Permian and Triassic rocks in the eastern Tethyan region form continuous marine sequences that record the waning phases of the Palaeozoic and the early stages of the Mesozoic eras. This book describes and interprets these rocks, summarizing the distribution of major fossil groups in a way that will allow detailed comparison with strata of comparable age in the western Tethys and other parts of the world. The sixteen contributions by forty authors are the culmination of the five-year long International Geological Correlation Programme Project 203. The detailed information presented here is gathered from many areas in the eastern Tethyan region – from France to Australia – and will be of use in the evaluation of the major changes in the global marine biosphere known to have taken place at the end of the Palaeozoic Era. The stratigraphic record for this fascinating segment of Earth history is not widespread elsewhere in the world and is most continuous in the region covered by this book.
Permo-Triassic Events in the Eastern Tethys
Permo-Triassic Events in the Eastern Tethys

Stratigraphy, Classification, and Relations with the Western Tethys

EDITED BY
W. C. Sweet, Yang Zunyi, J. M. Dickins, and Yin Hongfu

International Geological Correlation Programme Project 203: Permo-Triassic events of East Tethys region and their intercontinental correlation

© Cambridge University Press
Cambridge New York Port Chester Melbourne Sydney
PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom
CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa
http://www.cambridge.org
© Cambridge University Press 1992
This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.
First published 1992
First paperback edition 2003
A catalogue record for this book is available from the British Library
Library of Congress cataloguing in publication data
Perm Triassic events in the eastern Tethys : stratigraphy, classification, and relations with the western Tethys / edited by W.C. Sweet . . . [et al.].; International Geological Correlation Programme, Project 283: Permian-Triassic Events of East Tethys Region and Their Intercontinental Correlation.
p. cm.
Includes bibliographical references.
ISBN 0 521 38214 9 hardback
Q1/674 .P474 1992
551.756—dc20 91-11010 CIP
ISBN 0 521 38214 9 hardback
ISBN 0 521 54573 0 paperback
Contents

List of contributors x
Preface xiii
Acknowledgments xiv

1 Permo-Triassic events in the eastern Tethys—an overview 1
WALTER C. SWEET, YANG ZUNYI, J. M. DICKINS, and YIN HONGFU
Introduction 1
Biostratigraphy 1
Brachiopods 2
Ammonoids 3
Conodonts 5
Plants 6
Summary 7

Geochemical studies 4
Paleomagnetic investigations 6
Volcanism 6
Causes of biotic turnover 6
The Permo-Triassic boundary 6
Summary 7
References 7

2 Permo-Triassic boundary relations in South China 9
YANG ZUNYI and LI ZHIBIN
Introduction 9
Review of typical Permo-Triassic sections 9
The Meishan section, in Changxing, Zhejiang Province 10
The Shangi section, in Guangyuan, Sichuan Province 12
Beifengying section, Liaofengya, Chongqing, Sichuan Province 14
Huaying section, Lingshui, Sichuan Province 15
Biostratigraphic zonation and correlation 13
Changxingian ammonoid zones 13
Lower Triassic ammonoid zones 13
Lower Triassic conodont zones 13
The Permo-Triassic boundary 15
Permo-Triassic transitional beds (with mixed faunas) 16
Correlation of Permo-Triassic boundary strata 19
Conclusions 19
References 19

3 Permo-Triassic boundary of the Indian subcontinent and its intercontinental correlation 21
HARI M. KAPOOR
Introduction 21
Upper Permian 24
Salt Range 24
Kashmir 25
Spiti-Kumaon 25
Nepal 25
Lower Triassic 27
Salt Range 27
Kashmir 27
Spiti-Kumaon 27
Nepal 27
Karakoram (Permian and Triassic) 27
Correlation of Pergondwana Province with East and West Tethys provinces 29
Iran 29
Afghanistan 29
South Tibet 29
South China 29
Correlation of Himalayan and Salt Range sections 31
Permo-Triassic boundary 34
References 35

4 Permo-Triassic boundary on the Indian peninsula 37
R. S. TIWARI and VIGAYA
Introduction 37
The basin record 37
Damodar Valley basins 37
Godavari Valley basins 37
Rajmahal, Maitha-Galsi, Purnea, and Birbhum basins 37
South Rewa basin 37
Mahanadi and SE Son Valley basins 37
Kamptee-Wardha Valley basins 37
Satpura Basin 37
Synthesis 42
References 44

5 The Permo-Triassic boundary in the southern and eastern USSR and its international correlation 46
YURI D. ZAKHAROV
Introduction 46
Permian and Lower Triassic biostratigraphy 46
Transcaucasia 46
North Caucasus 46
Pamirs 46
Mongolian peninsula 46
South Primorye 46
Physical and chemical characteristics of the Permo-Triassic boundary beds 50
Some paleomagnetic results 50
Carbon-isotopic composition and iridium content of Permo-Triassic strata 50
The problem of stratigraphic division and correlation of the Permian and Lower Triassic 50
Contents

6 Classification and correlation of nonmarine Permo-Triassic boundary in China 56
 YANG JIEQIAN, QU LIN, ZHUO MEIYUAN, CHENG ZHENGUI, ZHOU TONGGUAN, HOU JINGFENG, LI PEIXIAN, SUN SHUYING, WU SHAOZI, LI DAIYUN, AND LONG ZAIKONG

 Introduction 56
 Biotic changes 56
 Vertebrate fauna
 Spore and pollen assemblages
 Bivalve fauna
 Ostracods
 Flora
 Conchostracans
 Nortbem changes 57
 References 59

7 Permain and Triassic events in the continental domains of Mediterranean Europe 60
 GIUSEPPE CASINI, NAIDGE TOUTIN-MORIN, AND CARMINA VIZGUGLI

 Introduction 60
 Former continental domains 60
 Italy
 Maritime Alps
 Northern Apennines
 Punta Bianca
 Poan Mts. and nearby areas
 Montecoccho-Roccastârda
 Island of Elba
 Maremma Toscana
 Southern Apennines
 Basilicata
 The Calabro-Peloritano Arc
 Sicily
 Sardinia
 France
 Southeast France and Corsica
 South of the French Massif Central
 The Pyrenees
 Spain
 Late Hercynian and Early Alpine tectonics and development of Permain and Triassic basins
 Thuringian microfossa in the Buntsandstein Lande-Talayuelas (Iberian Range)
 Molina de Aragón (Iberian Range)
 Palancia de Novo (East Pyrenees)
 Regional framework
 Diachronism of basai Buntsandstein
 General remarks on the Late Palaeozoic Early Mesozoic continental framework of Mediterranean Europe 71

 References 74

8 The Permo-Triassic boundary in the Southern Alps (Italy) and in adjacent Periacid regions 78
 CARMELA BRODOLI LORCA AND GIUSEPPE CASINI

 Introduction 78
 The marine Upper Permain and the Permo-Triassic boundary 78
 Eastern Southern Alps
 Val Gardena Sandstone
 Belelrophon Formation
 Werfen Formation
 Permo-Triassic boundary
 1964
 1973

1985
1986-88
Criteria
Conclusions
Yugoslavia
Slovenia
Western Serbia
Conclusions
The continental Permian of the Southern Alps and its boundary with the Triassic 93
References 96

9 Permo-Triassic brachiopod successions and events in South China 98
 XI GUOQIAND AND RICHARD E. GRANT

 Introduction 98
 Lithostratigraphy 99
 Brachiopod zonations 100
 Spiriferidae 100
 Spiriferina indica-Haynella
 yuwenensis Assemblage Zone (abbreviated S-I Zone)
 Orbitolinidae ruber-Spiriferina
 gongi Assemblage Zone (abbreviated O-S Zone)
 Catathyta chevioteae-Chonetella
 subrohonomoides Assemblage Zone (abbreviated C-C Zone)
 Catathyta spinata-Wanggeniella
 horae Assemblage Zone (abbreviated C-W Zone)
 Pelichia zigzag-Pelichia
 rhizophathoides Assemblage Zone (abbreviated P-P Zone)
 Springinella discorrelata-Asocrania
 niwasi Assemblage Zone (abbreviated S-A Zone)
 Crurithyris pusilla Chan-Lingua
 neווירulae Worth Assemblage Zone (abbreviated C-L Zone)

 Relationship to other biozones 101
 Correlations with other areas in the Tethyan region 102
 North Tibet
 Transsucasia
 Kub-u-Ali Basin, Iran
 Tashkurgan region, central Iran
 Salt Range, Pakistan
 Kashgar
 Southern Alps, Italy
 East Greenland
 Northwest Nepal
 Basaltic events 105
 Mass extinction of reef-dwelling brachiopods
 Extinction of the Strophomenida
 Proliferation of Lingula

 References 107

10 Conodont sequences in the Upper Permain and Lower Triassic of South China and the nature of conodont faunal changes at the systematic boundary 109
 DING MEIHAI

 Introduction 109
 Stratigraphy 109
 Upper Permain conodont faunas and zones
 Neogondolella longumartensis Zone
 Neogondolella orientalis Zone
 Neongondolella subcarinata Zone
 Neogondolella changyingensis Zone
 Lower Triassic conodont faunas and zones
 Isarcicellida parva Zone
Contents

Iauritella iaurica Zone
'Neogondwana carinata' Zone
Neospathodus kunnelli Zone
Neospathodus dieneri Zone
Neospathodus cristaclali Zone
Neospathodus pakistanensis Zone
Neospathodus wageni Zone
Neospathodus triangulare Zone
Neospathodus collinsonii Zone
Neospathodus homeri Zone
Neospathodus timorenzi Zone

Conodont faunal changes 117

Conclusion 118

References 118

11 A conodont-based high-resolution biostratigraphy for the Permo-Triassic boundary interval 120

WALTER C. SWAYT

Introduction 120

The data 120

Kashmir data
South China data

Data from the Salt Range, Pakistan
Data from Iran and Soviet Dehuluf

Graphic developement of composite section 124

Standard reference section (SRS)
Correlation strategy

Initial round of correlation

Re-correlation rounds

Results

Resolution

Biostratigraphic interpretation 128

Conodont zones and stages 132

References 133

12 The palynofloral succession and palynological events in the Permo-Triassic boundary interval in Israel 134

YOHAM DIBBES

Introduction 134

Palynozonation of the Permo-Triassic boundary interval 134

Remarks on palynology of the beroxolos 138

Palynologic characters of the Permo-Triassic boundary interval in Israel 140

Interpretation 143

Correlation 143

Conclusions 143

References 145

13 The effects of volcanism on the Permo-Triassic mass extinction in South China 146

YIN HONGF, HUANG ZE, ZHANG KEKING, HANSEN, H. J., YANG FENGQING, DING MEIHUA, AND HE XIANMEI

Introduction 146

Permo-Triassic volcanism 146

Nature of boundary clayrock

Evidence from spherules

Effects of volcanism on Permo-Triassic mass extinction 152

Praeoploeytes

Ammnonoids

Anomalies in occurrence of iridium and other trace elements and their possible relationship to volcanism 153

Stable carbon anomaly and its possible relationship to volcanism 154

On the possible relations between volcanism and mass extinction 155

Other regions 156

Summary 156

References 156

14 Geochemical constraints on the Permo-Triassic boundary event in South China 158

CHAI CHIANG, ZHOU YAO, MAO XIEYING, MA SHULAN, MA HANGUO, HONG PING, AND HE JINOWEN

Introduction 158

Stratigraphy, petrology, and mineralogy 158

Elemental geochemistry 159

Ir, As, Co, Ni

As, Sc, Sh, and Mo

Na, K, Rh, Cs, Mg, Ca, Sr, Ba, Sc, Al, Ti, Th, U,

Hf, and Ta

Rare-earth elements

Conclusion 168

References 168

15 Permo-Triassic orogenic, paleoclimatic, and eustatic events and their implications for biotic alteration 169

J. M. DICKENS

Introduction 169

Tectonic and magmatic development 169

The boundary sequences 171

Climate 171

Conclusions 173

References 174

16 Permo-Triassic boundary in Australia and New Zealand 175

J. M. DICKENS AND HAMISH J. CAMPBELL

Introduction 175

Western part of Australia 175

Central part of Australia 175

Eastern part of Australia 175

New Zealand 178

Index 179
List of contributors

Dr Bie Xiaomei
Dept. Geology, China University of Geosciences, Wuhan, Hubei 430074, People’s Republic of China

Dr Hamish J. Campbell
DStIR Geology and Geophysics, PO Box 30-368, Lower Hutt, New Zealand

Prof. Carmela Broglia Loriga
Dept. Scienze Geologiche e Paleontologiche, Universita di Ferrara, Corso Ercole I d’Este, 32, 44100 Ferrara, Italy

Prof. Giuseppe Cassinis
Dep. Science della Terra, Universita degli Studi, Strada Nuova 65, 27100 Pavia, Italy

Dr Cheng Zhengyu
Institute of Geology, Chinese Academy of Geological Sciences, Biaowanhuang Road, Beijing 100037, People’s Republic of China

Dr Chai Chifang
Institute of High Energy Physics, Academia Sinica, PO Box 2732, Beijing, People’s Republic of China

Dr J. M. Dickins
Bureau of Mineral Resources, PO Box 378, Canberra A. C. T. 2601, Australia

Prof Ding Meilun
Dept. Geology, China University of Geosciences, Wuhan, Hubei 430074, People’s Republic of China

Dr Voram Eshet
Geological Survey of Israel, 30 Malkhei Israel, Jerusalem, Israel 95501

Dr Richard E. Grant
Dept. Paleontology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 USA

Prof. H. J. Hansen
Institute of Historical Geology and Palaeontology, University of Copenhagen, Oster Voldgade 10, DK-1350 Copenhagen, Denmark

Dr He Jingwen
Nanjing Institute of Geology and Paleontology, Academia Sinica, Chi Ming-Stu, Nanjing, People’s Republic of China

Dr Hou Jingpeng
Institute of Geology, Chinese Academy of Geological Sciences, Biaowanhuang Road, Beijing 100037, People’s Republic of China

Dr Huang Siqi
Dept. Geology, China University of Geosciences, Wuhan, Hubei 430074, People’s Republic of China

Dr H. M. Kapoor
Geological Survey of India, River Bank Colony, Behind H Block, Lucknow 226018, India

Dr Kong Ping
Institute of High Energy Physics, Academia Sinica, PO Box 2732, Beijing, People’s Republic of China

Dr Li Dayun
Yunnan Institute of Geological Sciences, No. 33 Baiza Road, Kunming, Yunnan, People’s Republic of China

Dr Li Peixian
Institute of Geology, Chinese Academy of Geological Sciences, Biaowanhuang Road, Beijing 100037, People’s Republic of China

Dr Li Zishan
Institute of Geology, Chinese Academy of Geological Sciences, Biaowanhuang Road, Beijing 100037, People’s Republic of China

Dr Long Jiarong
Regional Geological Survey of Guizhou Province, Baogongli (Eight Kilometers), Guiyang, Guizhou 550011, People’s Republic of China

Dr Ma Jianguo
Institute of High Energy Physics, Academia Sinica, PO Box 2732, Beijing, People’s Republic of China

Dr Ma Shulan
Institute of High Energy Physics, Academia Sinica, PO Box 2732, Beijing, People’s Republic of China

Dr Mao Xuexing
Institute of High Energy Physics, Academia Sinica, PO Box 2732, Beijing, People’s Republic of China

Dr Qi Liangyu
Institute of Geology, Chinese Academy of Geological Sciences, Biaowanhuang Road, Beijing 100037, People’s Republic of China

Dr Sun Shiyong
Institute of Geology, Chinese Academy of Geological Sciences, Biaowanhuang Road, Beijing 100037, People’s Republic of China

Prof Walter C. Sweet
Dept. Geological Sciences, The Ohio State University, 125 So. Oval Mall, Columbus, OH 43210 USA

Dr R. S. Tiwari
Bheral Sahai Institute of Palaeobotany, 53, University Road, GPO Box 106, Lucknow 226001, India

Dr Nadine Toutin-Morel
Universite de Nice, URA au CNRS ‘Geodynamique’, Parc Valrose, 06034 Nice Cedex, France

Dr Vijaya
Bheral Sahai Institute of Palaeobotany, 53, University Road, GPO Box 106, Lucknow 226001, India

Prof Carmela Virgili
Dept. di Estratigrafia, Facultad de Ciencias Geologicas, Univ. Complutense, Madrid 3, Spain
Contributors

Dr Wu Shaowu
Institute of Geology, Geological and Mineral Bureau of Xinjiang, 16 Friend N. Road, Urumqi, Xinjiang, People's Republic of China

Prof Xu Guirong
Dept. Geology, China University of Geosciences, Wuhan, Hubei 430074, People’s Republic of China

Dr Yang Fengqing
Dept. Geology, China University of Geosciences, Wuhan, Hubei 430074, People’s Republic of China

Dr Yang Jidun
Institute of Geology, Chinese Academy of Geological Sciences, Baizhanhuang Road, Beijing 100037, People’s Republic of China

Prof Yang Zunyi
China University of Geosciences (Beijing) Beijing 100083, People’s Republic of China

Prof Yin Hongfu
Dept. Geology, China University of Geosciences, Wuhan, Hubei 430074, People’s Republic of China

Dr Yuri D. Zakharov
Far Eastern Scientific Centre, USSR Academy of Sciences, 690022 Vladivostok, USSR

Dr Zhang Kesing
Dept. Geology, China University of Geosciences, Wuhan, Hubei 430074, People’s Republic of China

Dr Zhou Huqin
Institute of Geology, Chinese Academy of Geological Sciences, Baizhanhuang Road, Beijing 100037, People’s Republic of China

Dr Zhou Tongshan
Institute of Geology, Chinese Academy of Geological Sciences, Baizhanhuang Road, Beijing 100037, People’s Republic of China

Dr Zhou Yanqi
Institute of High Energy Physics, Academia Sinica, PO Box 2732, Beijing, People’s Republic of China
Preface

The 16 reports that make up this volume constitute the final report of Project 203 of the International Geological Correlation Programme, which dealt with Permo-Triassic events of the East Tethys and their intercontinental correlation. During the five-year life of Project 203, participants met twice in Beijing, and once each in Columbus, Ohio (USA) and Brescia (Italy), to exchange views, consider new data, and examine pertinent sections in the field. These conferences have provided new insight into the stratigraphy, classification, and relations of strata within the Permo-Triassic boundary interval, and a wider appreciation of the problems involved in the correlation and interpretation of these rocks, which document an unusually significant period in Earth history.

It will be clear to the reader that the 48 contributors to this volume are in substantial agreement in their interpretation of many features of the Permo-Triassic boundary interval, but disagree, at least by implication, in their evaluation of others. Although as editors we have strove to achieve readability and uniformity in basic terminology, we have also attempted to avoid interference with strongly held individual views, even though they run contrary to those of other contributors. In brief, it would be inappropriate to suggest that in five short years participants in Project 203 solved all problems with respect to the Permo-Triassic boundary interval – for many of these are likely to persist as long as vigorous study continues. We do suggest, however, that data and ideas gathered and expressed during the five-year life of Project 203 and summarized in this volume are important contributions toward understanding and interpreting the rock and fossil record of the late Permian and early Triassic.

The co-leaders of Project 203 and Prof. Yin Hongfu have served as the editorial board for this volume. Prof. Sweet assisted authors with English versions of their manuscripts, coordinated reviews by the editorial board, arranged for revisions in figures, and served as principal contact with the publisher. All members of the editorial board, however, have seen and commented on every contribution, and in several cases have solicited reviews by other experts. This international division of labor has cost considerable time, but we believe it has resulted in a volume that is both authoritative in content and consistent internally.

YANG ZUNYI J. M. DICKINS WALTER C. SWEET
(Co-Leaders IGCP Project 203)
Acknowledgments

Preparation of the manuscript for this volume required a substantial investment by the Department of Geological Sciences of The Ohio State University in duplication, postage, and drafting assistance. This help is gratefully acknowledged.

Hari Kapoor, author of Chapter 3, thanks J. M. Dickins and W. C. Sweet for advice and help with his manuscript. His chapter is dedicated to the late Yuji Bando, Dept. Earth Sciences, Kagawa University, Japan, who studied most of the areas discussed in Chapter 3 and whose premature death has been a great loss to teams working on problems of the Permo-Triassic boundary.

Giuseppe Cassinis, senior author of Chapter 7, notes, with gratitude, that his work has been supported by grants from the MPI (40%) and the CNR.

Xu Guirong and Richard Grant, coauthors of Chapter 9, thank their many colleagues, particularly Yang Zunyi, Yin Hongfu, and Wu Shunbao, of the China University of Geosciences, for providing materials from South China and encouragement and instruction as the report was written. They also thank G. A. Cooper and R. A. Doerscher of the United States National Museum, and other colleagues who aided them in the study of brachiopods from Permo-Triassic boundary strata in South China.

Ding Meihua, author of Chapter 10, thanks members of the Permo-Triassic Boundary Working Group of the China University of Geosciences, for their friendly cooperation in the field and laboratory. She also expresses her gratitude to W. C. Sweet for reviewing her manuscript and making valuable suggestions, and to Xiao Siyu, who helped draw the figures.

W. C. Sweet, author of Chapter 11, thanks Gilbert Klamper and Brian Glenister, of the University of Iowa, for reviewing his manuscript and for their helpful comments on it. He also acknowledges the help of Karen Tyler, faculty supervisor at The Ohio State University, for preparing the figures that accompany his report and the introductory chapter, and for making corrections, changes, and alterations to a number of the figures submitted by other authors for inclusion in this volume.

Yoram Eshet, author of Chapter 12, notes that his study was supported by grants from the City University of New York and the Ministry of Energy of Israel. He thanks D. Habib (CCNY), H. Cousinier (US Minerals Management, Los Angeles), and E. J. Robbins (US Geological Survey, Reston, VA) for their useful comments on his manuscript. H. Visscher and W. A. Brugman, of Utrecht State University, Netherlands, also contributed to his study by sharing their ideas on interpretation of the Permo-Triassic boundary in Europe; Y. Druckman and T. Weisbrod (Geological Survey Israel) provided useful information on Permo-Triassic lithostratigraphy; T. Beer processed samples; A. Pe'er drafted the figures; and B. Katz helped proofread and edit the text.

Yin Hongfu and coauthors of Chapter 13 express cordial appreciation to Yang Zunyi, Xu Guirong, and Wu Shunbao for their encouragement and help in preparing their contribution. They also thank Xu Daoyi, Chai Zhifang, and Li Zishun for helpful information, and Xiao Siyu for drafting the figures.

Chai Zhifang and coauthors of Chapter 14 thank Xu Daoyi, Sun Yiying, He Xiling, and Yin Hongfu for providing some of the samples used in their work. They also thank the National Natural Science Foundation of China (NSFC) for financial support.

J. M. Dickins publishes with the approval of the Director, Bureau of Mineral Resources, Canberra, Australia.