Thermodynamic Formalism
The Mathematical Structures of Equilibrium Statistical Mechanics
Second Edition

Reissued in the Cambridge Mathematical Library this classic book outlines the theory of thermodynamic formalism which was developed to describe the properties of certain physical systems consisting of a large number of subunits. It is aimed at mathematicians interested in ergodic theory, topological dynamics, constructive quantum field theory, and the study of certain differentiable dynamical systems, notably Anosov diffeomorphisms and flows. It is also of interest to theoretical physicists concerned with the computational basis of equilibrium statistical mechanics. The level of the presentation is generally advanced, the objective being to provide an efficient research tool and a text for use in graduate teaching. Background material on physics has been collected in appendices to help the reader. Extra material is given in the form of updates of problems that were open at the original time of writing and as a new preface specially written for this edition by the author.

DAVID RUELLE is a Professor Emeritus at the Institut des Hautes Études Scientifiques, Bures-sur-Yvette, Paris.
Other books available in the Cambridge Mathematical Library

G. E. Andrews  The Theory of Partitions
H. F. Baker  Abelian Functions
A. Baker  Transcendental Number Theory
G. K. Batchelor  An Introduction to Fluid Dynamics
N. Biggs  Algebraic Graph Theory, 2nd Edition
J. C. Burkill, H. Burkill  A Second Course in Mathematical Analysis
S. Chapman, T. G. Cowling  The Mathematical Theory of Non-uniform Gases
R. Dedekind  Theory of Algebraic Integers
P. G. Drazin, W. H. Reid  Hydrodynamic Stability, 2nd Edition
G. H. Hardy  A Course of Pure Mathematics
G. H. Hardy, J. E. Littlewood, G. Pólya  Inequalities, 2nd Edition
D. Hilbert  Theory of Algebraic Invariants
W. V. D. Hodge, D. Pedoe  Methods of Algebraic Geometry, Volumes I, II & III
R. W. H. Hudson  Kummer’s Quartic Surface
A. E. Ingham  The Distribution of Prime Numbers
H. Jeffreys, Bertha Jeffreys  Methods of Mathematical Physics, 3rd Edition
Y. Katznelson  An Introduction to Harmonic Analysis, 3rd Edition
H. Lamb  Hydrodynamics, 6th Edition
J. Lighthill  Waves in Fluids
M. Lothaire  Combinatorics on Words, 2nd Edition
F. S. Macaulay  The Algebraic Theory of Modular Systems
C. A. Rogers  Hausdorff Measures, 2nd Edition
L. Santalo  Integral Geometry and Geometric Probability
W. T. Tutte  Graph Theory
G. N. Watson  A Treatise on the Theory of Bessel Functions, 2nd Edition
A. N. Whitehead, B. Russell  Principia Mathematica to *56, 2nd Edition
E. T. Whittaker  A Treatise on the Analytical Dynamics of Particles and Rigid Bodies
A. Zygmund  Trigonometric Series, 3rd Edition
We haven’t seen everything yet, but when we do it won’t be for the first time or the last, either. You know us.

J. Vinograd
Contents

Foreword to the first edition xvi
Preface to the first edition xvii
Preface to the second edition xix

Introduction 1

0.1 Generalities 1
0.2 Description of the thermodynamic formalism 3
0.3 Summary of contents 9

1 Theory of Gibbs states 11

1.1 Configuration space 11
1.2 Interactions 12
1.3 Gibbs ensembles and thermodynamic limit 13
1.4 Proposition 14
1.5 Gibbs states 15
1.6 Thermodynamic limit of Gibbs ensembles 16
1.7 Boundary terms 17
1.8 Theorem 18
1.9 Theorem 18
1.10 Algebra at infinity 19
1.11 Theorem (characterization of pure Gibbs states) 20
1.12 The operators $\Omega_\lambda$ 20
1.13 Theorem (characterization of unique Gibbs states) 21
1.14 Remark 22
Notes 23
Exercises 23
# Contents

2 Gibbs states: complements
2.1 Morphisms of lattice systems 24
2.2 Example 24
2.3 The interaction $F^*\Phi$ 25
2.4 Lemma 25
2.5 Proposition 26
2.6 Remarks 26
2.7 Systems of conditional probabilities 28
2.8 Properties of Gibbs states 29
2.9 Remark 30

3 Translation invariance. Theory of equilibrium states
3.1 Translation invariance 33
3.2 The function $A_{\Phi}$ 34
3.3 Partition functions 35
3.4 Theorem 36
3.5 Invariant states 39
3.6 Proposition 39
3.7 Theorem 40
3.8 Entropy 42
3.9 Infinite limit in the sense of van Hove 43
3.10 Theorem 43
3.11 Lemma 45
3.12 Theorem 45
3.13 Corollary 47
3.14 Corollary 48
3.15 Physical interpretation 48
3.16 Theorem 49
3.17 Corollary 49
3.18 Approximation of invariant states by equilibrium states 50
3.19 Lemma 50
3.20 Theorem 52
3.21 Coexistence of phases 53

Notes 30
Exercises 31

Notes 54
Exercises 54
4 Connection between Gibbs states and Equilibrium states 57
  4.1 Generalities 57
  4.2 Theorem 58
  4.3 Physical interpretation 59
  4.4 Proposition 59
  4.5 Remark 60
  4.6 Strict convexity of the pressure 61
  4.7 Proposition 61
  4.8 $\mathbb{Z}^\nu$-lattice systems and $\mathbb{Z}^\nu$-morphisms 62
  4.9 Proposition 62
  4.10 Corollary 63
  4.11 Remark 63
  4.12 Proposition 64
  4.13 Restriction of $\mathbb{Z}^\nu$ to a subgroup $G$ 64
  4.14 Proposition 65
  4.15 Undecidability and non-periodicity 65
    Notes 66
    Exercises 66

5 One-dimensional systems 69
  5.1 Lemma 70
  5.2 Theorem 70
  5.3 Theorem 71
  5.4 Lemma 72
  5.5 Proof of theorems 5.2 and 5.3 73
  5.6 Corollaries to theorems 5.2 and 5.3 75
  5.7 Theorem 76
  5.8 Mixing $\mathbb{Z}$-lattice systems 78
  5.9 Lemma 78
  5.10 Theorem 79
  5.11 The transfer matrix and the operator $\mathcal{L}$ 80
  5.12 The function $\psi_\xi$ 81
  5.13 Proposition 81
  5.14 The operator $\delta$ 82
  5.15 Lemma 82
  5.16 Proposition 82
  5.17 Remark 83
  5.18 Exponentially decreasing interactions 83
5.19 The space $\Omega$ and related spaces  
5.20 Proposition  
5.21 Theorem  
5.22 Remarks  
5.23 Lemma  
5.24 Proposition  
5.25 Remark  
5.26 Theorem  
5.27 Corollary  
5.28 Zeta functions  
5.29 Theorem  
5.30 Remark  

Notes  
Exercises

6 Extension of the thermodynamic formalism  
6.1 Generalities  
6.2 Expansiveness  
6.3 Covers  
6.4 Entropy  
6.5 Proposition  
6.6 Pressure  
6.7 Other definitions of the pressure  
6.8 Properties of the pressure  
6.9 The action $\tau^t$  
6.10 Lemma  
6.11 Lemma  
6.12 Theorem (variational principle)  
6.13 Equilibrium states  
6.14 Theorem  
6.15 Remark  
6.16 Commuting continuous maps  
6.17 Extension to a $\mathbb{Z}$-action  
6.18 Results for $\mathbb{Z}_\nu^+$-actions  
6.19 Remark  
6.20 Topological entropy  
6.21 Relative pressure  
6.22 Theorem
6.23 Corollary 117
   Notes 117
   Exercises 118

7 Statistical mechanics on Smale spaces 121
7.1 Smale spaces 121
7.2 Example 123
7.3 Properties of Smale spaces 123
7.4 Smale’s “spectral decomposition” 124
7.5 Markov partitions and symbolic dynamics 124
7.6 Theorem 125
7.7 Hölder continuous functions 126
7.8 Pressure and equilibrium states 126
7.9 Theorem 128
7.10 Corollary 128
7.11 Remark 128
7.12 Corollary 129
7.13 Corollary 129
7.14 Equilibrium states for $A$ not Hölder continuous 130
7.15 Conjugate points and conjugating homeomorphisms 131
7.16 Proposition 132
7.17 Theorem 132
7.18 Gibbs states 133
7.19 Periodic points 133
7.20 Theorem 134
7.21 Study of periodic points by symbolic dynamics 135
7.22 Proposition 135
7.23 Zeta functions 135
7.24 Theorem 137
7.25 Corollary 137
7.26 Expanding maps 138
7.27 Remarks 139
7.28 Results for expanding maps 140
7.29 Markov partitions 140
7.30 Theorem 141
7.31 Applications 141
   Notes 143
   Exercises 144
Appendix A.1 Miscellaneous definitions and results
A.1.1 Order 146
A.1.2 Residual sets 146
A.1.3 Upper semi-continuity 147
A.1.4 Subadditivity 147

Appendix A.2 Topological dynamics 148

Appendix A.3 Convexity 150
A.3.1 Generalities 150
A.3.2 Hahn--Banach theorem 150
A.3.3 Separation theorems 151
A.3.4 Convex compact sets 151
A.3.5 Extremal points 151
A.3.6 Tangent functionals to convex functions 152
A.3.7 Multiplicity of tangent functionals 152

Appendix A.4 Measures and abstract dynamical systems 153
A.4.1 Measures on compact sets 153
A.4.2 Abstract measure theory 154
A.4.3 Abstract dynamical systems 154
A.4.4 Bernoulli shifts 155
A.4.5 Partitions 155
A.4.6 Isomorphism theorems 156

Appendix A.5 Integral representations on convex compact sets 157
A.5.1 Resultant of a measure 157
A.5.2 Maximal measures 158
A.5.3 Uniqueness problem 158
A.5.4 Maximal measures and extremal points 158
A.5.5 Simplexes of measures 159
A.5.6 \( Z \)-invariant measures 159

Appendix B Open problems 160
B.1 Systems of conditional probabilities (Chapter 2) 160
B.2 Theory of phase transitions (Chapter 3) 160
B.3 Abstract measure-theory viewpoint (Chapter 4) 160
B.4 A theorem of Dobrushin (Chapter 5) 160
B.5 Definition of the pressure (Chapter 6) 161
<table>
<thead>
<tr>
<th>Contents</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.6 Shub’s entropy conjecture (Chapter 6)</td>
<td>161</td>
</tr>
<tr>
<td>B.7 The condition (SS3) (Chapter 7)</td>
<td>161</td>
</tr>
<tr>
<td>B.8 Gibbs states on Smale spaces (Chapter 7)</td>
<td>161</td>
</tr>
<tr>
<td>B.9 Cohomological interpretation (Chapter 7)</td>
<td>161</td>
</tr>
<tr>
<td>B.10 Smale flows (Chapter 7 and Appendix C)</td>
<td>161</td>
</tr>
</tbody>
</table>

**Appendix C  Flows**

<table>
<thead>
<tr>
<th>Content</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>C.1 Thermodynamic formalism on a metrizable compact set</td>
<td>162</td>
</tr>
<tr>
<td>C.2 Special flows</td>
<td>163</td>
</tr>
<tr>
<td>C.3 Special flow over a Smale space</td>
<td>163</td>
</tr>
<tr>
<td>C.4 Problems</td>
<td>164</td>
</tr>
</tbody>
</table>

**Appendix D  Update of open problems**

<table>
<thead>
<tr>
<th>References</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Index</td>
<td>172</td>
</tr>
</tbody>
</table>
Foreword to the first edition

Thermodynamics is still, as it always was, at the center of physics, the standard-bearer of successful science. As happens with many a theory, rich in applications, its foundations have been murky from the start and have provided a traditional challenge on which physicists and mathematicians alike have tested their latest skills.

Ruelle’s book is perhaps the first entirely rigorous account of the foundations of thermodynamics. It makes heavier demands on the reader’s mathematical background than any volume published so far. It is hoped that ancillary volumes in time will be published which will ease the ascent onto this beautiful and deep theory; at present, much of the background material can be gleaned from standard texts in mathematical analysis. In any case, the timeliness of the content shall be ample reward for the austerity of the text.

GIOVANNI GALLAVOTTI   
General Editor, Section on Statistical Mechanics

and

GIAN-CARLO ROTA   
Editor, Encyclopedia of Mathematics and its Applications.
Preface to the first edition

The present monograph is based on lectures given in the mathematics departments of Berkeley (1973) and of Orsay (1974–1975). My aim has been to describe the mathematical structures underlying the thermodynamic formalism of equilibrium statistical mechanics, in the simplest case of classical lattice spin systems.

The thermodynamic formalism has its origins in physics, but it has now invaded topological dynamics and differentiable dynamical systems, with applications to questions as diverse as the study of invariant measures for an Anosov diffeomorphism (Sinai [3]), or the meromorphy of Selberg’s zeta function (Ruelle [7]). The present text is an introduction to such questions, as well as to more traditional problems of statistical mechanics, like that of phase transitions. I have developed the general theory – which has considerable unity – in some detail. I have, however, left aside particular techniques (like that of correlation inequalities) which are important in discussing examples of phase transitions, but should be the object of a special study.

Statistical mechanics extends to systems vastly more general than the classical lattice spin systems discussed here (in particular to quantum systems). One can therefore predict that the theory discussed in this monograph will extend to vastly more general mathematical setups (in particular to non-commutative situations). I hope that the present text may contribute some inspiration to the construction of the more general theories, as well as clarifying the conceptual structure of the existing formalism.
Twenty-five years have elapsed since the first printing of *Thermodynamic Formalism*, and in the meantime a number of significant developments have taken place in the area indicated by the subtitle *The Mathematical Structures of Equilibrium Statistical Mechanics*. Fortunately, our monograph was concerned with basics, which have remained relatively unchanged, so that *Thermodynamic Formalism* remains frequently quoted. In the present re-issue, some misprints have been corrected, and an update on the open problems of Appendix B has been added. We shall now outline briefly some new developments and indicate unsystematically some source material for these developments. The mathematical aspects of the statistical mechanics of lattice systems, including phase transitions, are covered in the monographs of Sinai [a], and Simon [b]. It may be mentioned that research in this important domain has become less active than it was in the 1960s, '70s, and '80s (but a really good idea might reverse this evolution again). The relation between Gibbs and equilibrium states has been extended to more general topological situations (see Haydn and Ruelle [c]). For a connection of Gibbs states with non-commutative algebras and K-theory, see for instance [d] and the references given there, in particular to the work of Putnam. Particularly fruitful developments have taken place which use the concepts of transfer operators and dynamical zeta functions. In the present monograph these concepts are introduced (in Chapters 5 and 7) in a situation corresponding to uniformly hyperbolic smooth dynamics (Anosov and Axiom A systems, here presented in the topological setting of Smale spaces). The hyperbolic orientation has led to very interesting results concerning the distribution of periods of periodic orbits for hyperbolic flows (in particular the lengths of geodesics on a manifold of negative curvature). These results have been beautifully presented in the monograph of Parry and Pollicott [e]. More recent results of Dolgopyat on exponential decay of correlation for hyperbolic flows [f,g] may be mentioned at this point. It was realized by Baladi and Keller that the ideas of transfer operators
Preface to the second edition

and dynamical zeta functions work well also for piecewise monotone maps of the interval (which are not uniformly hyperbolic dynamical systems). This new development can in particular be related to the kneading theory of Thurston and Milnor. We have thus now a much more general theory of transfer operators, very usefully presented in the monograph of Baladi [h], which has in particular an extensive bibliography of the subject. For a general presentation of dynamical zeta functions see also Ruelle [i]. As we have seen, the ideas of statistical mechanics, of a rather algebraic nature, have found geometric applications in smooth dynamics, and particularly the study of hyperbolic systems. Extensions to nonuniformly hyperbolic dynamical systems are currently an active domain of research, with SRB states playing an important role for Sinai, Ruelle, Bowen, Strelcyn, Ledrappier, Young, Viana, . . . ). This, however, is another story.

References