AN INTRODUCTION TO FINANCIAL OPTION VALUATION Mathematics, Stochastics and Computation

This is a lively textbook providing a solid introduction to financial option valuation for undergraduate students armed with only a working knowledge of first year calculus. Written as a series of short chapters, this self-contained treatment gives equal weight to applied mathematics, stochastics and computational algorithms, with no prior background in probability, statistics or numerical analysis required.

Detailed derivations of both the basic asset price model and the Black–Scholes equation are provided along with a presentation of appropriate computational techniques including binomial, finite differences and, in particular, variance reduction techniques for the Monte Carlo method.

Each chapter comes complete with accompanying stand-alone MATLAB code listing to illustrate a key idea. The author has made heavy use of figures and examples, and has included computations based on real stock market data. Solutions to exercises are made available at www.cambridge.org.

DES HIGHAM is a professor of mathematics at the University of Strathclyde. He has co-written two previous books, *MATLAB Guide* and *Learning LaTeX*. In 2005 he was awarded the Germund Dahlquist Prize by the Society for Industrial and Applied Mathematics for his research contributions to a broad range of problems in numerical analysis.

AN INTRODUCTION TO FINANCIAL OPTION VALUATION

Mathematics, Stochastics and Computation

DESMOND J. HIGHAM

Department of Mathematics University of Strathclyde

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

> > CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521838849

© Cambridge University Press 2004

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

> First published 2004 Reprinted with corrections 2005

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 11/14 pt. *System* LATEX $2_{\mathcal{E}}$ [TB]

A record for this publication is available from the British Library

Library of Congress in Publication data Higham, D. J. (Desmond J.) An introduction to financial option valuation : mathematics, stochastics, and computation / Desmond J. Higham. p. cm. Includes bibliographical references and index. ISBN 0 521 83884 3 – ISBN 0 521 54757 1 (paperback) 1. Options (Finance) – Valuation – Mathematical models. 2. Options (Finance) – Prices – Mathematical models. 3. Derivative securities. I. Title. HG6024.A3H532 2004 332.64'53 – dc22 2003069572

ISBN-13 978-0-521-83884-9 hardback ISBN-10 0-521-83884-3 hardback

ISBN-13 978-0-521-54757-4 paperback ISBN-10 0-521-54757-1 paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

> To my family, Catherine, Theo, Sophie and Lucas

List of illustrations

Cambridge University Press 978-0-521-54757-4 - An Introduction to Financial Option Valuation: Mathematics, Stochastics and Computation Desmond J. Higham Frontmatter More information

Contents

	Pref	ace	xvii
1 Options		ions	1
	1.1	What are options?	1
	1.2	Why do we study options?	2
	1.3	How are options traded?	4
	1.4	Typical option prices	6
	1.5	Other financial derivatives	7
	1.6	Notes and references	7
	1.7	Program of Chapter 1 and walkthrough	8
2	Opti	on valuation preliminaries	11
	2.1	Motivation	11
	2.2	Interest rates	11
	2.3	Short selling	12
	2.4	Arbitrage	13
	2.5	Put–call parity	13
	2.6	Upper and lower bounds on option values	14
	2.7	Notes and references	16
	2.8	Program of Chapter 2 and walkthrough	17
3	Ran	dom variables	21
	3.1	Motivation	21
	3.2	Random variables, probability and mean	21
	3.3	Independence	23
	3.4	Variance	24
	3.5	Normal distribution	25
	3.6	Central Limit Theorem	27
	3.7	Notes and references	28
	3.8	Program of Chapter 3 and walkthrough	29

page xiii

Cambridge University Press
78-0-521-54757-4 - An Introduction to Financial Option Valuation: Mathematics, Stochastics and Computation
Desmond J. Higham
Frontmatter
<u>Aore information</u>

viii Contents			
4	Com	puter simulation	33
	4.1	Motivation	33
	4.2	Pseudo-random numbers	33
	4.3	Statistical tests	34
	4.4	Notes and references	40
	4.5	Program of Chapter 4 and walkthrough	41
5	Asse	t price movement	45
	5.1	Motivation	45
	5.2	Efficient market hypothesis	45
	5.3	Asset price data	46
	5.4	Assumptions	48
	5.5	Notes and references	49
	5.6	Program of Chapter 5 and walkthrough	50
6	Asse	t price model: Part I	53
	6.1	Motivation	53
	6.2	Discrete asset model	53
	6.3	Continuous asset model	55
	6.4	Lognormal distribution	56
	6.5	Features of the asset model	57
	6.6	Notes and references	59
	6.7	Program of Chapter 6 and walkthrough	60
7	Asse	t price model: Part II	63
	7.1	Computing asset paths	63
	7.2	Timescale invariance	66
	7.3	Sum-of-square returns	68
	7.4	Notes and references	69
	7.5	Program of Chapter 7 and walkthrough	71
8	Blac	k–Scholes PDE and formulas	73
	8.1	Motivation	73
	8.2	Sum-of-square increments for asset price	74
	8.3	Hedging	76
	8.4	Black–Scholes PDE	78
	8.5	Black–Scholes formulas	80
	8.6	Notes and references	82
	8.7	Program of Chapter 8 and walkthrough	83

Cambridge University Press	
78-0-521-54757-4 - An Introduction to Financial Option Valuation: Mathematics, Stochastics and Computation	
Desmond J. Higham	
Frontmatter	
More information	

		Contents	ix
9	More	on hedging	87
	9.1	Motivation	87
	9.2	Discrete hedging	87
	9.3	Delta at expiry	89
	9.4	Large-scale test	92
	9.5	Long-Term Capital Management	93
	9.6	Notes	94
	9.7	Program of Chapter 9 and walkthrough	96
10	The (Greeks	99
	10.1	Motivation	99
	10.2	The Greeks	99
	10.3	Interpreting the Greeks	101
	10.4	Black–Scholes PDE solution	101
	10.5	Notes and references	102
	10.6	Program of Chapter 10 and walkthrough	104
11	More	on the Black–Scholes formulas	105
	11.1	Motivation	105
	11.2	Where is μ ?	105
	11.3	Time dependency	106
	11.4	The big picture	106
	11.5	Change of variables	108
	11.6	Notes and references	111
	11.7	Program of Chapter 11 and walkthrough	111
12	Risk	neutrality	115
	12.1	Motivation	115
	12.2	Expected payoff	115
	12.3	Risk neutrality	116
	12.4	Notes and references	118
	12.5	Program of Chapter 12 and walkthrough	120
13	Solvi	ng a nonlinear equation	123
	13.1	Motivation	123
	13.2	General problem	123
	13.3	Bisection	123
	13.4	Newton	124
	13.5	Further practical issues	127

Cambridge University Press	
978-0-521-54757-4 - An Introduction to Financial Option V	Valuation: Mathematics, Stochastics and Computation
Desmond J. Higham	
Frontmatter	
Moreinformation	

х		Contents	
	13.6	Notes and references	127
	13.7	Program of Chapter 13 and walkthrough	128
14	Impli	ed volatility	131
	14.1	Motivation	131
	14.2	Implied volatility	131
	14.3	Option value as a function of volatility	131
	14.4	Bisection and Newton	133
	14.5	Implied volatility with real data	135
	14.6	Notes and references	137
	14.7	Program of Chapter 14 and walkthrough	137
15	Mont	e Carlo method	141
	15.1	Motivation	141
	15.2	Monte Carlo	141
	15.3	Monte Carlo for option valuation	144
	15.4	Monte Carlo for Greeks	145
	15.5	Notes and references	148
	15.6	Program of Chapter 15 and walkthrough	149
16	Binor	nial method	151
	16.1	Motivation	151
	16.2	Method	151
	16.3	Deriving the parameters	153
	16.4	Binomial method in practice	154
	16.5	Notes and references	156
	16.6	Program of Chapter 16 and walkthrough	159
17	Cash	-or-nothing options	163
	17.1	Motivation	163
	17.2	Cash-or-nothing options	163
	17.3	Black–Scholes for cash-or-nothing options	164
	17.4	Delta behaviour	166
	17.5	Risk neutrality for cash-or-nothing options	167
	17.6	Notes and references	168
	17.7	Program of Chapter 17 and walkthrough	170
18	Amer	rican options	173
	18.1	Motivation	173
	18.2	American call and put	173

Cambridge University	Press						
978-0-521-54757-4 - An	Introduction to	Financial	Option	Valuation:	Mathematics,	Stochastics and	Computation
Desmond J. Higham							
Frontmatter							
More information							

	Contents	xi
18.3	Black–Scholes for American options	174
18.4	Binomial method for an American put	176
18.5	Optimal exercise boundary	177
18.6	Monte Carlo for an American put	180
18.7	Notes and references	182
18.8	Program of Chapter 18 and walkthrough	183
19 Exoti	c options	187
19.1	Motivation	187
19.2	Barrier options	187
19.3	Lookback options	191
19.4	Asian options	192
19.5	Bermudan and shout options	193
19.6	Monte Carlo and binomial for exotics	194
19.7	Notes and references	196
19.8	Program of Chapter 19 and walkthrough	199
20 Histo	rical volatility	203
20.1	Motivation	203
20.2	Monte Carlo-type estimates	203
20.3	Accuracy of the sample variance estimate	204
20.4	Maximum likelihood estimate	206
20.5	Other volatility estimates	207
20.6	Example with real data	208
20.7	Notes and references	209
20.8	Program of Chapter 20 and walkthrough	210
21 Mont	e Carlo Part II: variance reduction by	
ant	ithetic variates	215
21.1	Motivation	215
21.2	The big picture	215
21.3	Dependence	216
21.4	Antithetic variates: uniform example	217
21.5	Analysis of the uniform case	219
21.6	Normal case	221
21.7	Multivariate case	222
21.8	Antithetic variates in option valuation	222
21.9	Notes and references	225
21.10	Program of Chapter 21 and walkthrough	225

ambridge University Press
78-0-521-54757-4 - An Introduction to Financial Option Valuation: Mathematics, Stochastics and Computation
Desmond J. Higham
rontmatter
fore information

xii	xii Contents				
22	Mont	e Carlo Part III: variance reduction by control variates	229		
	22.1	Motivation	229		
	22.2	Control variates	229		
	22.3	Control variates in option valuation	231		
	22.4	Notes and references	232		
	22.5	Program of Chapter 22 and walkthrough	234		
23	Finite	e difference methods	237		
	23.1	Motivation	237		
	23.2	Finite difference operators	237		
	23.3	Heat equation	238		
	23.4	Discretization	239		
	23.5	FTCS and BTCS	240		
	23.6	Local accuracy	246		
	23.7	Von Neumann stability and convergence	247		
	23.8	Crank–Nicolson	249		
	23.9	Notes and references	251		
	23.10	Program of Chapter 23 and walkthrough	252		
24	Finite	e difference methods for the Black–Scholes PDE	257		
	24.1	Motivation	257		
	24.2	FTCS, BTCS and Crank–Nicolson for Black–Scholes	257		
	24.3	Down-and-out call example	260		
	24.4	Binomial method as finite differences	261		
	24.5	Notes and references	262		
	24.6	Program of Chapter 24 and walkthrough	265		
	Refere	ences	267		
	Index		271		

Illustrations

1.1	Payoff diagram for a European call.	page 3
1.2	Payoff diagram for a European put.	4
1.3	Payoff diagram for a bull spread.	5
1.4	Market values for IBM call and put options.	6
1.5	Another view of market values for IBM call and put options.	7
1.6	Program of Chapter 1: ch01.m.	9
2.1	Upper and lower bounds for European call option.	15
2.2	Program of Chapter 2: ch02.m.	18
2.3	Figure produced by ch02.m.	19
3.1	Density function for an $N(0, 1)$ random variable.	25
3.2	Density functions for various $N(\mu, \sigma^2)$ random variables.	26
3.3	N(0, 1) density and distribution function $N(x)$.	27
3.4	Program of Chapter 3: ch03.m.	30
3.5	Graphics produced by ch03.	31
4.1	Kernel density estimate.	36
4.2	Kernel density estimate with increasing number of samples.	37
4.3	Quantiles for a normal distribution.	38
4.4	Quantile-quantile plots.	39
4.5	Kernel density estimate illustrating Central Limit Theorem.	39
4.6	Quantile-quantile plot illustrating Central Limit Theorem.	40
4.7	Program of Chapter 4: ch04.m.	42
5.1	Daily IBM share price.	46
5.2	Weekly IBM share price.	47
5.3	Statistical tests of IBM share price data.	47
5.4	Program of Chapter 5: ch05.m.	51
6.1	Two lognormal density plots.	57
6.2	Program of Chapter 6:ch06.m.	61
7.1	Discrete asset path.	64
7.2	Two discrete asset paths with different volatility.	65
7.3	Twenty discrete asset paths and sample mean.	65
7.4	Fifty discrete asset paths and final time histogram.	66

Cambridge University Press					
978-0-521-54757-4 - An Introduction to	o Financial Opti	on Valuation:	Mathematics,	Stochastics and	Computation
Desmond J. Higham					
Frontmatter					
More information					

xiv	List of illustrations	
7.5	The same asset path sampled at different scales.	67
7.6	Asset paths and running sum-of-square returns.	69
7.7	Program of Chapter 7: ch07.m.	71
8.1	Asset paths and running sum-of-square increments.	76
8.2	Program of Chapter 8: ch08.m.	84
9.1	Discrete hedging simulation: expires in-the-money.	90
9.2	Discrete hedging simulation: expires out-of-the-money.	91
9.3	Discrete hedging simulation: expires almost at-the-money.	92
9.4	Large-scale discrete hedging example.	93
9.5	Program of Chapter 9: ch09.m.	95
10.1	Program of Chapter 10: ch10.m.	103
11.1	Option value in terms of asset price at five different times.	107
11.2	Three-dimensional version of Figure 11.1.	107
11.3	European call: Black–Scholes surface with asset path superimposed.	108
11.4	European put: Black–Scholes surface with asset path superimposed.	109
11.5	Black-Scholes surface for delta with asset paths superimposed.	109
11.6	Program of Chapter 11: ch11.m.	112
12.1	Time-zero discounted expected call payoff and Black–Scholes value.	117
12.2	Program of Chapter 12: ch12.m.	121
13.1	The function $F(x) := N(x) - \frac{2}{3}$.	126
13.2	Error in the bisection method and Newton's method.	126
13.3	Program of Chapter 13: ch13.m.	128
14.1	Newton's method for the implied volatility.	135
14.2	Implied volatility against exercise price for some FTSE 100 index	
	data.	136
14.3	Program of Chapter 14: ch14.m.	138
15.1	Monte Carlo approximations to $\mathbb{E}(e^{Z})$, where $Z \sim N(0, 1)$.	143
15.2	Monte Carlo approximations to a European call option value.	145
15.3	Monte Carlo approximations to time-zero delta of a European	
	call option.	147
15.4	Program of Chapter 15: ch15.m.	149
16.1	Recombining binary tree of asset prices.	152
16.2	Convergence of the binomial method.	155
16.3	Error in the binomial method.	157
16.4	Program of Chapter 16: ch16.m.	160
17.1	Payoff diagrams for cash-or-nothing call and put.	164
17.2	Black–Scholes surface for a cash-or-nothing call, with asset path	
1 = 2	superimposed.	166
17.3	Black–Scholes delta surface for a cash-or-nothing call, with asset	
	path superimposed.	168

	List of illustrations	XV
17.4	Program of Chapter 17: ch17.m.	170
18.1	Convergence of the binomial method for an American put.	177
18.2	Error in binomial method for an American put.	178
18.3	Value $P^{\text{Am}}(S, T/4)$ for an American put, computed via the	
	binomial method.	178
18.4	Exercise boundary for an American put.	179
18.5	Monte Carlo approximations to the discounted expected American	
	put payoff with a simple exercise strategy.	181
18.6	Program of Chapter 18: ch18.m.	184
19.1	Two asset paths and a barrier.	188
19.2	Time-zero down-and-out call value.	189
19.3	Time-zero up-and-out call value.	191
19.4	Program of Chapter 19: ch19.m.	200
20.1	Historical volatility estimates for IBM data.	209
20.2	Program of Chapter 20: ch20.m.	211
20.3	Figure produced by ch20.	212
21.1	A pair of discrete asset paths computed using antithetic variates.	223
21.2	Program of Chapter 21: ch21.m.	226
22.1	Program of Chapter 22: ch22.m.	235
23.1	Heat equation solution.	240
23.2	Finite difference grid.	241
23.3	Stencil for FTCS.	242
23.4	FTCS solution on the heat equation: $\nu \approx 0.3$.	244
23.5	FTCS solution on the heat equation: $\nu \approx 0.63$.	245
23.6	Stencil for BTCS.	246
23.7	BTCS solution on the heat equation: $\nu \approx 6.6$.	247
23.8	Stencil for Crank–Nicolson.	250
23.9	Program of Chapter 23: ch23.m.	253
24.1	Finite difference grid relevant to binomial method.	263
24.2	Program of Chapter 24: ch24.m.	264

Preface

The aim of this book is to present a lively and palatable introduction to financial option valuation for undergraduate students in mathematics, statistics and related areas. Prerequisites have been kept to a minimum. The reader is assumed to have a basic competence in calculus up to the level reached by a typical first year mathematics programme. No background in probability, statistics or numerical analysis is required, although some previous exposure to material in these areas would undoubtedly make the text easier to assimilate on first reading.

The contents are presented in the form of short chapters, each of which could reasonably be covered in a one hour teaching session. The book grew out of a final year undergraduate class called *The Mathematics of Financial Derivatives* that I have taught, in collaboration with Professor Xuerong Mao, at the University of Strathclyde. The class is aimed at students taking honours degrees in Mathematics or Statistics, or joint honours degrees in various combinations of Mathematics, Statistics, Economics, Business, Accounting, Computer Science and Physics. In my view, such a class has two great selling points.

- From a student perspective, the topic is generally perceived as modern, sexy and likely to impress potential employers.
- From the perspective of a university teacher, the topic provides a focus for ideas from mathematical modelling, analysis, stochastics and numerical analysis.

There are many excellent books on option valuation. However, in preparing notes for a lecture course, I formed the opinion that there is a niche for a single, self-contained, introductory text that gives equal weight to

- applied mathematics,
- stochastics, and
- computational algorithms.

The classic applied mathematics view is provided by Wilmott, Howison and Dewynne's text (Wilmott *et al.*, 1995). My aim has been to write a book at a similar level with a less ambitious scope (only option valuation is considered), less

xviii

Preface

emphasis on partial differential equations, and more attention paid to stochastic modelling and simulation.

Key features of this book are as follows.

- (i) Detailed derivation and discussion of the basic lognormal asset price model.
- (ii) Roughly equal weight given to binomial, finite difference and Monte Carlo methods. In particular, variance reduction techniques for Monte Carlo are treated in some detail.
- (iii) Heavy use of computational examples and figures as a means of illustration.
- (iv) Stand-alone MATLAB codes, with full listings and comprehensive descriptions, that implement the main algorithms. The core text can be read independently of the codes. Readers who are familiar with other programming languages or problem-solving environments should have little difficulty in translating these examples.

In a nutshell, this is the book that I wish had been available when I started to prepare lectures for the Strathclyde class.

When designing a text like this, an immediate issue is the level at which stochastic calculus is to be treated. One of the tenets of this book is that

rigorous, measure-theoretic, stochastic analysis, although beautiful, is *hard* and it is unrealistic to ask an undergraduate class to pick up such material on the fly. Monte Carlo-style simulation, on the other hand, is a relatively *simple* concept, and well-chosen computational experiments provide an excellent way to back up heuristic arguments.

Hence, the approach here is to treat stochastic calculus on a nonrigorous level and give plenty of supporting computational examples. I rely heavily on the Central Limit Theorem as a basis for heuristic arguments. This involves a deliberate compromise – convergence in distribution must be swapped for a stronger type of convergence if these arguments are to be made rigorous – but I feel that erring on the side of accessibility is reasonable, given the aims of this text.

In fact, in deriving the Black–Scholes partial differential equation, I do not make explicit reference to Itô's Lemma. I decided that a heuristic derivation of Itô's Lemma in a general setting followed by a single application of the lemma in one simple case makes less pedagogical sense than a direct '*in situ*' heuristic treatment, a decision inspired by Almgren's expository article (Almgren, 2002). I hope that at least some undergraduate readers will be sufficiently motivated to follow up on the references and become exposed to the real thing.

You can get a feeling for the contents of the book by skimming through the outline bullet points that appear at the start of each chapter. Many of the later chapters can be read independently of each other, or, of course, omitted.

Exercises are given at the end of each chapter. It is my experience that active problem solving is the best learning tool, so I strongly encourage students to make use of them. I have used a starring system: one star for questions whose solution

Preface

xix

is relatively easy/short, rising to three stars for the hardest/longest questions. Brief solutions to the odd-numbered exercises are available from the book website given below. This leaves the even-numbered questions as a teaching resource. Certain questions are central to the text. I have tried to ensure that these come up in the odd-numbered list, in order to aid independent study.

A short, introductory treatment like this can only scratch the surface. Hence, each chapter concludes with a *Notes and references* section, which gives my own, necessarily biased, hints about important omissions. References can be followed up via the *References* section at the end of the book.

Scattered at the end of each chapter are a few quotes, designed to enlighten and entertain. Some of these reinforce the ideas in the text and others cast doubt on them. Mathematical option valuation is a strange business of sophisticated analysis based on simple models that have obvious flaws and perhaps do not merit such detailed scrutiny. When preparing lecture notes, I have found that authoritative, pithy quotes are a particularly powerful means to highlight some of this tension. I have an uneasy feeling that some Strathclyde students spent more time perusing the quotes than the main text, so I have aimed to make the quotes at least form a reasonable mini-summary of the contents. Most quotes relate directly to their chapter, but a few general ones have been dispersed throughout the book on the grounds that they were too good to leave out.

A website for this book has been created at www.maths.strath.ac.uk/ \sim aas96106/ option_book.html. It includes the following.

- The MATLAB codes listed in the book.
- Outline solutions to the odd-numbered exercises.
- Links to the websites mentioned in the book.
- Colour versions of some of the figures.
- A list of corrections.
- Some extra quotes that did not make it into the book.

I am grateful to several people who have influenced this book. Nick Higham cast a critical eye over an early draft and made many helpful suggestions. Vicky Henderson checked parts of the text and patiently answered a number of questions. Petter Wiberg gave me access to his MATLAB files for processing stock market data. Xuerong Mao, through animated discussions and research collaboration, has enriched my understanding of stochastics and its role in mathematical finance. Additionally, five anonymous reviewers provided unbiased feedback. In particular, one reviewer who was not in favour of the nonrigorous approach to stochastic analysis in this book was nevertheless generous enough to provide detailed comments that allowed me to improve the final product. Finally, three years'

XX

Preface

worth of Strathclyde honours students have helped to shape my views on how to present this material to a wide audience.

MATLAB programs

I firmly believe that the best way to check your understanding of a computational algorithm is to examine, and interactively experiment with, a real program. For this reason, I have included a *Program of the Chapter* at the end of every chapter, followed by two programming exercises. Each program illustrates a key topic. They can be downloaded from the website previously mentioned.

The programs are written in MATLAB.¹ I chose this environment for a number of reasons.

- It offers excellent random number generation and graphical output facilities.
- It has powerful, built-in, high-level commands for matrix computations and statistics.
- It runs on a variety of platforms.
- It is widely available in mathematics and computer science departments and is often used as the basis for scientific computing or numerical analysis courses. Students may purchase individual copies at a modest price.

I wrote the programs with *accuracy* and *clarity* in mind, rather than efficiency or elegance. I have made quite heavy use of MATLAB's vectorization facilities, where possible working with arrays directly and eschewing unnecessary for loops. This tends to make the codes shorter, snappier and less daunting than alternatives that operate on individual array components. Meaningful comments have been inserted into the codes and a 'walkthrough' commentary is appended in each case. Those walkthroughs provide MATLAB information on a just-in-time basis. For a comprehensive guide to MATLAB, see (Higham and Higham, 2000).

I have not made use of any of the toolboxes that are available, at extra cost, to MATLAB users. This is because (a) the emphasis in the book is on understanding the underlying models and algorithms, not on the use of black-box packages, and (b) only a small percentage of MATLAB users will have access to toolboxes. However, those who wish to perform serious option valuation computations in MATLAB are advised to investigate the toolboxes, especially those for Finance, Statistics, Optimization and PDEs.

Readers with some experience of scientific computing in languages such as Java, C or FORTRAN should find it relatively easy to understand the codes. Those with no computing background may need to put in more effort, but should find the process rewarding.

¹ MATLAB is a registered trademark of The MathWorks, Inc.

CAMBRIDGE

Cambridge University Press 978-0-521-54757-4 - An Introduction to Financial Option Valuation: Mathematics, Stochastics and Computation Desmond J. Higham Frontmatter More information

Preface

xxi

MATLAB is a commercial software product produced by The Mathworks, whose homepage is at www.mathworks.com/.

Let me re-emphasize that these programs are entirely stand-alone; the book can be read without reference to them. However, I believe that they form a major element – if you understand the programs, you understand a big chunk of the material in this book.

Disclaimer of warranty

We make no warranties, express or implied, that the programs contained in this volume are free of error, or are consistent with any particular standard of merchantability, or that they will meet your requirements for any particular application. They should not be relied on for solving a problem whose incorrect solution could result in injury to a person or loss of property. If you do use the programs in such a manner, it is at your own risk. The author and publisher disclaim all liability for direct or consequential damages resulting from your use of the programs.