Fundamentals of Atmospheric Modeling
Second Edition

This well-received and comprehensive textbook on atmospheric processes and numerical methods has been thoroughly revised and updated. The new edition includes a wide range of new numerical techniques for solving problems in areas such as cloud microphysics, ocean-atmosphere exchange processes, and atmospheric radiative properties. It also contains improved descriptions of atmospheric physics, dynamics, radiation, aerosol, and cloud processes. Numerous examples and problems are included, with answers available to lecturers at http://www.cambridge.org/0521548659

Fundamentals of Atmospheric Modeling is essential reading for researchers and advanced students of atmospheric science, meteorology, and environmental science.

Mark Z. Jacobson is an associate professor of civil and environmental engineering at Stanford University. Goals of his research are to improve our understanding of physical, chemical, and dynamical processes in the atmosphere through numerical modeling and to improve the simulation of air pollution, weather, and climate. He is the author of two textbooks: Fundamentals of Atmospheric Modeling and Atmospheric Pollution: History, Science, and Regulation.
To Dionna and Daniel
Contents

Preface xiii
Acknowledgments xiv

1 Introduction 1
 1.1 Brief history of meteorological sciences 1
 1.2 Brief history of air-pollution science 5
 1.3 The merging of air-pollution and meteorological sciences 6
 1.4 Weather, climate, and air pollution 6
 1.5 Scales of motion 8
 1.6 Atmospheric processes 8

2 Atmospheric structure, composition, and thermodynamics 12
 2.1 Pressure, density, and composition 12
 2.2 Temperature structure 18
 2.3 Equation of state 28
 2.4 Changes of pressure with altitude 34
 2.5 Water in the atmosphere 37
 2.6 First law of thermodynamics 47
 2.7 Summary 57
 2.8 Problems 58
 2.9 Computer programming practice 60

3 The continuity and thermodynamic energy equations 61
 3.1 Definitions 61
 3.2 Continuity equations 65
 3.3 Expanded continuity equations 68
 3.4 Thermodynamic energy equation 78
 3.5 Summary 80
 3.6 Problems 80
 3.7 Computer programming practice 81

4 The momentum equation in Cartesian and spherical coordinates 82
 4.1 Horizontal coordinate systems 82
 4.2 Newton's second law of motion 87
 4.3 Applications of the momentum equation 111
 4.4 Summary 135
4.5 Problems 136
4.6 Computer programming practice 137

5 Vertical-coordinate conversions 138
5.1 Hydrostatic and nonhydrostatic models 138
5.2 Altitude coordinate 143
5.3 Pressure coordinate 143
5.4 Sigma-pressure coordinate 151
5.5 Sigma-altitude coordinate 160
5.6 Summary 167
5.7 Problems 167
5.8 Computer programming practice 168

6 Numerical solutions to partial differential equations 169
6.1 Ordinary and partial differential equations 169
6.2 Operator splitting 170
6.3 Advection–diffusion equations 171
6.4 Finite-difference approximations 172
6.5 Series expansion methods 192
6.6 Finite-volume methods 199
6.7 Advection schemes used in air-quality models 199
6.8 Summary 202
6.9 Problems 202
6.10 Computer programming practice 203

7 Finite-differencing the equations of atmospheric dynamics 204
7.1 Vertical model grid 204
7.2 The continuity equation for air 208
7.3 The species continuity equation 211
7.4 The thermodynamic energy equation 213
7.5 The horizontal momentum equations 214
7.6 The hydrostatic equation 221
7.7 Order of calculations 222
7.8 Time-stepping schemes 222
7.9 Summary 224
7.10 Problems 224
7.11 Computer programming practice 225
7.12 Modeling project 225

8 Boundary-layer and surface processes 228
8.1 Turbulent fluxes of momentum, energy, and moisture 228
8.2 Friction wind speed 230
8.3 Surface roughness lengths 231
8.4 Parameterizations of kinematic turbulent fluxes 235
8.5 Eddy diffusion above the surface layer 230
8.6 Ground surface temperature and soil moisture 234
Contents

8.7 Summary 271
8.8 Problems 271
8.9 Computer programming practice 272

9 Radiative energy transfer 273
 9.1 Energy transfer processes 273
 9.2 Electromagnetic spectrum 275
 9.3 Light processes 283
 9.4 Absorption and scattering by gases and particles 290
 9.5 Visibility 313
 9.6 Optical depth 316
 9.7 Solar zenith angle 317
 9.8 The radiative transfer equation 320
 9.9 Summary 334
 9.10 Problems 334
 9.11 Computer programming practice 335

10 Gas-phase species, chemical reactions, and reaction rates 336
 10.1 Atmospheric gases and their molecular structures 336
 10.2 Chemical reactions and photoprocesses 342
 10.3 Reaction rates 344
 10.4 Reaction rate coefficients 346
 10.5 Sets of reactions 351
 10.6 Stiff systems 353
 10.7 Summary 355
 10.8 Problems 355
 10.9 Computer programming practice 356

11 Urban, free-tropospheric, and stratospheric chemistry 357
 11.1 Free-tropospheric photochemistry 357
 11.2 Urban photochemistry 375
 11.3 Stratospheric photochemistry 393
 11.4 Summary 415
 11.5 Problems 416
 11.6 Computer programming practice 417

12 Methods of solving chemical ordinary differential equations 418
 12.1 Characteristics of chemical ODEs 418
 12.2 Analytical solutions to ODEs 421
 12.3 Taylor series solution to ODEs 421
 12.4 Forward Euler solution to ODEs 422
 12.5 Backward Euler solution to ODEs 424
 12.6 Simple exponential and quasi-steady-state solutions to ODEs 426
 12.7 Multistep implicit-explicit (MIE) solution to ODEs 427
 12.8 Gear's solution to ODEs 432
 12.9 Family solution to ODEs 439
Contents

12.10 Summary 442
12.11 Problems 442
12.12 Computer programming practice 443
12.13 Modeling project 444

13 Particle components, size distributions, and size structures 446
13.1 Introduction to particles 446
13.2 Aerosol, fog, and cloud composition 447
13.3 Discrete size distributions 449
13.4 Continuous size distributions 454
13.5 Evolution of size distributions over time 462
13.6 Summary 467
13.7 Problems 468
13.8 Computer programming practice 468

14 Aerosol emission and nucleation 470
14.1 Aerosol emission 470
14.2 Nucleation 484
14.3 Summary 492
14.4 Problems 493
14.5 Computer programming practice 493

15 Coagulation 494
15.1 Implicit coagulation 494
15.2 Semiimplicit Coagulation 496
15.3 Comparison with analytical solutions 498
15.4 Coagulation among multiple particle distributions 500
15.5 Particle flow regimes 505
15.6 Coagulation kernel 508
15.7 Summary 522
15.8 Problems 523
15.9 Computer programming practice 523

16 Condensation, evaporation, deposition, and sublimation 525
16.1 Fluxes to and from a single drop 525
16.2 Corrections to growth parameters 528
16.3 Fluxes to a particle with multiple components 540
16.4 Fluxes to a population of particles 540
16.5 Solutions to growth equations 542
16.6 Solving homogeneous nucleation with condensation 545
16.7 Effects of condensation on coagulation 547
16.8 Ice crystal growth 548
16.9 Summary 550
16.10 Problems 550
16.11 Computer programming practice 551
Contents

17 Chemical equilibrium and dissolution processes 553
 17.1 Definitions 553
 17.2 Equilibrium reactions 554
 17.3 Equilibrium relation and coefficients 558
 17.4 Forms of equilibrium-coefficient equations 562
 17.5 Mean binary solute activity coefficients 565
 17.6 Temperature dependence of binary solute activity coefficients 567
 17.7 Mean mixed solute activity coefficients 568
 17.8 The water equation 570
 17.9 Solid formation and deliquescence relative humidity 574
 17.10 Example equilibrium problem 575
 17.11 Mass-flux iteration method 577
 17.12 Analytical equilibrium iteration method 579
 17.13 Equilibrium solver results 582
 17.14 Nonequilibrium between gases and particles 583
 17.15 Summary 594
 17.16 Problems 596
 17.17 Computer programming practice 596

18 Cloud thermodynamics and dynamics 598
 18.1 Fog and cloud types and formation mechanisms 598
 18.2 Moist adiabatic and pseudoadiabatic processes 602
 18.3 Cloud development by free convection 606
 18.4 Entrainment 608
 18.5 Vertical momentum equation in a cloud 610
 18.6 Convective available potential energy 612
 18.7 Cumulus parameterizations 612
 18.8 Cloud microphysics 614
 18.9 Summary 642
 18.10 Problems 643
 18.11 Computer programming practice 643

19 Irreversible aqueous chemistry 645
 19.1 Significance of aqueous chemical reactions 645
 19.2 Mechanisms of converting S(IV) to S(VI) 646
 19.3 Diffusion within a drop 652
 19.4 Solving growth and aqueous chemical ODEs 654
 19.5 Summary 659
 19.6 Problems 659
 19.7 Computer programming practice 660

20 Sedimentation, dry deposition, and air–sea exchange 661
 20.1 Sedimentation 661
 20.2 Dry deposition 665
Contents

20.3 Dry deposition and sedimentation calculations 670
20.4 Air–sea flux of carbon dioxide and other gases 672
20.5 Summary 679
20.6 Problems 679
20.7 Computer programming practice 679

21 Model design, application, and testing 681
21.1 Steps in model formulation 681
21.2 Example model simulations 700
21.3 Summary 707
21.4 Problems 707
21.5 Computer programming practice 707

Appendix A Conversions and constants 709
A.1 Distance conversions 709
A.2 Volume conversions 709
A.3 Mass conversions 709
A.4 Temperature conversions 710
A.5 Force conversions 710
A.6 Pressure conversions 710
A.7 Energy conversions 710
A.8 Power conversions 710
A.9 Speed conversions 710
A.10 Constants 711

Appendix B Tables 714
B.1 Standard atmospheric variables versus altitude 714
B.2 Solar irradiance at the top of the atmosphere 715
B.3 Chemical symbols and structures of gases 716
B.4 Gas-phase reactions 728
B.5 Chemicals involved in equilibrium and aqueous reactions 738
B.6 Thermodynamic data 740
B.7 Equilibrium reactions and rate coefficients 741
B.8 Irreversible aqueous reactions 743
B.9 Solute activity coefficient data 746
B.10 Water activity data 748
B.11 Surface resistance data 749
B.12 More surface resistance data 751

References 752
Index 784
Preface

Modern atmospheric science is a field that combines meteorology, physics, mathematics, chemistry, computer sciences, and to a lesser extent geology, biology, microbiology, and oceanographic sciences. Until the late 1940s scientific studies of the atmosphere were limited primarily to studies of the weather. At that time, heightened concern about air pollution caused an increase in studies of atmospheric chemistry. With the invention of the computer, modeling of weather and air pollution commenced. Since the late 1940s, the number of meteorological and air-pollution studies has increased rapidly, and many meteorological and air-pollution models have merged.

The purposes of this book are to provide (1) a physical understanding of dynamical meteorology, land- and water-surface processes, radiation, gas chemistry, aerosol microphysics and chemistry, and cloud processes, (2) a description of numerical methods and computational techniques used to simulate these processes, and (3) a catalog of steps required to construct, apply, and test a numerical model.

The first chapter of this book gives an overview of model processes and time scales. Chapter 2 describes atmospheric structure, composition, and thermodynamics. In Chapters 3–5, basic equations describing dynamical meteorology are derived. In Chapter 6, numerical methods of solving partial differential equations are discussed. A technique of solving dynamical meteorological equations is provided in Chapter 7. In Chapter 8, boundary-layer and ground processes are described. Chapter 9 introduces radiation. Chapters 10–12 focus on photochemistry and numerical methods of solving chemical equations. Chapters 13–17 describe aerosol physical and chemical processes. Chapter 18 discusses cloud thermodynamics and microphysics. Chapter 19 discusses aqueous chemistry in aerosol particles and clouds. Chapter 20 describes sedimentation and dry deposition. Chapter 21 outlines computer model development, application, and testing.

The book is designed as an upper-level undergraduate, graduate, and research text. The text assumes students have a basic physical science, mathematical, and computational background. Both Système Internationale (SI) and centimeter-gram-second (CGS) units are used. Dynamical meteorologists often use SI units, and atmospheric chemists often use CGS units. Thus, both unit systems are retained. Unit and variable conversions are given in Appendix A.
Acknowledgments

I would like to thank several colleagues who provided comments, suggestions, and/or corrections relating to the text. In particular, I am indebted to (in alphabetical order) A. April, Akio Arakawa, Mary Barth, Jaime Benitez, Merete Bilde, Steve Bryson, Bob Chatfield, Tu-Fu Chen, Johann Feichter, Frank Freedman, Ann Fridlind, A. V. Gemintern, J. Haigh, Hiroshi Hayami, Roy Harrison, James Holton, Daniel Jacob, Liming Li, Jinyou Liang, Jin-Sheng Lin, Bernd Kaercher, Gerard Ketefian, Bennert Machenhauer, Ed Measure, Gary Moore, Elmar Reiter, Doug Rotman, Roberto San Jose, Hjalti Sigurjonsson, Hanwant Singh, Jing Song, Tae-Joon Song, Amy Stuart, Azadeh Tabazadeh, Roland von Glasow, Chris Walcek, Thomas Warner, Debra Weisenstein, Don Wuebbles, and Yang Zhang.