscillators. Fiber amplifiers and fiber lasers are specifically discussed in depth. Part V covers optoelectronic devices in three chapters. One chapter, i.e., Chapter 12, provides the background on semiconductors

xxx Preface

relevant to optoelectronics. The other two chapters in Part V cover semiconductor lasers, LEDs, and photodetectors.

All chapters are organized in a consistent manner that mirrors the structure of the book. Basically, each begins with a general introduction of the underlying fundamental physics of the topics covered in the chapter, followed by general formulations of the physical effects. The principles and functions of bulk devices are then discussed. In the final section, or sections, of a chapter, guided-wave devices are addressed.

Symbols and units

Consistent symbols and notations are used throughout the entire book. The symbols and notations are chosen based on two criteria: (1) they are the same as those commonly used in the literature, whenever possible; and (2) they are intuitive to recognize and easy to distinguish. I also choose not to use many special fonts; thus, *script* is the only special font used. However, in a book like this that covers a diverse range of topics, it is inevitable that one quickly runs into a situation that a particular symbol is commonly used in the literature to represent two or more different meanings on different occasions. Whenever there is no confusion, I still choose to use the common symbol for different meanings. Otherwise, I choose to use subscripts and superscripts to clarify the meaning of the symbols. The system of symbols and notations followed throughout this book is described in Appendix A, and a partial list of symbols is presented later among these preliminary pages.

The SI metric system, which is summarized in Appendix C, is used. The values of some important fundamental physical constants in SI units are listed in Appendix D. Values of all the parameters listed in the tables throughout the chapters in this book are commonly given in SI units. On some rare occasions when the value of a parameter is not quoted in an SI unit, a conversion to the SI unit is given in the text.

Examples and problems

There are a total of 164 examples and more than 600 problems in the book. The examples and problems justly take up about one-third of the volume of this book as they took me about one-third of the time spent on this entire project. All examples and problems are originally generated and they are evenly distributed across the entire book. To illustrate the concepts developed in the text, most examples are realistic numerical problems based on working devices. Problems are tied closely to the text and examples. There are four types of problems: (1) qualitative questions on general concepts, (2) analytical steps leading to important results presented in the text because filling such steps by the reader enhances understanding, (3) further development of certain concepts covered in the text

xxxi Prerequisites and use of the book

into an advanced level beyond the general depth of the text, and (4) practical numerical problems reduced from realistic working devices. The problems are collected at the end of each chapter and are identified with the relevant section. They are not grouped by type, but are arranged in an order that parallels the presentation of the text. This arrangement, though not what I prefer, facilitates adding or dropping a particular topic module in a course syllabus or study plan.

Bibliography and reading lists

Though this book is intended to be self-contained, a reader always gains a deeper understanding and a different perspective of a topic by reading other books and journal articles. To maintain the coherence of the presentation in the text and to avoid unnecessarily distracting a reader, references and footnotes are rarely used. Instead, a bibliography containing reference books and a list of useful journal articles for advanced reading are placed at the end of each chapter. The reference books in a bibliography are meant to help a reader obtain a different perspective or further information on a particular topic. The journal articles listed in a reading list are meant for a reader to go beyond the level of the presentation in this book. The bibliographies and reading lists are rather extensive, but are carefully selected to limit their sizes to a manageable level.

Prerequisites and use of the book

The prerequisites of this book include background knowledge in optics covered in a college-level general physics course, a foundation in electromagnetic waves preferably in an electromagnetics course, and some background in semiconductors and quantum physics obtained in an introductory solid-state electronics course. In my experience, it is possible for a student who has only minimal background in these areas to succeed in an undergraduate course using this book if the background chapters of this book are studied thoroughly. Within the book, the prerequisites of each section are listed in a table in Appendix B.

This book can be used in a one-year undergraduate course by dropping advanced sections, and thus cutting about one-third of the material in the book, while covering every chapter. It can also be used in a one-year intensive graduate course covering all sections. I also envision this book as being used at different levels in different courses, including one-quarter or one-semester courses, depending on the interest and emphasis of a particular curriculum. The modular structure of this book and the table of prerequisites given in Appendix B make it very easy for an instructor to put together a specific course syllabus and for an independent reader to make up a study plan.

Acknowledgments

Before acknowledging the many people who have made direct contributions to this project, I would like to pay tribute first to Professor Nicolaas Bloembergen, who brought me into the fields of nonlinear optics and lasers and guided me through my graduate studies, which began 26 years ago. I would like to express my gratitude to Erich P. Ippen, Chi Hsiang Lee, Thomas B. Simpson, and Jeffery Y. Tsao for their friendship, support, and intellectual illumination over more than 20 years. I also thank my colleagues Tatsuo Itoh and Kung Yao for their encouragement during the course of writing this book.

At the end of this long project, I want to give my deepest appreciation to my wife, Vida, and my daughter, Janelle, for their support, patience, and sacrifices throughout the past ten years while I indulged myself in this most expensive and time-consuming hobby. My editors, Philip Meyler, who convinced me to start this project, and Eric Willner, who helped me to finish it, at Cambridge University Press deserve my special thanks not only for their input and assistance but particularly for their patience and understanding when this project dragged on longer than originally expected.

Many students have contributed to this project. Numerous students in my classes have given me valuable input and feedback. Two overlapping groups of graduate students have made direct contributions to this project. Andrew K. Newman, Juan C. Garcia, Kevin Geary, and Sze-Chun Chan formed a study group to read the text, check the equations, and check my solutions of the examples and problems. How-Foo Chen, Sheng-Kwang Hwang, Shuo Tang, Fan-Yi Lin, Sze-Chun Chan, Margaret C. Chiang, and Tyan-Lin Wang shared the efforts to produce all of the electronic files for the figures from my drafts. They applied their research abilities and skills to generate many original plots based on real data of materials and devices. Two of them, Sze-Chun Chan and Margaret C. Chiang, made the extraordinary efforts of finalizing all figures uniformly. I am truly blessed with these highly capable and supporting students. Their crucial contributions to the completion of this project are most appreciated. Thanks are also due to my copy editor, Lesley Thomas, and production editor, Joseph Bottrill, for their numerous valuable suggestions and professional efforts at the final stage of this project.