Introduction – a Tour of Multiple View Geometry

This chapter is an introduction to the principal ideas covered in this book. It gives an informal treatment of these topics. Precise, unambiguous definitions, careful algebra, and the description of well honed estimation algorithms is postponed until chapter 2 and the following chapters in the book. Throughout this introduction we will generally not give specific forward pointers to these later chapters. The material referred to can be located by use of the index or table of contents.

1.1 Introduction – the ubiquitous projective geometry

We are all familiar with projective transformations. When we look at a picture, we see squares that are not squares, or circles that are not circles. The transformation that maps these planar objects onto the picture is an example of a projective transformation.

So what properties of geometry are preserved by projective transformations? Certainly, shape is not, since a circle may appear as an ellipse. Neither are lengths since two perpendicular radii of a circle are stretched by different amounts by the projective transformation. Angles, distance, ratios of distances – none of these are preserved, and it may appear that very little geometry is preserved by a projective transformation. However, a property that is preserved is that of straightness. It turns out that this is the most general requirement on the mapping, and we may define a projective transformation of a plane as any mapping of the points on the plane that preserves straight lines.

To see why we will require projective geometry we start from the familiar Euclidean geometry. This is the geometry that describes angles and shapes of objects. Euclidean geometry is troublesome in one major respect – we need to keep making an exception to reason about some of the basic concepts of the geometry – such as intersection of lines. Two lines (we are thinking here of 2-dimensional geometry) almost always meet in a point, but there are some pairs of lines that do not do so – those that we call parallel. A common linguistic device for getting around this is to say that parallel lines meet “at infinity”. However this is not altogether convincing, and conflicts with another dictum, that infinity does not exist, and is only a convenient fiction. We can get around this by
enhancing the Euclidean plane by the addition of these points at infinity where parallel
lines meet, and resolving the difficulty with infinity by calling them “ideal points.”

By adding these points at infinity, the familiar Euclidean space is transformed into a
new type of geometric object, projective space. This is a very useful way of thinking,
since we are familiar with the properties of Euclidean space, involving concepts such as
distances, angles, points, lines and incidence. There is nothing very mysterious about
projective space – it is just an extension of Euclidean space in which two lines always
meet in a point, though sometimes at mysterious points at infinity.

Coordinates. A point in Euclidean 2-space is represented by an ordered pair of real
numbers, \((x, y)\). We may add an extra coordinate to this pair, giving a triple \((x, y, 1)\),
that we declare to represent the same point. This seems harmless enough, since we
can go back and forward from one representation of the point to the other, simply by
adding or removing the last coordinate. We now take the important conceptual step
of asking why the last coordinate needs to be 1 – after all, the others two coordinates
are not so constrained. What about a coordinate triple \((x, y, 2)\). It is here that we
make a definition and say that \((x, y, 1)\) and \((2x, 2y, 2)\) represent the same point, and
furthermore, \((kx, ky, k)\) represents the same point as well, for any non-zero value \(k\).
Formally, points are represented by equivalence classes of coordinate triples, where
two triples are equivalent when they differ by a common multiple. These are called the
homogeneous coordinates of the point. Given a coordinate triple \((kx, ky, k)\), we can
get the original coordinates back by dividing by \(k\) to get \((x, y)\).

The reader will observe that although \((x, y, 1)\) represents the same point as the co-
ordinate pair \((x, y)\), there is no point that corresponds to the triple \((x, y, 0)\). If we try
to divide by the last coordinate, we get the point \((x/0, y/0)\) which is infinite. This is
how the points at infinity arise then. They are the points represented by homogeneous
coordinates in which the last coordinate is zero.

Once we have seen how to do this for 2-dimensional Euclidean space, extending it
to a projective space by representing points as homogeneous vectors, it is clear that we
can do the same thing in any dimension. The Euclidean space \(\mathbb{R}^n\) can be extended to
a projective space \(\mathbb{P}^n\) by representing points as homogeneous vectors. It turns out that
the points at infinity in the two-dimensional projective space form a line, usually called
the line at infinity. In three-dimensions they form the plane at infinity.

Homogeneity. In classical Euclidean geometry all points are the same. There is no
distinguished point. The whole of the space is homogeneous. When coordinates are
added, one point is seemingly picked out as the origin. However, it is important to
realize that this is just an accident of the particular coordinate frame chosen. We could
just as well find a different way of coordinatizing the plane in which a different point
is considered to be the origin. In fact, we can consider a change of coordinates for the
Euclidean space in which the axes are shifted and rotated to a different position. We
may think of this in another way as the space itself translating and rotating to a different
position. The resulting operation is known as a Euclidean transform.

A more general type of transformation is that of applying a linear transformation
1.1 Introduction – the ubiquitous projective geometry

1.1.1 Affine and Euclidean Geometry

We have seen that projective space can be obtained from Euclidean space by adding a line (or plane) at infinity. We now consider the reverse process of going backwards. This discussion is mainly concerned with two and three-dimensional projective space.

Affine geometry. We will take the point of view that the projective space is initially homogeneous, with no particular coordinate frame being preferred. In such a space,
there is no concept of parallelism of lines, since parallel lines (or planes in the three-dimensional case) are ones that meet at infinity. However, in projective space, there is no concept of which points are at infinity – all points are created equal. We say that parallelism is not a concept of projective geometry. It is simply meaningless to talk about it.

In order for such a concept to make sense, we need to pick out some particular line, and decide that this is the line at infinity. This results in a situation where although all points are created equal, some are more equal than others. Thus, start with a blank sheet of paper, and imagine that it extends to infinity and forms a projective space \mathbb{P}^2. What we see is just a small part of the space, that looks a lot like a piece of the ordinary Euclidean plane. Now, let us draw a straight line on the paper, and declare that this is the line at infinity. Next, we draw two other lines that intersect at this distinguished line. Since they meet at the “line at infinity” we define them as being parallel. The situation is similar to what one sees by looking at an infinite plane. Think of a photograph taken in a very flat region of the earth. The points at infinity in the plane show up in the image as the horizon line. Lines, such as railway tracks show up in the image as lines meeting at the horizon. Points in the image lying above the horizon (the image of the sky) apparently do not correspond to points on the world plane. However, if we think of extending the corresponding ray backwards behind the camera, it will meet the plane at a point behind the camera. Thus there is a one-to-one relationship between points in the image and points in the world plane. The points at infinity in the world plane correspond to a real horizon line in the image, and parallel lines in the world correspond to lines meeting at the horizon. From our point of view, the world plane and its image are just alternative ways of viewing the geometry of a projective plane, plus a distinguished line. The geometry of the projective plane and a distinguished line is known as affine geometry and any projective transformation that maps the distinguished line in one space to the distinguished line of the other space is known as an affine transformation.

By identifying a special line as the “line at infinity” we are able to define parallelism of straight lines in the plane. However, certain other concepts make sense as well, as soon as we can define parallelism. For instance, we may define equalities of intervals between two points on parallel lines. For instance, if A, B, C and D are points, and the lines AB and CD are parallel, then we define the two intervals AB and CD to have equal length if the lines AC and BD are also parallel. Similarly, two intervals on the same line are equal if there exists another interval on a parallel line that is equal to both.

Euclidean geometry. By distinguishing a special line in a projective plane, we gain the concept of parallelism and with it affine geometry. Affine geometry is seen as specialization of projective geometry, in which we single out a particular line (or plane – according to the dimension) and call it the line at infinity.

Next, we turn to Euclidean geometry and show that by singling out some special feature of the line or plane at infinity affine geometry becomes Euclidean geometry. In
1.1 Introduction – the ubiquitous projective geometry

doing so, we introduce one of the most important concepts of this book, the absolute conic.

We begin by considering two-dimensional geometry, and start with circles. Note that a circle is not a concept of affine geometry, since arbitrary stretching of the plane, which preserves the line at infinity, turns the circle into an ellipse. Thus, affine geometry does not distinguish between circles and ellipses.

In Euclidean geometry however, they are distinct, and have an important difference. Algebraically, an ellipse is described by a second-degree equation. It is therefore expected, and true that two ellipses will most generally intersect in four points. However, it is geometrically evident that two distinct circles can not intersect in more than two points. Algebraically, we are intersecting two second-degree curves here, or equivalently solving two quadratic equations. We should expect to get four solutions. The question is, what is special about circles that they only intersect in two points.

The answer to this question is of course that there exist two other solutions, the two circles meeting in two other complex points. We do not have to look very far to find these two points.

The equation for a circle in homogeneous coordinates \((x, y, w)\) is of the form
\[
(x - aw)^2 + (y - bw)^2 = r^2w^2
\]
This represents the circle with centre represented in homogeneous coordinates as \((x_0, y_0, w_0)^T = (a, b, 1)^T\). It is quickly verified that the points \((x, y, w)^T = (1, \pm i, 0)^T\) lie on every such circle. To repeat this interesting fact, every circle passes through the points \((1, \pm i, 0)^T\), and therefore they lie in the intersection of any two circles. Since their final coordinate is zero, these two points lie on the line at infinity. For obvious reasons, they are called the circular points of the plane. Note that although the two circular points are complex, they satisfy a pair of real equations: \(x^2 + y^2 = 0\); \(w = 0\).

This observation gives the clue of how we may define Euclidean geometry. Euclidean geometry arises from projective geometry by singling out first a line at infinity and subsequently, two points called circular points lying on this line. Of course the circular points are complex, but for the most part we do not worry too much about this. Now, we may define a circle as being any conic (a curve defined by a second-degree equation) that passes through the two circular points. Note that in the standard Euclidean coordinate system, the circular points have the coordinates \((1, \pm i, 0)^T\). In assigning a Euclidean structure to a projective plane, however, we may designate any line and any two (complex) points on that line as being the line at infinity and the circular points.

As an example of applying this viewpoint, we note that a general conic may be found passing through five arbitrary points in the plane, as may be seen by counting the number of coefficients of a general quadratic equation \(ax^2 + by^2 + \ldots + f w^2 = 0\). A circle on the other hand is defined by only three points. Another way of looking at this is that it is a conic passing through two special points, the circular points, as well as three other points, and hence as any other conic, it requires five points to specify it uniquely.

It should not be a surprise that as a result of singling out two circular points one
obtains the whole of the familiar Euclidean geometry. In particular, concepts such as angle and length ratios may be defined in terms of the circular points. However, these concepts are most easily defined in terms of some coordinate system for the Euclidean plane, as will be seen in later chapters.

3D Euclidean geometry. We saw how the Euclidean plane is defined in terms of the projective plane by specifying a line at infinity and a pair of circular points. The same idea may be applied to 3D geometry. As in the two-dimensional case, one may look carefully at spheres, and how they intersect. Two spheres intersect in a circle, and not in a general fourth-degree curve, as the algebra suggests, and as two general ellipsoids (or other quadric surfaces) do. This line of thought leads to the discovery that in homogeneous coordinates \((X, Y, Z, T)^T\) all spheres intersect the plane at infinity in a curve with the equations: \(X^2 + Y^2 + Z^2 = 0; T = 0\). This is a second-degree curve (a conic) lying on the plane at infinity, and consisting only of complex points. It is known as the absolute conic and is one of the key geometric entities in this book, most particularly because of its connection to camera calibration, as will be seen later.

The absolute conic is defined by the above equations only in the Euclidean coordinate system. In general we may consider 3D Euclidean space to be derived from projective space by singling out a particular plane as the plane at infinity and specifying a particular conic lying in this plane to be the absolute conic. These entities may have quite general descriptions in terms of a coordinate system for the projective space.

We will not here go into details of how the absolute conic determines the complete Euclidean 3D geometry. A single example will serve. Perpendicularity of lines in space is not a valid concept in affine geometry, but belongs to Euclidean geometry. The perpendicularity of lines may be defined in terms of the absolute conic, as follows. By extending the lines until they meet the plane at infinity, we obtain two points called the directions of the two lines. Perpendicularity of the lines is defined in terms of the relationship of the two directions to the absolute conic. The lines are perpendicular if the two directions are conjugate points with respect to the absolute conic (see figure 3.8(p83)). The geometry and algebraic representation of conjugate points are defined in section 2.8.1(p58). Briefly, if the absolute conic is represented by a \(3 \times 3\) symmetric matrix \(\Omega_\infty\), and the directions are the points \(d_1\) and \(d_2\), then they are conjugate with respect to \(\Omega_\infty\) if \(d_1^T \Omega_\infty d_2 = 0\). More generally, angles may be defined in terms of the absolute conic in any arbitrary coordinate system, as expressed by (3.23–p82).

1.2 Camera projections

One of the principal topics of this book is the process of image formation, namely the formation of a two-dimensional representation of a three-dimensional world, and what we may deduce about the 3D structure of what appears in the images.

The drop from three-dimensional world to a two-dimensional image is a projection process in which we lose one dimension. The usual way of modelling this process is by central projection in which a ray from a point in space is drawn from a 3D world point through a fixed point in space, the centre of projection. This ray will intersect a specific plane in space chosen as the image plane. The intersection of the ray with the
1.2 Camera projections

image plane represents the image of the point. If the 3D structure lies on a plane then there is no drop in dimension.

This model is in accord with a simple model of a camera, in which a ray of light from a point in the world passes through the lens of a camera and impinges on a film or digital device, producing an image of the point. Ignoring such effects as focus and lens thickness, a reasonable approximation is that all the rays pass through a single point, the centre of the lens.

In applying projective geometry to the imaging process, it is customary to model the world as a 3D projective space, equal to \(\mathbb{R}^3 \) along with points at infinity. Similarly the model for the image is the 2D projective plane \(\mathbb{P}^2 \). Central projection is simply a map from \(\mathbb{P}^3 \) to \(\mathbb{P}^2 \). If we consider points in \(\mathbb{P}^3 \) written in terms of homogeneous coordinates \((X, Y, Z, T)^T \) and let the centre of projection be the origin \((0, 0, 0, 1)^T \), then we see that the set of all points \((X, Y, Z, T)^T \) for fixed \(X, Y \) and \(Z \), but varying \(T \) form a single ray passing through the point centre of projection, and hence all mapping to the same point. Thus, the final coordinate of \((X, Y, Z, T) \) is irrelevant to where the point is imaged. In fact, the image point is the point in \(\mathbb{P}^2 \) with homogeneous coordinates \((X, Y, Z)^T \). Thus, the mapping may be represented by a mapping of 3D homogeneous coordinates, represented by a \(3 \times 4 \) matrix \(P \) with the block structure \(P = [I_{3\times 3}|0_3] \), where \(I_{3\times 3} \) is the \(3 \times 3 \) identity matrix and \(0_3 \) a zero 3-vector. Making allowance for a different centre of projection, and a different projective coordinate frame in the image, it turns out that the most general imaging projection is represented by an arbitrary \(3 \times 4 \) matrix of rank 3, acting on the homogeneous coordinates of the point in \(\mathbb{P}^3 \) mapping it to the imaged point in \(\mathbb{P}^2 \). This matrix \(P \) is known as the camera matrix.

In summary, the action of a projective camera on a point in space may be expressed in terms of a linear mapping of homogeneous coordinates as

\[
\begin{pmatrix}
X \\
Y \\
Z \\
T
\end{pmatrix} = P_{3\times 4}
\begin{pmatrix}
x \\
y \\
w
\end{pmatrix}
\]

Furthermore, if all the points lie on a plane (we may choose this as the plane \(Z = 0 \)) then the linear mapping reduces to

\[
\begin{pmatrix}
x \\
y \\
w
\end{pmatrix} = H_{3\times 3}
\begin{pmatrix}
X \\
Y \\
T
\end{pmatrix}
\]

which is a projective transformation.

Cameras as points. In a central projection, points in \(\mathbb{P}^3 \) are mapped to points in \(\mathbb{P}^2 \), all points in a ray passing through the centre of projection projecting to the same point in an image. For the purposes of image projection, it is possible to consider all points along such a ray as being equal. We can go one step further, and think of the ray through the projection centre as representing the image point. Thus, the set of all image points is the same as the set of rays through the camera centre. If we represent
Fig. 1.1. **The camera centre is the essence.** (a) Image formation: the image points \mathbf{x}_i are the intersection of a plane with rays from the space points \mathbf{X}_i through the camera centre \mathbf{C}. (b) If the space points are coplanar then there is a projective transformation between the world and image planes, $\mathbf{x}_i = H_{3 \times 3} \mathbf{X}_i$. (c) All images with the same camera centre are related by a projective transformation, $\mathbf{x}'_i = H'_{3 \times 3} \mathbf{x}_i$. Compare (b) and (c) – in both cases planes are mapped to one another by rays through a centre. In (b) the mapping is between a scene and image plane, in (c) between two image planes. (d) If the camera centre moves, then the images are in general not related by a projective transformation, unless (e) all the space points are coplanar.

the ray from $(0, 0, 0, 1)^T$ through the point $(X, Y, Z, T)^T$ by its first three coordinates $(X, Y, Z)^T$, it is easily seen that for any constant k, the ray $k(X, Y, Z)^T$ represents the same ray. Thus the rays themselves are represented by homogeneous coordinates. In
1.2 Camera projections

fact they make up a 2-dimensional space of rays. The set of rays themselves may be thought of as a representation of the image space \mathbb{P}^2. In this representation of the image, all that is important is the camera centre, for this alone determines the set of rays forming the image. Different camera matrices representing the image formation from the same centre of projection reflect only different coordinate frames for the set of rays forming the image. Thus two images taken from the same point in space are projectively equivalent. It is only when we start to measure points in an image, that a particular coordinate frame for the image needs to be specified. Only then does it become necessary to specify a particular camera matrix. In short, modulo field-of-view which we ignore for now, all images acquired with the same camera centre are equivalent – they can be mapped onto each other by a projective transformation without any information about the 3D points or position of the camera centre. These issues are illustrated in figure 1.1.

Calibrated cameras. To understand fully the Euclidean relationship between the image and the world, it is necessary to express their relative Euclidean geometry. As we have seen, the Euclidean geometry of the 3D world is determined by specifying a particular plane in \mathbb{P}^3 as being the plane at infinity, and a specific conic Ω in that plane as being the absolute conic. For a camera not located on the plane at infinity, the plane at infinity in the world maps one-to-one onto the image plane. This is because any point in the image defines a ray in space that meets the plane at infinity in a single point. Thus, the plane at infinity in the world does not tell us anything new about the image. The absolute conic, however being a conic in the plane at infinity must project to a conic in the image. The resulting image curve is called the Image of the Absolute Conic, or IAC. If the location of the IAC is known in an image, then we say that the camera is calibrated.

In a calibrated camera, it is possible to determine the angle between the two rays back-projected from two points in the image. We have seen that the angle between two lines in space is determined by where they meet the plane at infinity, relative to the absolute conic. In a calibrated camera, the plane at infinity and the absolute conic Ω_{∞} are projected one-to-one onto the image plane and the IAC, denoted ω. The projective relationship between the two image points and ω is exactly equal to the relationship between the intersections of the back-projected rays with the plane at infinity, and Ω_{∞}. Consequently, knowing the IAC, one can measure the angle between rays by direct measurements in the image. Thus, for a calibrated camera, one can measure angles between rays, compute the field of view represented by an image patch or determine whether an ellipse in the image back-projects to a circular cone. Later on, we will see that it helps us to determine the Euclidean structure of a reconstructed scene.

Example 1.1. 3D reconstructions from paintings

Using techniques of projective geometry, it is possible in many instances to reconstruct scenes from a single image. This cannot be done without some assumptions being made about the imaged scene. Typical techniques involve the analysis of features such as parallel lines and vanishing points to determine the affine structure of the scene, for
Introduction – a Tour of Multiple View Geometry

example by determining the line at infinity for observed planes in the image. Knowledge (or assumptions) about angles observed in the scene, most particularly orthogonal lines or planes, can be used to upgrade the affine reconstruction to Euclidean.

It is not yet possible for such techniques to be fully automatic. However, projective geometric knowledge may be built into a system that allows user-guided single-view reconstruction of the scene.

Such techniques have been used to reconstruct 3D texture mapped graphical models derived from old-master paintings. Starting in the Renaissance, paintings with extremely accurate perspective were produced. In figure 1.2 a reconstruction carried out from such a painting is shown.

1.3 Reconstruction from more than one view

We now turn to one of the major topics in the book – that of reconstructing a scene from several images. The simplest case is that of two images, which we will consider first. As a mathematical abstraction, we restrict the discussion to “scenes” consisting of points only.

The usual input to many of the algorithms given in this book is a set of point correspondences. In the two-view case, therefore, we consider a set of correspondences...