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Statics and dynamics: some elementary concepts

Dynamics is the study of the movement through time of variables such as
heartbeat, temperature, species population, voltage, production, employ-
ment, prices and so forth.
This is often achieved by means of equations linking the values of vari-
ables at different, uniformly spaced instants of time, i.e., difference equa-
tions, or by systems relating the values of variables to their time derivatives,
i.e., ordinary differential equations. Dynamical phenomena can also be
investigated by other types of mathematical representations, such as par-
tial differential equations, lattice maps or cellular automata. In this book,
however, we shall concentrate on the study of systems of difference and
differential equations and their dynamical behaviour.
In the following chapters we shall occasionally use models drawn from
economics to illustrate the main concepts and methods. However, in general,
the mathematical properties of equations will be discussed independently of
their applications.

1.1 A static problem

To provide a first, broad idea of the problems posed by dynamic vis-à-vis
static analysis, we shall now introduce an elementary model that could be
labelled as ‘supply-demand-price interaction in a single market’. Our model
considers the quantities supplied and demanded of a single good, defined as
functions of a single variable, its price, p. In economic parlance, this would
be called partial analysis since the effect of prices and quantities determined
in the markets of all other goods is neglected. It is assumed that the demand
function D(p) is decreasing in p (the lower the price, the greater the amount
that people wish to buy), while the supply function S(p) is increasing in p

(the higher the price, the greater the amount that people wish to supply).
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2 Statics and dynamics: some elementary concepts
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Fig. 1.1 The static partial equilibrium model

For example, in the simpler, linear case, we have:

D(p) = a − bp

S(p) = −m+ sp
(1.1)

and a, b, m and s are positive constants. Only nonnegative values of these
variables are economically meaningful, thus we only consider D, S, p ≥ 0.
The economic equilibrium condition requires that the market of the
good clears, that is demand equals supply, namely:

D(p) = S(p) (1.2)

or

a − bp = −m+ sp.

static solution Mathematically, the solution to our problem is the value
of the variable that solves (1.2) (in this particular case, a linear equation).
Solving (1.2) for p we find:

p̄ =
a+m

b+ s

where p̄ is usually called the equilibrium price (see figure 1.1).1 We
call the problem static since no reference is made to time or, if you prefer,

1The demand curve D′ in figure 1.1 is provided to make the point that, with no further con-
straints on parameter values, the equilibrium price could imply negative equilibrium quantities
of supply and demand. To eliminate this possibility we further assume that 0 < m/s ≤ a/b, as
is the case for the demand curve D.
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1.2 A discrete-time dynamic problem 3

everything happens at the same time. Notice that, even though the static
model allows us to find the equilibrium price of the good, it tells us nothing
about what happens if the actual price is different from its equilibrium value.

1.2 A discrete-time dynamic problem

The introduction of dynamics into the model requires that we replace the
equilibrium condition (1.2) with some hypothesis concerning the behaviour
of the system off-equilibrium, i.e., when demand and supply are not equal.
For this purpose, we assume the most obvious mechanism of price adjust-
ment: over a certain interval of time, the price increases or decreases in
proportion to the excess of demand over supply, (D−S) (for short, excess
demand). Of course, excess demand can be a positive or a negative quan-
tity. Unless the adjustment is assumed to be instantaneous, prices must
now be dated and pn denotes the price of the good at time n, time being
measured at equal intervals of length h. Formally, we have

pn+h = pn + hθ[D(pn)− S(pn)]. (1.3)

Since h is the period of time over which the adjustment takes place, θ can
be taken as a measure of the speed of price response to excess demand. For
simplicity, let us choose h = 1, θ = 1. Then we have, making use of the
demand and supply functions (1.1),

pn+1 = a+m+ (1− b − s)pn. (1.4)

In general, a solution of (1.4) is a function of time p(n) (with n taking
discrete, integer values) that satisfies (1.4).2

dynamic solution To obtain the full dynamic solution of (1.4), we begin
by setting α = a+m, β = (1− b − s) to obtain

pn+1 = α+ βpn. (1.5)

To solve (1.5), we first set it in a canonical form, with all time-referenced
terms of the variable on the left hand side (LHS), and all constants on the
right hand side (RHS), thus:

pn+1 − βpn = α. (1.6)

Then we proceed in steps as follows.
2We use the forms pn and p(n) interchangeably, choosing the latter whenever we prefer to
emphasise that p is a function of n.
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4 Statics and dynamics: some elementary concepts

step 1 We solve the homogeneous equation, which is formed by setting
the RHS of (1.6) equal to 0, namely:

pn+1 − βpn = 0. (1.7)

It is easy to see that a function of time p(n) satisfying (1.7) is p(n) = Cβn,
with C an arbitrary constant. Indeed, substituting in (1.7), we have

Cβn+1 − βCβn = Cβn+1 − Cβn+1 = 0.

step 2 We find a particular solution of (1.6), assuming that it has a
form similar to the RHS in the general form. Since the latter is a constant,
set p(n) = k, k a constant, and substitute it into (1.6), obtaining

k − βk = α

so that

k =
α

1− β
=

a+m

b+ s
= p̄ again!

It follows that the p(n) = p̄ is a solution to (1.6) and the constant (or
stationary) solution of the dynamic problem is simply the solution of the
static problem of section 1.1.

step 3 Since (1.6) is linear, the sum of the homogeneous and the particular
solution is again a solution,3 called the general solution. This can be
written as

p(n) = p̄+ Cβn. (1.8)

The arbitrary constant C can now be expressed in terms of the initial con-
dition. Putting p(0) ≡ p0, and solving (1.8) for C we have

p0 = p̄+ Cβ0 = p̄+ C

whence C = p0−p̄, that is, the difference between the initial and equilibrium
values of p. The general solution can now be re-written as

p(n) = p̄+ (p0 − p̄)βn. (1.9)

Letting n take integer values 1, 2, . . ., from (1.9) we can generate a sequence
of values of p, a ‘history’ of that variable (and consequently, a history of
quantities demanded and supplied at the various prices), once its value at
any arbitrary instant of time is given. Notice that, since the function pn+1 =

3This is called the superposition principle and is discussed in detail in chapter 2 section 2.1.
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1.2 A discrete-time dynamic problem 5

f(pn) is invertible, i.e., the function f−1 is well defined, pn−1 = f−1(pn)
also describes the past history of p.
The value of p at each instant of time is equal to the sum of the equilib-
rium value (the solution to the static problem which is also the particular,
stationary solution) and the initial disequilibrium (p0 − p̄), amplified or
dampened by a factor βn. There are therefore two basic cases:

(i) |β| > 1. Any nonzero deviation from equilibrium is amplified in time,
the equilibrium solution is unstable and as n → +∞, pn asymptotically
tends to +∞ or −∞.

(ii) |β| < 1. Any nonzero deviation is asymptotically reduced to zero,
pn → p̄ as n → +∞ and the equilibrium solution is consequently stable.

First-order, discrete-time equations (where the order is determined as the
difference between the extreme time indices) can also have fluctuating be-
haviour, called improper oscillations,4 owing to the fact that if β < 0,
βn will be positive or negative according to whether n is even or odd. Thus
the sign of the adjusting component of the solution, the second term of the
RHS of (1.9), oscillates accordingly. Improper oscillations are dampened if
β > −1 and explosive if β < −1.
In figure 1.2 we have two representations of the motion of p through time.
In figure 1.2(a) we have a line defined by the solution equation (1.5), and the
bisector passing through the origin which satisfies the equation pn+1 = pn.
The intersection of the two lines corresponds to the constant, equilibrium
solution. To describe the off-equilibrium dynamics of p, we start on the
abscissa from an initial value p0 �= p̄. To find p1, we move vertically to
the solution line and sidewise horizontally to the ordinate. To find p2,
we first reflect the value of p1 by moving horizontally to the bisector and
then vertically to the abscissa. From the point p1, we repeat the procedure
proposed for p0 (up to the solution line, left to the ordinate), and so on and
so forth. The procedure can be simplified by omitting the intermediate step
and simply moving up to the solution line and sidewise to the bisector, up
again, and so on, as indicated in figure 1.2(a). It is obvious that for |β| < 1,
at each iteration of the procedure the initial deviation from equilibrium
is diminished again, see figure 1.2(b). For example, if β = 0.7, we have
β2 = 0.49, β3 = 0.34, . . . , β10 ≈ 0.03, . . .) and the equilibrium solution is
approached asymptotically.
The reader will notice that stability of the system and the possibility

4The term improper refers to the fact that in this case oscillations of variables have a ‘kinky’
form that does not properly describe the smoother ups and downs of real variables. We discuss
proper oscillations in chapter 3.
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6 Statics and dynamics: some elementary concepts
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Fig. 1.2 Convergence to p̄ in the discrete-time partial equilibrium model

of oscillatory behaviour depends entirely on β and therefore on the two
parameters b and s, these latter denoting respectively the slopes of the
demand and supply curves. The other two parameters of the system, a and
m, determine α and consequently they affect only the equilibrium value
p̄. We can therefore completely describe the dynamic characteristics of the
solution (1.9) over the parameter space (b, s). The boundary between stable
and unstable behaviour is given by |β| = 1, and convergence to equilibrium
is guaranteed for

− 1 < β < 1

2 > b+ s > 0.

The assumptions on the demand and supply functions imply that b, s > 0.
Therefore, the stability condition is (b + s) < 2, the stability boundary is
the line (b+ s) = 2, as represented in figure 1.3. Next, we define the curve
β = 1 − (b + s) = 0, separating the zone of monotonic behaviour from
that of improper oscillations, which is also represented in figure 1.3. Three
zones are labelled according to the different types of dynamic behaviour,
namely: convergent and monotonic; convergent and oscillatory; divergent
and oscillatory. Since b, s > 0, we never have the case β > 1, corresponding
to divergent, nonoscillatory behaviour.
If |β| > 1 any initial difference (p0 − p̄) is amplified at each step. In this
model, we can have |β| > 1 if and only if β < −1. Instability, then, is due
to overshooting. Any time the actual price is, say, too low and there is
positive excess demand, the adjustment mechanism generates a change in
the price in the ‘right’ direction (the price rises) but the change is too large.
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1.3 A continuous-time dynamic problem 7
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Fig. 1.3 Parameter space for the discrete-time partial equilibrium model

After the correction, the new price is too high (negative excess demand) and
the discrepancy from equilibrium is larger than before. A second adjustment
follows, leading to another price that is far too low, and so on. We leave
further study of this case to the exercises at the end of this chapter.

1.3 A continuous-time dynamic problem

We now discuss our simple dynamical model in a continuous-time setting.
Let us consider, again, the price adjustment equation (1.3) (with θ = 1,
h > 0) and let us adopt the notation p(n) so that

p(n+ h) = p(n) + h (D[p(n)]− S[p(n)]) .

Dividing this equation throughout by h, we obtain

p(n+ h)− p(n)
h

= D[p(n)]− S[p(n)]

whence, taking the limit of the LHS as h → 0, and recalling the definition
of a derivative, we can write

dp(n)
dn

= D[p(n)]− S[p(n)].

Taking the interval h to zero is tantamount to postulating that time is a
continuous variable. To signal that time is being modelled differently we
substitute the time variable n ∈ Z with t ∈ R and denote the value of p at
time t simply by p, using the extended form p(t) when we want to emphasise
that price is a function of time. We also make use of the efficient Newtonian
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8 Statics and dynamics: some elementary concepts

notation dx(t)/dt = ẋ to write the price adjustment mechanism as

dp

dt
= ṗ = D(p)− S(p) = (a+m)− (b+ s)p. (1.10)

Equation (1.10) is an ordinary differential equation relating the values of
the variable p at a given time t to its first derivative with respect to time
at the same moment. It is ordinary because the solution p(t) is a function
of a single independent variable, time. Partial differential equations, whose
solutions are functions of more than one independent variable, will not be
treated in this book, and when we refer to differential equations we mean
ordinary differential equations.

dynamic solution The dynamic problem is once again that of finding a
function of time p(t) such that (1.10) is satisfied for an arbitrary initial
condition p(0) ≡ p0.
As in the discrete-time case, we begin by setting the equation in canonical
form, with all terms involving the variable or its time derivatives on the LHS,
and all constants or functions of time (if they exist) on the RHS, thus

ṗ+ (b+ s)p = a+m. (1.11)

Then we proceed in steps as follows.

step 1 We solve the homogeneous equation, formed by setting the RHS of
(1.11) equal to 0, and obtain

ṗ+ (b+ s)p = 0 or ṗ = −(b+ s)p. (1.12)

If we now integrate (1.12) by separating variables, we have
∫

dp

p
= −(b+ s)

∫
dt

whence

ln p(t) = −(b+ s)t+A

where A is an arbitrary integration constant. Taking now the antilogarithm
of both sides and setting eA = C, we obtain

p(t) = Ce−(b+s)t.
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1.3 A continuous-time dynamic problem 9

step 2 We look for a particular solution to the nonhomogeneous equation
(1.11). The RHS is a constant so we try p = k, k a constant and conse-
quently ṗ = 0. Therefore, we have

ṗ = 0 = (a+m)− (b+ s)k

whence

k =
a+m

b+ s
= p̄.

Once again the solution to the static problem turns out to be a special
(stationary) solution to the corresponding dynamic problem.

step 3 Since (1.12) is linear, the general solution can be found by summing
the particular solution and the solution to the homogeneous equation, thus

p(t) = p̄+ Ce−(b+s)t.

Solving for C in terms of the initial condition, we find

p(0) ≡ p0 = p̄+ C and C = (p0 − p̄).

Finally, the complete solution to (1.10) in terms of time, parameters, initial
and equilibrium values is

p(t) = p̄+ (p0 − p̄)e−(b+s)t. (1.13)

As in the discrete case, the solution (1.13) can be interpreted as the sum
of the equilibrium value and the initial deviation of the price variable from
equilibrium, amplified or dampened by the term e−(b+s)t. Notice that in
the continuous-time case, a solution to a differential equation ṗ = f(p)
always determines both the future and the past history of the variable p,
independently of whether the function f is invertible or not. In general, we
can have two main cases, namely:

(i) (b+ s) > 0 Deviations from equilibrium tend asymptotically to zero as
t → +∞.

(ii) (b+ s) < 0 Deviations become indefinitely large as t → +∞ (or, equiv-
alently, deviations tend to zero as t → −∞).

Given the assumptions on the demand and supply functions, and therefore
on b and s, the explosive case is excluded for this model. If the initial price
is below its equilibrium value, the adjustment process ensures that the price
increases towards it, if the initial price is above equilibrium, the price de-
clines to it. (There can be no overshooting in the continuous-time case.) In
a manner analogous to the procedure for difference equations, the equilibria
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10 Statics and dynamics: some elementary concepts
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Fig. 1.4 The continuous-time partial equilibrium model

of differential equations can be determined graphically in the plane (p, ṗ)
as suggested in figure 1.4(a). Equilibria are found at points of intersection
of the line defined by (1.10) and the abscissa, where ṗ = 0. Convergence
to equilibrium from an initial value different from the equilibrium value is
shown in figure 1.4(b).
Is convergence likely for more general economic models of price adjust-
ment, where other goods and income as well as substitution effects are taken
into consideration? A comprehensive discussion of these and other related
microeconomic issues is out of the question in this book. However, in the
appendixes to chapter 3, which are devoted to a more systematic study of
stability in economic models, we shall take up again the question of conver-
gence to or divergence from economic equilibrium.
We would like to emphasise once again the difference between the discrete-
time and the continuous-time formulation of a seemingly identical problem,
represented by the two equations

pn+1 − pn = (a+m)− (b+ s)pn (1.4)

ṗ = (a+m)− (b+ s)p. (1.10)

Whereas in the latter case (b+s) > 0 is a sufficient (and necessary) condition
for convergence to equilibrium, stability of (1.4) requires that 0 < (b+s) < 2,
a tighter condition.
This simple fact should make the reader aware that a naive translation of
a model from discrete to continuous time or vice versa may have unsuspected
consequences for the dynamical behaviour of the solutions.
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