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Introduction – a Tour of Multiple View Geometry

This chapter is an introduction to the principal ideas covered in this book. It gives an
informal treatment of these topics. Precise, unambiguous de�nitions, careful algebra,
and the description of well honed estimation algorithms is postponed until chapter 2
and the following chapters in the book. Throughout this introduction we will generally
not give speci�c forward pointers to these later chapters. The material referred to can
be located by use of the index or table of contents.

1.1 Introduction – the ubiquitous projective geometry

We are all familiar with projective transformations.When we look at a picture, we see
squares that are not squares, or circles that are not circles. The transformation that
maps these planar objects onto the picture is an example of a projective transformation.

So what properties of geometry are preserved by projective transformations? Cer-
tainly, shape is not, since a circle may appear as an ellipse. Neither are lengths since
two perpendicular radii of a circle are stretched by different amounts by the projective
transformation. Angles, distance, ratios of distances – none of these are preserved,
and it may appear that very little geometry is preserved by a projective transformation.
However, a property that is preserved is that of straightness. It turns out that this is
the most general requirement on the mapping, and we may de�ne a projective trans-
formation of a plane as any mapping of the points on the plane that preserves straight
lines.

To see why we will require projective geometry we start from the familiar Euclidean
geometry. This is the geometry that describes angles and shapes of objects. Euclidean
geometry is troublesome in one major respect – we need to keep making an exception
to reason about some of the basic concepts of the geometry – such as intersection of
lines. Two lines (we are thinking here of 2-dimensional geometry) almost always meet
in a point, but there are some pairs of lines that do not do so – those that we call parallel.
A common linguistic device for getting around this is to say that parallel lines meet “at
in�nity”. However this is not altogether convincing, and con�icts with another dictum,
that in�nity does not exist, and is only a convenient �ction. We can get around this by
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2 1 Introduction – a Tour of Multiple View Geometry

enhancing the Euclidean plane by the addition of these points at in�nity where parallel
lines meet, and resolving the dif�culty with in�nity by calling them “ideal points.”

By adding these points at in�nity, the familiar Euclidean space is transformed into a
new type of geometric object, projective space. This is a very useful way of thinking,
since we are familiar with the properties of Euclidean space, involving concepts such as
distances, angles, points, lines and incidence. There is nothing very mysterious about
projective space – it is just an extension of Euclidean space in which two lines always
meet in a point, though sometimes at mysterious points at in�nity.

Coordinates. A point in Euclidean 2-space is represented by an ordered pair of real
numbers, (x, y). We may add an extra coordinate to this pair, giving a triple (x, y, 1),
that we declare to represent the same point. This seems harmless enough, since we
can go back and forward from one representation of the point to the other, simply by
adding or removing the last coordinate. We now take the important conceptual step
of asking why the last coordinate needs to be 1 – after all, the others two coordinates
are not so constrained. What about a coordinate triple (x, y, 2). It is here that we
make a de�nition and say that (x, y, 1) and (2x, 2y, 2) represent the same point, and
furthermore, (kx, ky, k) represents the same point as well, for any non-zero value k.
Formally, points are represented by equivalence classes of coordinate triples, where
two triples are equivalent when they differ by a common multiple. These are called the
homogeneous coordinates of the point. Given a coordinate triple (kx, ky, k), we can
get the original coordinates back by dividing by k to get (x, y).

The reader will observe that although (x, y, 1) represents the same point as the co-
ordinate pair (x, y), there is no point that corresponds to the triple (x, y, 0). If we try
to divide by the last coordinate, we get the point (x/0, y/0) which is in�nite. This is
how the points at in�nity arise then. They are the points represented by homogeneous
coordinates in which the last coordinate is zero.

Once we have seen how to do this for 2-dimensional Euclidean space, extending it
to a projective space by representing points as homogeneous vectors, it is clear that we
can do the same thing in any dimension. The Euclidean space IRn can be extended to
a projective space IPn by representing points as homogeneous vectors. It turns out that
the points at in�nity in the two-dimensional projective space form a line, usually called
the line at in�nity. In three-dimensions they form the plane at in�nity.

Homogeneity. In classical Euclidean geometry all points are the same. There is no
distinguished point. The whole of the space is homogeneous. When coordinates are
added, one point is seemingly picked out as the origin. However, it is important to
realize that this is just an accident of the particular coordinate frame chosen. We could
just as well �nd a different way of coordinatizing the plane in which a different point
is considered to be the origin. In fact, we can consider a change of coordinates for the
Euclidean space in which the axes are shifted and rotated to a different position. We
may think of this in another way as the space itself translating and rotating to a different
position. The resulting operation is known as a Euclidean transform.

A more general type of transformation is that of applying a linear transformation
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1.1 Introduction – the ubiquitous projective geometry 3

to IRn, followed by a Euclidean transformation moving the origin of the space. We
may think of this as the space moving, rotating and �nally stretching linearly possibly
by different ratios in different directions. The resulting transformation is known as an
af�ne transformation.

The result of either a Euclidean or an af�ne transformation is that points at in�n-
ity remain at in�nity. Such points are in some way preserved, at least as a set, by
such transformations. They are in some way distinguished, or special in the context of
Euclidean or af�ne geometry.

From the point of view of projective geometry, points at in�nity are not any dif-
ferent from other points. Just as Euclidean space is uniform, so is projective space.
The property that points at in�nity have �nal coordinate zero in a homogeneous co-
ordinate representation is nothing other than an accident of the choice of coordinate
frame. By analogy with Euclidean or af�ne transformations, we may de�ne a projec-
tive transformation of projective space. A linear transformation of Euclidean space IRn

is represented by matrix multiplication applied to the coordinates of the point. In just
the same way a projective transformation of projective space IPn is a mapping of the
homogeneous coordinates representing a point (an (n + 1)-vector), in which the coor-
dinate vector is multiplied by a non-singular matrix. Under such a mapping, points at
in�nity (with �nal coordinate zero) are mapped to arbitrary other points. The points at
in�nity are not preserved. Thus, a projective transformation of projective space IPn is
represented by a linear transformation of homogeneous coordinates

X′ = H(n+1)×(n+1)X.

In computer vision problems, projective space is used as a convenient way of repre-
senting the real 3D world, by extending it to the 3-dimensional (3D) projective space.
Similarly images, usually formed by projecting the world onto a 2-dimensional repre-
sentation, are for convenience extended to be thought of as lying in the 2-dimensional
projective space. In reality, the real world, and images of it do not contain points at
in�nity, and we need to keep our �nger on which are the �ctitious points, namely the
line at in�nity in the image and the plane at in�nity in the world. For this reason, al-
though we usually work with the projective spaces, we are aware that the line and plane
at in�nity are in some way special. This goes against the spirit of pure projective ge-
ometry, but makes it useful for our practical problems. Generally we try to have it both
ways by treating all points in projective space as equals when it suits us, and singling
out the line at in�nity in space or the plane at in�nity in the image when that becomes
necessary.

1.1.1 Af�ne and Euclidean Geometry

We have seen that projective space can be obtained from Euclidean space by adding
a line (or plane) at in�nity. We now consider the reverse process of going backwards.
This discussion is mainly concerned with two and three-dimensional projective space.

Af�ne geometry. We will take the point of view that the projective space is initially
homogeneous, with no particular coordinate frame being preferred. In such a space,
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4 1 Introduction – a Tour of Multiple View Geometry

there is no concept of parallelism of lines, since parallel lines (or planes in the three-
dimensional case) are ones that meet at in�nity. However, in projective space, there is
no concept of which points are at in�nity – all points are created equal. We say that
parallelism is not a concept of projective geometry. It is simply meaningless to talk
about it.

In order for such a concept to make sense, we need to pick out some particular line,
and decide that this is the line at in�nity. This results in a situation where although
all points are created equal, some are more equal than others. Thus, start with a blank
sheet of paper, and imagine that it extends to in�nity and forms a projective space
IP2. What we see is just a small part of the space, that looks a lot like a piece of the
ordinary Euclidean plane. Now, let us draw a straight line on the paper, and declare
that this is the line at in�nity. Next, we draw two other lines that intersect at this
distinguished line. Since they meet at the “line at in�nity” we de�ne them as being
parallel. The situation is similar to what one sees by looking at an in�nite plane. Think
of a photograph taken in a very �at region of the earth. The points at in�nity in the
plane show up in the image as the horizon line. Lines, such as railway tracks show
up in the image as lines meeting at the horizon. Points in the image lying above the
horizon (the image of the sky) apparently do not correspond to points on the world
plane. However, if we think of extending the corresponding ray backwards behind the
camera, it will meet the plane at a point behind the camera. Thus there is a one-to-one
relationship between points in the image and points in the world plane. The points at
in�nity in the world plane correspond to a real horizon line in the image, and parallel
lines in the world correspond to lines meeting at the horizon. From our point of view,
the world plane and its image are just alternative ways of viewing the geometry of a
projective plane, plus a distinguished line. The geometry of the projective plane and a
distinguished line is known as af�ne geometry and any projective transformation that
maps the distinguished line in one space to the distinguished line of the other space is
known as an af�ne transformation.

By identifying a special line as the “line at in�nity” we are able to de�ne parallelism
of straight lines in the plane. However, certain other concepts make sense as well, as
soon as we can de�ne parallelism. For instance, we may de�ne equalities of intervals
between two points on parallel lines. For instance, if A, B, C and D are points, and
the lines AB and CD are parallel, then we de�ne the two intervals AB and CD to
have equal length if the lines AC and BD are also parallel. Similarly, two intervals on
the same line are equal if there exists another interval on a parallel line that is equal to
both.

Euclidean geometry. By distinguishing a special line in a projective plane, we gain
the concept of parallelism and with it af�ne geometry. Af�ne geometry is seen as
specialization of projective geometry, in which we single out a particular line (or plane
– according to the dimension) and call it the line at in�nity.

Next, we turn to Euclidean geometry and show that by singling out some special
feature of the line or plane at in�nity af�ne geometry becomes Euclidean geometry. In
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1.1 Introduction – the ubiquitous projective geometry 5

doing so, we introduce one of the most important concepts of this book, the absolute
conic.

We begin by considering two-dimensional geometry, and start with circles. Note that
a circle is not a concept of af�ne geometry, since arbitrary stretching of the plane, which
preserves the line at in�nity, turns the circle into an ellipse. Thus, af�ne geometry does
not distinguish between circles and ellipses.

In Euclidean geometry however, they are distinct, and have an important difference.
Algebraically, an ellipse is described by a second-degree equation. It is therefore ex-
pected, and true that two ellipses will most generally intersect in four points. However,
it is geometrically evident that two distinct circles can not intersect in more than two
points. Algebraically, we are intersecting two second-degree curves here, or equiva-
lently solving two quadratic equations. We should expect to get four solutions. The
question is, what is special about circles that they only intersect in two points.

The answer to this question is of course that there exist two other solutions, the two
circles meeting in two other complex points. We do not have to look very far to �nd
these two points.

The equation for a circle in homogeneous coordinates (x, y, w) is of the form

(x− aw)2 + (y − bw)2 = r2w2

This represents the circle with centre represented in homogeneous coordinates as
(x0, y0, w0)

T = (a, b, 1)T. It is quickly veri�ed that the points (x, y, w)T = (1,±i, 0)T

lie on every such circle. To repeat this interesting fact, every circle passes through the
points (1,±i, 0)T, and therefore they lie in the intersection of any two circles. Since
their �nal coordinate is zero, these two points lie on the line at in�nity. For obvious
reasons, they are called the circular points of the plane. Note that although the two
circular points are complex, they satisfy a pair of real equations: x2 + y2 = 0; w = 0.

This observation gives the clue of how we may de�ne Euclidean geometry. Euclidean
geometry arises from projective geometry by singling out �rst a line at in�nity and
subsequently, two points called circular points lying on this line. Of course the circular
points are complex points, but for the most part we do not worry too much about
this. Now, we may de�ne a circle as being any conic (a curve de�ned by a second-
degree equation) that passes through the two circular points. Note that in the standard
Euclidean coordinate system, the circular points have the coordinates (1,±i, 0)T. In
assigning a Euclidean structure to a projective plane, however, we may designate any
line and any two (complex) points on that line as being the line at in�nity and the
circular points.

As an example of applying this viewpoint, we note that a general conic may be
found passing through �ve arbitrary points in the plane, as may be seen by counting
the number of coef�cients of a general quadratic equation ax2 + by2 + . . . + fw2 = 0.
A circle on the other hand is de�ned by only three points. Another way of looking at
this is that it is a conic passing through two special points, the circular points, as well
as three other points, and hence as any other conic, it requires �ve points to specify it
uniquely.

It should not be a surprise that as a result of singling out two circular points one
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6 1 Introduction – a Tour of Multiple View Geometry

obtains the whole of the familiar Euclidean geometry. In particular, concepts such as
angle and length ratios may be de�ned in terms of the circular points. However, these
concepts are most easily de�ned in terms of some coordinate system for the Euclidean
plane, as will be seen in later chapters.

3D Euclidean geometry. We saw how the Euclidean plane is de�ned in terms of
the projective plane by specifying a line at in�nity and a pair of circular points. The
same idea may be applied to 3D geometry. As in the two-dimensional case, one may
look carefully at spheres, and how they intersect. Two spheres intersect in a circle,
and not in a general fourth-degree curve, as the algebra suggests, and as two general
ellipsoids (or other quadric surfaces) do. This line of thought leads to the discovery
that in homogeneous coordinates (X, Y, Z, T)T all spheres intersect the plane at in�nity
in a curve with the equations: X2 + Y2 + Z2 = 0; T = 0. This is a second-degree curve
(a conic) lying on the plane at in�nity, and consisting only of complex points. It is
known as the absolute conic and is one of the key geometric entities in this book, most
particularly because of its connection to camera calibration, as will be seen later.

The absolute conic is de�ned by the above equations only in the Euclidean coor-
dinate system. In general we may consider 3D Euclidean space to be derived from
projective space by singling out a particular plane as the plane at in�nity and specify-
ing a particular conic lying in this plane to be the absolute conic. These entities may
have quite general descriptions in terms of a coordinate system for the projective space.

We will not here go into details of how the absolute conic determines the complete
Euclidean 3D geometry. A single example will serve. Perpendicularity of lines in
space is not a valid concept in af�ne geometry, but belongs to Euclidean geometry.
The perpendicularity of lines may be de�ned in terms of the absolute conic, as follows.
By extending the lines until they meet the plane at in�nity, we obtain two points called
the directions of the two lines. Perpendicularity of the lines is de�ned in terms of the
relationship of the two directions to the absolute conic. The lines are perpendicular if
the two directions are conjugate points with respect to the absolute conic (see �gure
3.8(p83)). The geometry and algebraic representation of conjugate points are de�ned
in section 2.8.1(p58). Brie�y, if the absolute conic is represented by a 3× 3 symmetric
matrix Ω∞, and the directions are the points d1 and d2, then they are conjugate with
respect to Ω∞ if dT

1 Ω∞d2 = 0. More generally, angles may be de�ned in terms of the
absolute conic in any arbitrary coordinate system, as expressed by (3.23–p82).

1.2 Camera projections

One of the principal topics of this book is the process of image formation, namely the
formation of a two-dimensional representation of a three-dimensional world, and what
we may deduce about the 3D structure of what appears in the images.

The drop from three-dimensional world to a two-dimensional image is a projection
process in which we lose one dimension. The usual way of modelling this process is
by central projection in which a ray from a point in space is drawn from a 3D world
point through a �xed point in space, the centre of projection. This ray will intersect a
speci�c plane in space chosen as the image plane. The intersection of the ray with the
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1.2 Camera projections 7

image plane represents the image of the point. If the 3D structure lies on a plane then
there is no drop in dimension.

This model is in accord with a simple model of a camera, in which a ray of light
from a point in the world passes through the lens of a camera and impinges on a �lm or
digital device, producing an image of the point. Ignoring such effects as focus and lens
thickness, a reasonable approximation is that all the rays pass through a single point,
the centre of the lens.

In applying projective geometry to the imaging process, it is customary to model the
world as a 3D projective space, equal to IR3 along with points at in�nity. Similarly
the model for the image is the 2D projective plane IP2. Central projection is simply
a map from IP3 to IP2. If we consider points in IP3 written in terms of homogeneous
coordinates (X, Y, Z, T)T and let the centre of projection be the origin (0, 0, 0, 1)T, then
we see that the set of all points (X, Y, Z, T)T for �xed X, Y and Z, but varying T form
a single ray passing through the point centre of projection, and hence all mapping to
the same point. Thus, the �nal coordinate of (X, Y, Z, T) is irrelevant to where the point
is imaged. In fact, the image point is the point in IP2 with homogeneous coordinates
(X, Y, Z)T. Thus, the mapping may be represented by a mapping of 3D homogeneous
coordinates, represented by a 3 × 4 matrix P with the block structure P = [I3×3|03],
where I3×3 is the 3× 3 identity matrix and 03 a zero 3-vector. Making allowance for a
different centre of projection, and a different projective coordinate frame in the image,
it turns out that the most general imaging projection is represented by an arbitrary 3×4
matrix of rank 3, acting on the homogeneous coordinates of the point in IP3 mapping it
to the imaged point in IP2. This matrix P is known as the camera matrix.

In summary, the action of a projective camera on a point in space may be expressed
in terms of a linear mapping of homogeneous coordinates as

⎛⎜⎝ x
y
w

⎞⎟⎠ = P3×4

⎛⎜⎜⎜⎝
X

Y

Z

T

⎞⎟⎟⎟⎠
Furthermore, if all the points lie on a plane (we may choose this as the plane Z = 0)
then the linear mapping reduces to⎛⎜⎝ x

y
w

⎞⎟⎠ = H3×3

⎛⎜⎝ X

Y

T

⎞⎟⎠
which is a projective transformation.

Cameras as points. In a central projection, points in IP3 are mapped to points in IP2,
all points in a ray passing through the centre of projection projecting to the same point
in an image. For the purposes of image projection, it is possible to consider all points
along such a ray as being equal. We can go one step further, and think of the ray
through the projection centre as representing the image point. Thus, the set of all
image points is the same as the set of rays through the camera centre. If we represent

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-54051-3 - Multiple View Geometry in Computer Vision: Second Edition
Richard Hartley and Andrew Zisserman
Excerpt
More information

http://www.cambridge.org/9780521540513
http://www.cambridge.org
http://www.cambridge.org


8 1 Introduction – a Tour of Multiple View Geometry
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Fig. 1.1. The camera centre is the essence. (a) Image formation: the image points xi are the inter-
section of a plane with rays from the space points Xi through the camera centre C. (b) If the space
points are coplanar then there is a projective transformation between the world and image planes,
xi = H3×3Xi. (c) All images with the same camera centre are related by a projective transformation,
x′

i = H′3×3xi. Compare (b) and (c) – in both cases planes are mapped to one another by rays through
a centre. In (b) the mapping is between a scene and image plane, in (c) between two image planes. (d)
If the camera centre moves, then the images are in general not related by a projective transformation,
unless (e) all the space points are coplanar.

the ray from (0, 0, 0, 1)T through the point (X, Y, Z, T)T by its �rst three coordinates
(X, Y, Z)T, it is easily seen that for any constant k, the ray k(X, Y, Z)T represents the
same ray. Thus the rays themselves are represented by homogeneous coordinates. In
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1.2 Camera projections 9

fact they make up a 2-dimensional space of rays. The set of rays themselves may be
thought of as a representation of the image space IP2. In this representation of the
image, all that is important is the camera centre, for this alone determines the set of
rays forming the image. Different camera matrices representing the image formation
from the same centre of projection re�ect only different coordinate frames for the set
of rays forming the image. Thus two images taken from the same point in space are
projectively equivalent. It is only when we start to measure points in an image, that
a particular coordinate frame for the image needs to be speci�ed. Only then does it
become necessary to specify a particular camera matrix. In short, modulo �eld-of-
view which we ignore for now, all images acquired with the same camera centre are
equivalent – they can be mapped onto each other by a projective transformation without
any information about the 3D points or position of the camera centre. These issues are
illustrated in �gure 1.1.

Calibrated cameras. To understand fully the Euclidean relationship between the im-
age and the world, it is necessary to express their relative Euclidean geometry. As
we have seen, the Euclidean geometry of the 3D world is determined by specifying
a particular plane in IP3 as being the plane at in�nity, and a speci�c conic Ω in that
plane as being the absolute conic. For a camera not located on the plane at in�nity, the
plane at in�nity in the world maps one-to-one onto the image plane. This is because
any point in the image de�nes a ray in space that meets the plane at in�nity in a single
point. Thus, the plane at in�nity in the world does not tell us anything new about the
image. The absolute conic, however being a conic in the plane at in�nity must project
to a conic in the image. The resulting image curve is called the Image of the Absolute
Conic, or IAC. If the location of the IAC is known in an image, then we say that the
camera is calibrated.

In a calibrated camera, it is possible to determine the angle between the two rays
back-projected from two points in the image. We have seen that the angle between two
lines in space is determined by where they meet the plane at in�nity, relative to the
absolute conic. In a calibrated camera, the plane at in�nity and the absolute conic Ω∞
are projected one-to-one onto the image plane and the IAC, denoted ω. The projective
relationship between the two image points and ω is exactly equal to the relationship
between the intersections of the back-projected rays with the plane at in�nity, and Ω∞.
Consequently, knowing the IAC, one can measure the angle between rays by direct
measurements in the image. Thus, for a calibrated camera, one can measure angles
between rays, compute the �eld of view represented by an image patch or determine
whether an ellipse in the image back-projects to a circular cone. Later on, we will see
that it helps us to determine the Euclidean structure of a reconstructed scene.

Example 1.1. 3D reconstructions from paintings
Using techniques of projective geometry, it is possible in many instances to reconstruct
scenes from a single image. This cannot be done without some assumptions being
made about the imaged scene. Typical techniques involve the analysis of features such
as parallel lines and vanishing points to determine the af�ne structure of the scene, for
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10 1 Introduction – a Tour of Multiple View Geometry

a

b c d

Fig. 1.2. Single view reconstruction. (a) Original painting – St. Jerome in his study, 1630, Hendrick
van Steenwijck (1580-1649), Joseph R. Ritman Private Collection, Amsterdam, The Netherlands. (b)
(c)(d) Views of the 3D model created from the painting. Figures courtesy of Antonio Criminisi.

example by determining the line at in�nity for observed planes in the image. Knowl-
edge (or assumptions) about angles observed in the scene, most particularly orthogonal
lines or planes, can be used to upgrade the af�ne reconstruction to Euclidean.

It is not yet possible for such techniques to be fully automatic. However, projective
geometric knowledge may be built into a system that allows user-guided single-view
reconstruction of the scene.

Such techniques have been used to reconstruct 3D texture mapped graphical models
derived from old-master paintings. Starting in the Renaissance, paintings with ex-
tremely accurate perspective were produced. In �gure 1.2 a reconstruction carried out
from such a painting is shown. �

1.3 Reconstruction from more than one view

We now turn to one of the major topics in the book – that of reconstructing a scene
from several images. The simplest case is that of two images, which we will consider
�rst. As a mathematical abstraction, we restrict the discussion to “scenes” consisting
of points only.

The usual input to many of the algorithms given in this book is a set of point cor-
respondences. In the two-view case, therefore, we consider a set of correspondences
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