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1

A variant of K -theory:K±
MICHAEL ATIYAH and MICHAEL HOPKINS

University of Edinburgh and MIT.

1 Introduction

TopologicalK -theory [2] has many variants which have been developed and
exploited for geometric purposes. There are real or quaternionic versions,
‘Real’ K -theory in the sense of [1], equivariantK -theory [14] and combina-
tions of all these.

In recent yearsK -theory has found unexpected application in the physics of
string theories [6] [12] [13] [16] and all variants ofK -theory that had previ-
ously been developed appear to be needed. There are even variants, needed for
the physics, which had previously escaped attention, and it is one such variant
that is the subject of this paper.

This variant, denoted byK±(X), was introduced by Witten [16] in relation
to ‘orientifolds’. The geometric situation concerns a manifoldX with an in-
volution τ having a fixed sub-manifoldY. On X one wants to study a pair
of complex vector bundles(E+, E−) with the property thatτ interchanges
them. If we think of the virtual vector bundleE+ − E−, thenτ takes this
into its negative, andK±(X) is meant to be the appropriateK -theory of this
situation.

In physics,X is a 10-dimensional Lorentzian manifold and maps� → X
of a surface� describe the world-sheet of strings. The symmetry require-
ments for the appropriate Feynman integral impose conditions that the putative
K -theoryK±(X) has to satisfy.

The second author proposed a precise topological definition ofK±(X)

which appears to meet the physics requirements, but it was not entirely clear
how to link the physics with the geometry.

In this paper we elaborate on this definition and also a second (but equiva-
lent) definition ofK±(X). Hopefully this will bring the geometry and physics
closer together, and in particular link it up with the analysis of Dirac operators.

5



6 Atiyah and Hopkins

Although K±(X) is defined in the context of spaces with involution it is
rather different from RealK -theory or equivariantK -theory (for G = Z2),
although it has superficial resemblances to both. The differences will become
clear as we proceed, but at this stage it may be helpful to consider the analogy
with cohomology. Equivariant cohomology can be defined (for any compact
Lie group G), and this has relations with equivariantK -theory. But there is
also ‘cohomology with local coefficients’, where the fundamental groupπ1(X)

acts on the abelian coefficient group. In particular for integer coefficientsZ the
only such action is via a homomorphismπ1(X) → Z2, i.e. by an element of
H1(X; Z2) or equivalently a double-covering̃X of X.

This is familiar for an unoriented manifold with̃X its oriented double-cover.
In this situation, if sayX is a compactn-dimensional manifold, then we do not
have a fundamental class inHn(X; Z) but in Hn(X; Z̃) whereZ̃ is the local
coefficient system defined bỹX. This is also called ‘twisted cohomology’.

HereX̃ has a fixed-point-free involutionτ and, in such a situation, our group
K±(X̃) is the preciseK -theory analogue of twisted cohomology. This will
become clear later.

In fact K -theory has more sophisticated twisted versions. In [8] Donovan
and Karoubi use Wall’s graded Brauer group [15] to construct twistings from
elements ofH1(X; Z2)× H3(X; Z)torsion. More general twistings ofK -theory
arise from automorphisms of its classifying space, as do twistings of equiv-
ariant K -theory. Among these are twistings involving a general element of
H3(X; Z) (i.e., one which is not necessarily of finite order). These are also
of interest in physics, and have recently been the subject of much attention
[3] [5] [9]. Our K± is a twisted version of equivariantK -theory,1 and this
paper can be seen as a preliminary step towards these other more elaborate
versions.

2 The first definition

Given a spaceX with involution we have two naturalK -theories, namely
K (X) andKZ2(X) – the ordinary and equivariant theories respectively. More-
over we have the obvious homomorphism

φ : KZ2(X) → K (X) (2.1)

1 It is the twisting of equivariantK -theory by the non-trivial element ofH1
Z2

(pt) = Z2. From

the point of view of the equivariant graded Brauer group,K±(X) is theK -theory of the graded
cross product algebraC(X) ⊗ M � Z2, whereC(X) is the algebra of continuous functions on
X, andM is the graded algebra of 2× 2-matrices over the complex numbers, graded in such
a way that(i, j ) entry has degreei + j . The action ofZ2 is the combination of the geometric
action given onX and conjugation by the permutation matrix onM .
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which ‘forgets’ about theZ2-action. We can reformulate this by introducing
the space(X × Z2) with the involution(x, 0) → (τ (x), 1). Since this action is
free we have

KZ2(X × Z2) ∼= K (X)

and (2.1) can then be viewed as the natural homomorphism forKZ2 induced
by the projection

π : X × Z2 → X. (2.2)

Now, whenever we have such a homomorphism, it is part of a long exact
sequence (of period 2) which we can write as an exact triangle

K ∗
Z2

(X)
φ→ K ∗(X)

↖ ↙ δ

K ∗
Z2

(π)

(2.3)

whereK ∗ = K 0 ⊕ K 1, δ has degree 1 mod 2 and the relative groupK ∗
Z2

(π)

is just the relative group for a pair, when we replaceπ by a Z2-homotopically
equivalent inclusion. In this case a natural way to do this is to replace theX
factor on the right of (2.2) byX × I whereI = [0, 1] is the unit interval with
τ being reflection about the mid-point1

2. Thus, explicitly

K ∗
Z2

(π) = K ∗
Z2

(X × I , X × ∂ I ) (2.4)

where∂ I is the (2-point) boundary ofI .
We now take the group in (2.4) (with the degree shifted by one) as our def-

inition of K ∗±(X). It is then convenient to follow the notation of [1] where
Rp,q = Rp ⊕ Rq with the involution changing the sign of the first factor,
and we useK -theory with compact supports (so as to avoid always writing the
boundary). Then our definition ofK± becomes

K 0
±(X) = K 1

Z2
(X × R1,0) ∼= K 0

Z2
(X × R1,1) (2.5)

(and similarly forK 1).

Let us now explain why this definition fits the geometric situation we began
with (and which comes from the physics). Given a vector bundleE we can
form the pair(E, τ ∗E) or the virtual bundle

E − τ ∗E.

Under the involution,E andτ ∗E switch and the virtual bundle goes into its
negative. Clearly, ifE came from an equivariant bundle, thenE ∼= τ ∗E and
the virtual bundle is zero. Hence the virtual bundle depends only the element
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defined byE in the cokernel ofφ, and hence by the image ofE in the next
term of the exact sequence (2.3), i.e. by

δ(E) ∈ K 0
±(X).

This explains the link with our starting point and it also shows that one
cannot always defineK±(X) in terms of such virtual bundles onX. In general
the exact sequence(2.3) does not break up into short exact sequences andδ is
not surjective.

At this point a physicist might wonder whether the definition ofK±(X)

that we have given is the right one. Perhaps there is another group which is
represented by virtual bundles. We will give two pieces of evidence in favour
of our definition, the first pragmatic and the second more philosophical.

First let us consider the case when the involutionτ on X is trivial. Then
K ∗

Z2
(X) = R(Z2) ⊗ K ∗(X) andR(Z2) = Z ⊕ Z is the representation ring of

Z2 and is generated by the two representations:

1 (trivial representation)
ρ (sign representation).

The homomorphismφ is surjective with kernel(1 − ρ)K ∗(X) soδ = 0 and

K 0
±(X) ∼= K 1(X). (2.6)

This fits with the requirements of the physics, which involves a switch from
type IIA to type IIB string theory. Note also that it gives an extreme example
when∂ is not surjective.

Our second argument is concerned with the general passage from physi-
cal (quantum) theories to topology. If we have a theory with some symmetry
then we can consider the quotient theory, on factoring out the symmetry. In-
variant states of the original theory become states of the quotient theory but
there may also be new states that have to be added. For example if we have a
groupG of geometric symmetries, then closed strings in the quotient theory
include strings that begin at a pointx and end atg(x) for g ∈ G. All this is
similar to what happens in topology with (generalized) cohomology theories,
such asK -theory. If we have a morphism of theories, such asφ in (2.1) then
the third theory we get fits into a long-exact sequence. The part coming from
K (X) is only part of the answer – other elements have to be added. In ordinary
cohomology where we start with cochain complexes the process of forming a
quotient theory involves an ordinary quotient (or short exact sequence) at the
level of cochains. But this becomes a long exact sequence at the cohomology
level. ForK -theory the analogue is to start with bundles over small open sets
and at this level we can form the naı̈ve quotients, but theK -groups arise when
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we impose the matching conditions to get bundles, and then we end up with
long exact sequences.

It is also instructive to consider the special case when the involution is free
so that we have a double coveringX̃ → X and the exact triangle (2.3), with̃X
for X, becomes the exact triangle

K ∗(X)
φ→ K ∗(X̃)

↖ ↙ δ

K ∗
Z2

(L)

(2.7)

Here L is the real line bundle overX associated to the double covering̃X
(or to the corresponding element ofH1(X, Z2)), and we again use compact
supports. Thus (forq = 0, 1 mod 2)

K q
±(X̃) = K q+1(L). (2.8)

If we had repeated this argument using equivariant cohomology instead of
equivariantK -theory we would have ended up with the twisted cohomology
mentioned earlier, via a twisted suspension isomorphism

Hq(X, Z̃) = Hq+1(L). (2.9)

This shows that, for free involutions,K± is precisely the analogue of twisted
cohomology, so that, for example, the Chern character of the former takes
values in the rational extension of the latter.

3 Relation to Fredholm operators

In this section we shall give another definition ofK± which ties in naturally
with the analysis of Fredholm operators, and we shall show that this definition
is equivalent to the one given in Section 2.

We begin by recalling a few basic facts about Fredholm operators. LetH
be complex Hilbert space,B the space of bounded operators with the norm
topology andF ⊂ B the open subspace of Fredholm operators, i.e. operators
A so that kerA and cokerA are both finite-dimensional. The index defined by

index A = dim kerA − dim cokerA

is then constant on connected components ofF. If we introduce the adjointA∗

of A then

cokerA = ker A∗

so that

index A = dim kerA − dim kerA∗.
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More generally if we have a continuous map

f : X → F

(i.e. a family of Fredholm operators, parametrized byX), then one can define

index f ∈ K (X)

and one can show [2] that we have an isomorphism

index : [X, F ] ∼= K (X) (3.1)

where [, ] denotes homotopy classes of maps. ThusK (X) has a natural defi-
nition as the ‘home’ of indices of Fredholm operators (parametrized byX): it
gives the complete homotopy invariant.

Different variants ofK -theory can be defined by different variants of (3.1).
For example realK -theory uses real Hilbert space and equivariantK -theory
for G-spaces uses a suitableH -space module ofG, namelyL2(G) ⊗ H. It is
natural to look for a similar story for our new groupsK±(X). A first candidate
might be to considerZ2-equivariant maps

f : X → F

where we endowF with the involutionA → A∗ given by taking the adjoint
operator. Since this switches the role of kernel and cokernel it acts as−1 on
the index, and so is in keeping with our starting point.

As a check we can considerX with a trivial involution, then f becomes a
map

f : X → F̂

wherêF is the space of self-adjoint Fredholm operators. Now in [4] it is shown
thatF̂ has three components

F̂+, F̂−, F̂∗

where the first consists ofA which are essentially positive (only finitely many
negative eigenvalues), the second is given by essentially negative operators.
These two components are trivial, in the sense that they are contractible, but
the third one is interesting and in fact [4]

F̂∗ ∼ �F (3.2)

where� denotes the loop space. Since

[X, �F ] ∼= K 1(X)
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this is in agreement with (2.6) – though to get this we have to discard the two
trivial components of̂F, a technicality to which we now turn.

Lying behind the isomorphism (3.1) is Kuiper’s Theorem [11] on the con-
tractibility of the unitary group of Hilbert spaces. Hence to establish that our
putative definition ofK± coincides with the definition given in Section 2 we
should expect to need a generalization of Kuiper’s Theorem incorporating the
involution A → A∗ on operators. The obvious extension turns out to be false,
precisely becausêF, the fixed-point set of∗ on F, has the additional con-
tractible components. There are various ways we can get round this but the
simplest and most natural is to use ‘stabilization’. SinceH ∼= H ⊕ H we can
always stabilize by adding an additional factor ofH. In fact Kuiper’s Theorem
has two parts in its proof:

(1) The inclusionU (H) → U (H ⊕ H) defined byu → u ⊕ 1 is homotopic
to the constant map.

(2) This inclusion is homotopic to the identity map given by the isomorphism
H ∼= H ⊕ H.

The proof of (1) is an older argument (sometimes called the ‘Eilenberg
swindle’), based on a correct use of the fallacious formula

1 = 1 + (−1 + 1) + (−1 + 1) . . .

= (1 + −1) + (1 + −1) + . . .

= 0.

The trickier part, and Kuiper’s contribution, is the proof of (2).
For many purposes, as inK -theory, the stronger version is a luxury and one

can get by with the weaker version (1), which applies rather more generally. In
particular (1) is consistent with taking adjoints (i.e. inverses inU (H)), which
is the case we need.

With this background explanation we now introduce formally our second
definition, and to distinguish it temporarily fromK± as defined in Section 2,
we put

K±(X) = [X, F ]s∗ (3.3)

where∗ means we useZ2-maps compatible with∗ ands means that we use
stable homotopy equivalence. More precisely theZ2-maps

f : X → F(H) g : X → F(H)

are called stably homotopic if the ‘stabilized’ maps

f s : X → F(H ⊕ H) gs : X → F(H ⊕ H)
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given by f s = f ⊕ J, gs = g⊕ J are homotopic, whereJ is a fixed (essen-
tially unique) automorphism ofH with

J = J∗, J2 = 1, +1 and−1 both of infinite multiplicity. (3.4)

Note that under such stabilization the two contractible componentsF̂+ and
F̂− of F̂(H) both end up in the interesting componentF̂∗ of F̂(H ⊕ H).

The first thing we need to observe aboutK±(X) is that it is an abelian
group. The addition can be defined in the usual way by using direct sums of
Hilbert spaces. Moreover we can define the negative degree groupsK−n

± (X)

(for n ≥ 1) by suspension (with trivial involution on the extra coordinates), so
that

K−n
± (X) = K±(X × Sn, X × ∞).

However, at this stage we do not have the periodicity theorem forK±(X). This
will follow in due course after we establish the equivalence withK±(X). As
we shall see our construction of (4.2) is itself closely tied to the periodicity
theorem.

Our aim in the subsequent sections will be to show that there is a natural
isomorphism

K±(X) ∼= K±(X). (3.5)

This isomorphism will connect us up naturally with Dirac operators and so
should tie in nicely with the physics.

4 Construction of the map

Our first task is to define a natural map

K±(X) → K±(X). (4.1)

We recall from (2.5) that

K±(X) = KZ2(X × R1,1)

= KZ2(X × S2, X × ∞)

whereS2 is the 2-sphere obtained by compactifyingR1,1, and∞ is the added
point. Note thatZ2 now acts onS2 by areflection, so that it reverses its orien-
tation.

Thus to define a map (4.1) it is sufficient to define a map

KZ2(X × S2) → K±(X). (4.2)
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This is where the Dirac operator enters. Recall first that, if we ignore involu-
tions, there is a basic map

K (X × S2) → [X, F ] ∼= K (X) (4.3)

which is the key to the Bott periodicity theorem. It is given as follows. Let
D be the Dirac operator onS2 from positive to negative spinors and letV
be a complex vector bundle onX × S2, then we can extend, or couple,D
to V to get a familyDV of elliptic operators along theS2-fibres. Converting
this, in the usual way, to a family of (bounded) Fredholm operators we get the
map (4.3).

We now apply the same construction but keeping track of the involutions.
The new essential feature is thatZ2 reverses the orientation ofS2 and hence
takes the Dirac operatorD into its adjointD∗. This is precisely what we need
to end up inK±(X) so defining (4.2).

Remark 4.1. Strictly speaking the familyDV of Fredholm operators does not
act in a fixed Hilbert space, but in a bundle of Hilbert spaces. The problem can
be dealt with by adding a trivial operator acting on a complementary bundleW
(so thatW + V is trivial).

5 Equivalence of definition

Let us sum up what we have so far. We have defined a natural homomorphism

K±(X) → K±(X)

and we know that this is an isomorphism for spacesX with trivial involution –
both groups coinciding withK 1(X). Moreover, if for generalX, we ignore the
involutions, or equivalently replaceX by X × {0, 1}, we also get an isomor-
phism, both groups now coinciding withK 0(X).

General theory then implies that we have an isomorphism for allX. We shall
review this general argument.

Let A, B be representable theories, defined on the category ofZ2-spaces, so
that

A(X) = [X, A]

B(X) = [X, B]

where [, ] denotes homotopy classes ofZ2-maps into the classifying spaces
of A, B of the theories. A natural mapA(X) → B(X) then corresponds to a
Z2-mapA → B. Showing thatA andB are isomorphic theories is equivalent
to showing thatA andB areZ2-homotopy equivalent.
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If we forget about the involutions then isomorphism of theories is the same
as ordinary homotopy equivalence. Restricting to spacesX with trivial invo-
lution corresponds to restricting to the fixed-point sets of the involution onA

andB.

Now there is a general theorem in homotopy theory [10] which asserts (for
reasonable spaces including Banach manifolds such asF ) that, if a Z2-map
A → B is both a homotopy equivalence ignoring the involution and for the
fixed-point sets, then it is aZ2-homotopy equivalence. Translated back into the
theoriesA, B it says that the mapA(X) → B(X) is an isomorphism provided
it holds for spacesX with the trivial Z2-action, and forZ2-spacesX of the
form Y × {0, 1}.

This is essentially the situation we have here with

A = K± B = K±.

Both are representable. The representability of the first

K±(X) ∼= KZ2(X × R1,1)

arises from the general representability ofKZ2, the classifying space being
essentially the double loop space ofF(H ⊗C2) with an appropriateZ2-action.
The second is representable because

K±(X) = [X, F]s∗ = [X, Fs]∗ (5.1)

whereFs is obtained by stabilizingF. More precisely

Fs = lim
n→∞ Fn

whereFn = F(H ⊗ Cn) and the limit is taken with respect to the natural
inclusions, usingJ of (3.4) as a base point. The assertion in (5.1) is easily
checked and it simply gives two ways of looking at the stabilization process.

We have thus established the equivalence of our two definitionsK± andK±.

6 Free involutions

We shall now look in more detail at the case of free involutions and, follow-
ing the notation of Section 1, we shall denote the freeZ2-space byX̃ and its
quotient byX.

The reason for introducing the stabilization process in Section 3 concerned
fixed points. We shall now show that, for free involutions, we can dispense
with stabilization. Let

F → Fs
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be the natural inclusion ofF in the direct limit space. This inclusion is a
Z2-map and a homotopy equivalence, thoughnot a Z2-homotopy equivalence
(because of the fixed points). Now given the double coveringX̃ → X we can
form the associated fibre bundlesFX andFs

X over X with fibresF andFs.

Thus

FX = X̃ ×Z2 F Fs
X = X̃ ×Z2 Fs

and we have an inclusion

FX → Fs
X

which is fibre preserving. This map is a homotopy equivalence on the fibres
and hence, by a general theorem [7] (valid in particular for Banach manifolds)
a fibre homotopy equivalence. It follows that the homotopy classes of sections
of these two fibrations are isomorphic. But these are the same as[

X̃, F
]
∗

and
[
X̃, F

]s

∗
= K±(X̃).

This show that, for a free involution, we can useF instead ofFs. Moreover it
gives the following simple description ofK±(X̃)

K±(X̃) = Homotopy classes of sections ofFX . (6.1)

This is theK -theory analogue of twisted cohomology described in Section 1.
A corresponding approach to the higher twist ofK -theory given by an element
of H3(X; Z) will be developed in [3].

7 The real case

Everything we have done so far extends, with appropriate modifications, to
real K -theory. The important difference is that the periodicity is now 8 rather
than 2 and that, correspondingly, we have to distinguish carefully between
self-adjoint and skew-adjoint Fredholm operators. Over the complex num-
bers multiplication byi converts one into the other, but over the real numbers
there are substantial differences.

We denote byF1(R) the interesting component of the space of real self-
adjoint Fredholm operatorŝF(R) on a real Hilbert space (discarding two
contractible components as before). We also denote byF−1(R) the space of
skew-adjoint Fredholm operators. Then in [4] it is proved that

[X, F1(R)] ∼= K O1(X) (7.1)

[X, F−1(R)] ∼= K O−1(X) ∼= K O7(X) (7.2)

showing that these are essentially different groups.



16 Atiyah and Hopkins

Using (7.1), stabilizing, and arguing precisely as before, we define

K O±(X) = K O1
Z2

(X × R1,0) ∼= K OZ2(X × R1,7)

KO±(X) = [X, F(R)]s∗

where (in (2.5)) the mod 2 periodicity of K has been replaced by the mod
8 periodicity of K O. But we cannot now just use the Dirac operator onS2

because this is not real. Instead we have to use the Dirac operator onS8, which
then gives us our map

K O±(X) → [X, F(R)]s∗. (7.3)

The same proof as before establishes the isomorphism of (7.3), so that

K O±(X) ∼= KO±(X)

and more generally forq modulo 8

K Oq
±(X) ∼= KO

q
±(X). (7.4)

In [4] there is a more systematic analysis of Fredholm operators in relation to
Clifford algebras and using this it is possible to give more explicit descriptions
of K Oq

±(X), for all q, in terms of Z2-mappings into appropriate spaces of
Fredholm operators. This would fit in with the different behaviour of the Dirac
operator in different dimensions (modulo 8).
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coefficients,Inst. HautesÉtudes Sci. Publ. Math.(1970), no. 38, 5–25. MR 43
#8075.

[9] Freed, Daniel S., Mike J. Hopkins, and Constantin Teleman, Twisted equivariant
K-theory with complex coefficients, arXiv:math.AT/0206257.



A variant of K -theory 17

[10] James, I. M. and G. B. Segal, On equivariant homotopy type,Topology17 (1978),
no. 3, 267–272. MR 80k:55045.

[11] Kuiper, Nicolaas H., The homotopy type of the unitary group of Hilbert space,
Topology3 (1965), 19–30. MR 31 #4034.

[12] Minasian, Ruben and Gregory Moore,K -theory and Ramond–Ramond charge,
J. High Energy Phys.(1997), no. 11, Paper 2, 7 pp. (electronic). MR
2000a:81190.

[13] Moore, Gregory and Edward Witten, Self-duality, Ramond–Ramond fields and
K -theory,J. High Energy Phys.(2000), no. 5, Paper 32, 32. MR 2001m:81254.

[14] Segal, Graeme, EquivariantK -theory,Inst. HautesÉtudes Sci. Publ. Math.
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