Contents

Sections marked with an asterisk are somewhat out of the book’s main line of development and may be omitted in a first reading.

PREFACE TO VOLUME II

NOTATION

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>NON-ABELIAN GAUGE THEORIES</td>
<td>1</td>
</tr>
<tr>
<td>15.1</td>
<td>Gauge Invariance</td>
<td>2</td>
</tr>
<tr>
<td>15.2</td>
<td>Gauge Theory Lagrangians and Simple Lie Groups</td>
<td>7</td>
</tr>
<tr>
<td>15.3</td>
<td>Field Equations and Conservation Laws</td>
<td>12</td>
</tr>
<tr>
<td>15.4</td>
<td>Quantization</td>
<td>14</td>
</tr>
<tr>
<td>15.5</td>
<td>The De Witt–Faddeev–Popov Method</td>
<td>19</td>
</tr>
<tr>
<td>15.6</td>
<td>Ghosts</td>
<td>24</td>
</tr>
</tbody>
</table>
15.7 BRST Symmetry 27
Auxiliary field h_x □ BRST transformation □ Nilpotence □ Invariance of new action □ BRST-cohomology □ Independence of gauge fixing □ Application to electrodynamics □ BRST-quantization □ Geometric interpretation

15.8 Generalizations of BRST Symmetry* 36
De Witt notation □ General Faddeev–Popov–De Witt theorem □ BRST transformations □ New action □ Slavnov operator □ Field-dependent structure constants □ Generalized Jacobi identity □ Invariance of new action □ Independence of gauge fixing □ Beyond quadratic ghost actions □ BRST quantization □ BRST cohomology □ Anti-BRST symmetry

15.9 The Batalin–Vilkovisky Formalism* 42
Open gauge algebras □ Antifields □ Master equation □ Minimal fields and trivial pairs □ BRST-transformations with antifields □ Antibrackets □ Anticanonical transformations □ Gauge fixing □ Quantum master equation

Appendix A A Theorem Regarding Lie Algebras 50
Appendix B The Cartan Catalog 54
Problems 58
References 59

16 EXTERNAL FIELD METHODS 63

16.1 The Quantum Effective Action 63
Currents □ Generating functional for all graphs □ Generating functional for connected graphs □ Legendre transformation □ Generating functional for one-particle-irreducible graphs □ Quantum-corrected field equations □ Summing tree graphs

16.2 Calculation of the Effective Potential 68
Effective potential for constant fields □ One loop calculation □ Divergences □ Renormalization □ Fermion loops

16.3 Energy Interpretation 72
Adiabatic perturbation □ Effective potential as minimum energy □ Convexity □ Instability between local minima □ Linear interpolation

16.4 Symmetries of the Effective Action 75
Symmetry and renormalization □ Slavnov–Taylor identities □ Linearly realized symmetries □ Fermionic fields and currents

Problems 78
References 78
Contents

17 RENORMALIZATION OF GAUGE THEORIES ix

17.1 The Zinn-Justin Equation 80

Slavnov–Taylor identities for BRST symmetry □ External fields $K_a(x)$ □ Antibrackets

17.2 Renormalization: Direct Analysis 82

Recursive argument □ BRST-symmetry condition on infinities □ Linearity in $K_a(x)$ □ New BRST symmetry □ Cancellation of infinities □ Renormalization constants □ Nonlinear gauge conditions

17.3 Renormalization: General Gauge Theories 91

Are ‘non-renormalizable’ gauge theories renormalizable? □ Structural constraints □ Anticanonical change of variables □ Recursive argument □ Cohomology theorems

17.4 Background Field Gauge 95

New gauge fixing functions □ True and formal gauge invariance □ Renormalization constants

17.5 A One-Loop Calculation in Background Field Gauge 100

One-loop effective action □ Determinants □ Algebraic calculation for constant background fields □ Renormalization of gauge fields and couplings □ Interpretation of infinities

Problems 109

References 110

18 RENORMALIZATION GROUP METHODS 111

18.1 Where do the Large Logarithms Come From? 112

Singularities at zero mass □ ‘Infrared safe’ amplitudes and rates □ Jets □ Zero mass singularities from renormalization □ Renormalized operators

18.2 The Sliding Scale 119

Gell-Mann–Low renormalization □ Renormalization group equation □ One-loop calculations □ Application to ϕ^4 theory □ Field renormalization factors □ Application to quantum electrodynamics □ Effective fine structure constant □ Field-dependent renormalized couplings □ Vacuum instability

18.3 Varieties of Asymptotic Behavior 130

Singualrities at finite energy □ Continued growth □ Fixed point at finite coupling □ Asymptotic freedom □ Lattice quantization □ Triviality □ Universal coefficients in the beta function
x

Contents

18.4 Multiple Couplings and Mass Effects 139
Behavior near a fixed point □ Invariant eigenvalues □ Nonrenormalizable theories □ Finite dimensional critical surfaces □ Mass renormalization at zero mass □ Renormalization group equations for masses

18.5 Critical Phenomena* 145
Low wave numbers □ Relevant, irrelevant, and marginal couplings □ Phase transitions and critical surfaces □ Critical temperature □ Behavior of correlation length □ Critical exponent □ 4 − ε dimensions □ Wilson–Fisher fixed point □ Comparison with experiment □ Universality classes

18.6 Minimal Subtraction 148
Definition of renormalized coupling □ Calculation of beta function □ Application to electrodynamics □ Modified minimal subtraction □ Non-renormalizable interactions

18.7 Quantum Chromodynamics 152
Quark colors and flavors □ Calculation of beta function □ Asymptotic freedom □ Quark and gluon trapping □ Jets □ e+−e− annihilation into hadrons □ Accidental symmetries □ Non-renormalizable corrections □ Behavior of gauge coupling □ Experimental results for g, and Λ

18.8 Improved Perturbation Theory* 157
Leading logarithms □ Coefficients of logarithms

Problems 158

References 159

19 SPONTANEOUSLY BROKEN GLOBAL SYMMETRIES 163

19.1 Degenerate Vacua 163
Degenerate minima of effective potential □ Broken symmetry or symmetric superpositions? □ Large systems □ Factorization at large distances □ Diagonalization of vacuum expectation values □ Cluster decomposition

19.2 Goldstone Bosons 167
Broken global symmetries imply massless bosons □ Proof using effective potential □ Proof using current algebra □ F factors and vacuum expectation values □ Interactions of soft Goldstone bosons

19.3 Spontaneously Broken Approximate Symmetries 177
Pseudo-Goldstone bosons □ Tadpoles □ Vacuum alignment □ Mass matrix □ Positivity
Contents

19.4 Pions as Goldstone Bosons 182
SU(2) × SU(2) chiral symmetry of quantum chromodynamics □ Breakdown to isospin □ Vector and axial-vector weak currents □ Pion decay amplitude □ Axial form factors of nucleon □ Goldberger-Treiman relation □ Vacuum alignment □ Quark and pion masses □ Soft pion interactions □ Historical note

19.5 Effective Field Theories: Pions and Nucleons 192
Current algebra for two soft pions □ Current algebra justification for effective Lagrangian □ σ-model □ Transformation to derivative coupling □ Nonlinear realization of SU(2) × SU(2) □ Effective Lagrangian for soft pions □ Direct justification of effective Lagrangian □ General effective Lagrangian for pions □ Power counting □ Pion–pion scattering for massless pions □ Identification of F-factor □ Pion mass terms in effective Lagrangian □ Pion–pion scattering for real pions □ Pion–pion scattering lengths □ Pion–nucleon effective Lagrangian □ Covariant derivatives □ g4 ≠ 1 □ Power counting with nucleons □ Pion–nucleon scattering lengths □ σ-terms □ Isospin violation □ Adler–Weisberger sum rule

19.6 Effective Field Theories: General Broken Symmetries 211
Transformation to derivative coupling □ Goldstone bosons and right cosets □ Symmetric spaces □ Cartan decomposition □ Nonlinear transformation rules □ Uniqueness □ Covariant derivatives □ Symmetry breaking terms □ Application to quark mass terms □ Power counting □ Order parameters

19.7 Effective Field Theories: SU(3) × SU(3) 225
SU(3) multiplets and matrices □ Goldstone bosons of broken SU(3) × SU(3) □ Quark mass terms □ Pseudoscalar meson masses □ Electromagnetic corrections □ Quark mass ratios □ Higher terms in Lagrangian □ Nucleon mass shifts

19.8 Anomalous Terms in Effective Field Theories* 234
Wess–Zumino–Witten term □ Five-dimensional form □ Integer coupling □ Uniqueness and de Rham cohomology

19.9 Unbroken Symmetries 238
Persistent mass conjecture □ Vafa–Witten proof □ Small non-degenerate quark masses

19.10 The U(1) Problem 243
Chiral U(1) symmetry □ Implications for pseudoscalar masses

Problems 246

References 247
Contents

20 OPERATOR PRODUCT EXPANSIONS 252

20.1 The Expansion: Description and Derivation 253
Statement of expansion □ Dominance of simple operators □ Path-integral derivation

20.2 Momentum Flow* 255
\(\phi^2\) contribution for two large momenta □ Renormalized operators □ Integral equation for coefficient function □ \(\phi^3\) contribution for many large momenta

20.3 Renormalization Group Equations for Coefficient Functions 263
Derivation and solution □ Behavior for fixed points □ Behavior for asymptotic freedom

20.4 Symmetry Properties of Coefficient Functions 265
Invariance under spontaneously broken symmetries

20.5 Spectral Function Sum Rules 266
Spectral functions defined □ First, second, and third sum rules □ Application to chiral SU(N) × SU(N) □ Comparison with experiment

20.6 Deep Inelastic Scattering 272
Form factors \(W_1\) and \(W_2\) □ Deep inelastic differential cross section □ Bjorken scaling □ Parton model □ Callan–Gross relation □ Sum rules □ Form factors \(T_1\) and \(T_2\) □ Relation between \(T_1\) and \(W_1\) □ Symmetric tensor operators □ Twist □ Operators of minimum twist □ Calculation of coefficient functions □ Sum rules for parton distribution functions □ Altarelli–Parisi differential equations □ Logarithmic corrections to Bjorken scaling

20.7 Renormalons* 283
Borel summation of perturbation theory □ Instanton and renormalon obstructions □ Instantons in massless \(\phi^4\) theory □ Renormalons in quantum chromodynamics

Appendix Momentum Flow: The General Case 288
Problems 292
References 293

21 SPONTANEOUSLY BROKEN GAUGE SYMMETRIES 295

21.1 Unitarity Gauge 295
Elimination of Goldstone bosons □ Vector boson masses □ Unbroken symmetries and massless vector bosons □ Complex representations □ Vector field propagator □ Continuity for vanishing gauge couplings
Contents

21.2 Renormalizable ξ-Gauges 300
Gauge fixing function \Box Gauge-fixed Lagrangian \Box Propagators

21.3 The Electroweak Theory 305
Lepton-number preserving symmetries \Box $SU(2) \times U(1)$ \Box W^\pm, Z^0, and photons \Box Mixing angle \Box Lepton-vector boson couplings \Box W^\pm and Z^0 masses \Box Muon decay \Box Effective fine structure constant \Box Discovery of neutral currents \Box Quark currents \Box Cabibbo angle \Box c quark \Box Third generation \Box Kobayashi–Maskawa matrix \Box Discovery of W^\pm and Z^0 \Box Precise experimental tests \Box Accidental symmetries \Box Nonrenormalizable corrections \Box Lepton nonconservation and neutrino masses \Box Baryon nonconservation and proton decay

21.4 Dynamically Broken Local Symmetries* 318
Fictitious gauge fields \Box Construction of Lagrangian \Box Power counting \Box General mass formula \Box Example: $SU(2) \times SU(2)$ \Box Custodial $SU(2) \times SU(2)$ \Box Technicolor

21.5 Electroweak–Strong Unification 327
Simple gauge groups \Box Relations among gauge couplings \Box Renormalization group flow \Box Mixing angle and unification mass \Box Baryon and lepton nonconservation

21.6 Superconductivity* 332
$U(1)$ broken to Z_2 \Box Goldstone mode \Box Effective Lagrangian \Box Conservation of charge \Box Meissner effect \Box Penetration depth \Box Critical field \Box Flux quantization \Box Zero resistance \Box ac Josephson effect \Box Landau–Ginzburg theory \Box Correlation length \Box Vortex lines \Box $U(1)$ restoration \Box Stability \Box Type I and II superconductors \Box Critical fields for vortices \Box Behavior near vortex center \Box Effective theory for electrons near Fermi surface \Box Power counting \Box Introduction of pair field \Box Effective action \Box Gap equation \Box Renormalization group equations \Box Conditions for superconductivity

Appendix General Unitarity Gauge 352
Problems 353
References 354

22 ANOMALIES 359
22.1 The π^* Decay Problem 359
Rate for $\pi^0 \to 2\gamma$ \Box Naive estimate \Box Suppression by chiral symmetry \Box Comparison with experiment

22.2 Transformation of the Measure: The Abelian Anomaly 362
Chiral and non-chiral transformations \Box Anomaly function \Box Chern–Pontryagin density \Box Nonconservation of current \Box Conservation of gauge-non-invariant
Contents

22.3 Direct Calculation of Anomalies: The General Case 370
Fermion non-conserving currents □ Triangle graph calculation □ Shift vectors □ Symmetric anomaly □ Bardeen form □ Adler–Bardeen theorem □ Massive fermions □ Another approach □ Global anomalies

22.4 Anomaly-Free Gauge Theories 383
Gauge anomalies must vanish □ Real and pseudoreal representations □ Safe groups □ Anomaly cancellation in standard model □ Gravitational anomalies □ Hypercharge assignments □ Another U(1)?

22.5 Massless Bound States* 389
Composite quarks and leptons? □ Unbroken chiral symmetries □ ‘t Hooft anomaly matching conditions □ Anomaly matching for unbroken chiral SU(n) × SU(n) with SU(N) gauge group □ The case N = 3 □ □ Chiral SU(3) × SU(3) must be broken □ ‘t Hooft decoupling condition □ Persistent mass condition

22.6 Consistency Conditions 396
Wess–Zumino conditions □ BRST cohomology □ Derivation of symmetric anomaly □ Descent equations □ Solution of equations □ Schwinger terms □ Anomalies in Zinn-Justin equation □ Antibracket cohomology □ Algebraic proof of anomaly absence for safe groups

22.7 Anomalies and Goldstone Bosons 408
Anomaly matching □ Solution of anomalous Slavnov–Taylor identities □ Uniqueness □ Anomalous Goldstone boson interactions □ The case SU(3) × SU(3) □ Derivation of Wess–Zumino–Witten interaction □ Evaluation of integer coefficient □ Generalization

Problems 416
References 417

23 EXTENDED FIELD CONFIGURATIONS 421

23.1 The Uses of Topology 422
Topological classifications □ Homotopy □ Skyrmions □ Derrick’s theorem □ Domain boundaries □ Bogomol’nyi inequality □ Cosmological problems □ Instantons □ Monopoles and vortex lines □ Symmetry restoration

23.2 Homotopy Groups 430
Multiplication rule for \(\pi_1(\mathcal{M}) \) □ Associativity □ Inverses □ \(\pi_1(S^1) \) □ Topological conservation laws □ Multiplication rule for \(\pi_k(\mathcal{M}) \) □ Winding number
Table of Contents

23.3 Monopoles
SU(2)/U(1) model □ Winding number □ Electromagnetic field □ Magnetic monopole moment □ Kronecker index □ ’t Hooft–Polyakov monopole □ Another Bogomol’nyi inequality □ BPS monopole □ Dirac gauge □ Charge quantization □ G/(H × U(1)) monopoles □ Cosmological problems □ Monopole–particle interactions □ G/H monopoles with G not simply connected □ Irrelevance of field content

23.4 The Cartan–Maurer Integral Invariant
Definition of the invariant □ Independence of coordinate system □ Topological invariance □ Additivity □ Integral invariant for S1 ↦ U(1) □ Bott’s theorem □ Integral invariant for S3 ↦ SU(2)

23.5 Instantons
Evaluation of Cartan–Maurer invariant □ Chern–Pontryagin density □ One more Bogomol’nyi inequality □ ν = 1 solution □ General winding number □ Solution of U(1) problem □ Baryon and lepton non-conservation by electroweak instantons □ Minkowskian approach □ Barrier penetration □ Thermal fluctuations

23.6 The Theta Angle
Cluster decomposition □ Superposition of winding numbers □ P and CP non-conservation □ Complex fermion masses □ Suppression of P and CP non-conservation by small quark masses □ Neutron electric dipole moment □ Pececi–Quinn symmetry □ Axions □ Axion mass □ Axion interactions

23.7 Quantum Fluctuations around Extended Field Configurations
Fluctuations in general □ Collective parameters □ Determinental factor □ Coupling constant dependence □ Counting collective parameters

23.8 Vacuum Decay
False and true vacua □ Bounce solutions □ Four dimensional rotational invariance □ Sign of action □ Decay rate per volume □ Thin wall approximation

Appendix A Euclidean Path Integrals

Appendix B A List of Homotopy Groups

Problems

References

AUTHOR INDEX

SUBJECT INDEX
Contents

OUTLINE OF VOLUME I

1. HISTORICAL INTRODUCTION
2. RELATIVISTIC QUANTUM MECHANICS
3. SCATTERING THEORY
4. THE CLUSTER DECOMPOSITION PRINCIPLE
5. QUANTUM FIELDS AND ANTIPARTICLES
6. THE FEYNMAN RULES
7. THE CANONICAL FORMALISM
8. ELECTRODYNAMICS
9. PATH-INTEGRAL METHODS
10. NON-PERTURBATIVE METHODS
11. ONE-LOOP RADIATIVE CORRECTIONS IN QUANTUM ELECTRODYNAMICS
12. GENERAL RENORMALIZATION THEORY
13. INFRARED EFFECTS
14. BOUND STATES IN EXTERNAL FIELDS