CAPNOGRAPHY: CLINICAL ASPECTS
CAPNOGRAPHY: CLINICAL ASPECTS
CARBON DIOXIDE OVER TIME AND VOLUME

Edited by

J.S. Gravenstein MD DrSc
Graduate Research Professor, Emeritus, Department of Anesthesiology
University of Florida College of Medicine
Gainesville, Florida, USA

Michael B. Jaffe PhD
Advanced Technology Projects Manager, Respironics-Novametrix, LLC
Wallingford, Connecticut, USA

David A. Paulus MD
Professor of Anesthesiology, Department of Anesthesiology and Mechanical Engineering
University of Florida College of Medicine and Engineering
Gainesville, Florida, USA
CONTENTS

Contributors ... ix
Preface ... xiii
Commonly used abbreviations .. xv
Introduction ... xvii

PART 1 CLINICAL PERSPECTIVES ... 1

1. Clinical perspectives .. 3
 J.S. Gravenstein & D.A. Paulus

Section 1a Ventilation: Adequacy of breathing assessment .. 13

2. Capnography and respiratory assessment outside of the operating room 15
 E.B. Lobato & R.R. Kirby

Section 1b Ventilation: Airway management ... 21

3. Airway management: prehospital setting ... 23
 B. Carmack, S. Silvestri, G.A. Ralls & J.L. Falk

4. Capnography: airway management in the intensive care unit setting 33
 P.N. Betadpur & J.D. Truwit

5. Airway management in the operating room ... 39
 D.G. Bjoraker

Section 1c Ventilation: Monitoring .. 45

6. Capnography during anesthesia ... 47
 J.M. Goldman, J.S. Gravenstein, D.A. Paulus & A. Hamburger

7. Monitoring during mechanical ventilation .. 59
 J. Thompson & N. Craig

8. Capnography in transport .. 65
 M.A. Frakes

9. Capnography as a guide to ventilation in the field ... 73
 D.P. Davis

10. Time and volumetric capnography in the neonates .. 81
 G. Schmalisch

11. Capnography and sleep: technical aspects ... 101
 T. Schäfer

12. A case for carbon dioxide monitoring in the sleep laboratory 107
 R.J. Thomas

13. Capnography during sedation ... 111
 E.A. Bowe & E.F. Klein Jr
<table>
<thead>
<tr>
<th>Section 1d</th>
<th>Ventilation: Weaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. End-tidal carbon dioxide monitoring in post-operative ventilator weaning</td>
<td>J. Varon & P.E. Marik</td>
</tr>
<tr>
<td>18. Capnography to optimize and minimize mechanical ventilation</td>
<td>D.S. Hamel & I.M. Cheifetz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 1e</th>
<th>Special situations</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Section 1f</th>
<th>Circulation: Transport of carbon dioxide and pulmonary blood flow</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Cardiopulmonary resuscitation</td>
<td>D.C. Cone, J.C. Cahill & M.A. Wayne</td>
</tr>
<tr>
<td>21. Embolism</td>
<td>T.J. Anderson</td>
</tr>
<tr>
<td>22. Pulmonary blood flow monitoring: noninvasive cardiac output</td>
<td>R. Dueck</td>
</tr>
<tr>
<td>23. Partial pressure end-tidal carbon dioxide monitoring for patients with acute respiratory distress syndrome: effects of physiologic dead-space volume</td>
<td>M.J. Banner</td>
</tr>
<tr>
<td>24. The basis for capnometric monitoring in shock</td>
<td>K.R. Ward</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 1g</th>
<th>Metabolism: Carbon dioxide production</th>
</tr>
</thead>
<tbody>
<tr>
<td>25. Carbon dioxide production and anesthesia</td>
<td>D. Wilner & C. Weissman</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 1h</th>
<th>Organ effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>26. Hypocapnia and hypercapnia: tissue- and organ-specific effects</td>
<td>O. Açıka</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PART 2</th>
<th>PHYSIOLOGICAL PERSPECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>27. Physiological perspectives: introduction</td>
<td>M.B. Jaffe</td>
</tr>
<tr>
<td>28. Carbon dioxide pathophysiology</td>
<td>T.E. Morey</td>
</tr>
</tbody>
</table>
CONTRIBUTORS

Ozan Akça MD
Assistant Director, Outcomes Research Institute
Assistant Professor, Department of Anesthesiology
Neuroscience and Anesthesia ICU
University of Louisville
Louisville, Kentucky, USA

John T. Anderson MD FACS
Assistant Professor of Surgery
Department of Surgery
Trauma Surgery and Surgical Critical Care
University of California, Davis Health System
Sacramento, California, USA

Michael Banner PhD
Professor
Anesthesiology and Physiology
University of Florida College of Medicine
Gainesville, Florida, USA

Prasad Betadpur MD
Fellow, Pulmonary and Critical Care Medicine
University of Virginia Health Systems
Charlottesville, Virginia, USA

Francesca Bernabè MD
Medical Doctor in Anesthesia and Intensive Care
Department of Perioperative Medicine
Intensive Care and Emergency Medicine
Trieste University School of Medicine
Trieste, Italy

David G. Bjoraker MD
Associate Professor of Anesthesiology
Department of Emergency Medicine
University of Florida College of Medicine
Gainesville, Florida, USA

Lluis Blanch Torra MD
Critical Care Center
Hospital de Sabadell
Corporacio Parc Taulí
Sabadell, Spain

Edwin A. Bowe MD
Professor and Chair
Department of Anesthesiology
University of Kentucky
Lexington, Kentucky, USA

Philip G. Boyer MD FACP FCCP FCCM
Professor of Anesthesiology and Medicine
Chair, Department of Anesthesiology
University of North Carolina School of Medicine
Chapel Hill, North Carolina, USA
UNC-Chapel Hill
Chairman, Department of Anesthesiology
Chapel Hill, North Carolina, USA

Justin C. Cahill MD
Resident
Section of Emergency Medicine
Yale-New Haven Hospital
New Haven, Connecticut, USA

Brian Carmack MD
Department of Emergency Medicine
Orlando Regional Medical Center
Orlando, Florida, USA

Ira M. Cheifetz MD FCCM FAARC
Associate Professor of Pediatrics
Division Chief, Pediatric Critical Care Medicine
Medical Director, Pediatric Intensive Care Unit and Pediatric Respiratory Care
Duke Children’s Hospital
Durham, North Carolina, USA

David C. Cone MD
Associate Professor of Emergency Medicine and Public Health
Chief, Division of EMS
Section of Emergency Medicine
Yale University School of Medicine
New Haven, Connecticut, USA

Nancy Craig RRT
Supervisor Respiratory Care
Children's Hospital of Boston
Boston, Massachusetts, USA

Bernhard Dahme PhD
Professor of Clinical Psychology
Psychological Institute III
Respiratory Psychophysiology Laboratory
University of Hamburg
Hamburg, Germany
Bob Smalhout MD PhD
Formerly Founder and Head
Institute of Anaesthesiology
University Hospital
Utrecht, The Netherlands

Daniel E. Supkis MD
Covenor of IEC/ISO Joint Working Group for
Respiratory Gas Monitors and
Associate Professor of Anesthesiology
MD Anderson Cancer Center
Houston, Texas, USA

Robert Joseph Thomas MD MMSc
Instructor in Medicine
Harvard Medical School
Division of Pulmonary, Critical Care and Sleep
Medicine
Beth Israel Deaconess Medical Center
Boston, Massachusetts, USA

John E. Thompson RRT
Director of Clinical Technology
Children’s Hospital of Boston
Associate in Anesthesia
Harvard Medical School
Boston, Massachusetts, USA

Jonathan Dean Truwit MD
E. Cato Drash Professor
Senior Associate Dean, Clinical Affairs
Chief, Pulmonary and Critical Care Medicine
University of Virginia Health Systems
Charlottesville, Virginia, USA

Joseph Varon MD FACCP FCAP FCEM
Professor, The University of Texas Health
Science Center
St. Luke’s Episcopal Hospital
Houston, Texas, USA

Kevin R. Ward MD
Associate Professor and Director of Research
Department of Emergency Medicine
VCU Reanimation Engineering Shock Center
(VCURES)
Virginia Commonwealth University
Richmond, Virginia, USA

Marvin A. Wayne MD FACEP FAAEM
Associate Clinical Professor
University of Washington School of Medicine
Assistant Clinical Professor
Section of Emergency Medicine Yale University
Emergency Medical Services Medical Director
Bellingham/Whatcom County
Bellingham, Washington, USA

Charles Weissman MD
Professor and Chair
Department of Anesthesiology and Critical Care
Medicine
Hebrew University – Hadassah School of Medicine
Jerusalem, Israel

Daphne Willner MD
Resident
Department of Anesthesiology and Critical Care
Medicine
Hadassah-Hebrew University Medical Center
Jerusalem, Israel

Kai Zhao PhD
Department of Bioengineering
University of Pennsylvania
Philadelphia, Pennsylvania, USA
This work explores carbon dioxide from physiology to clinical application of capnography. Included are discussions of physiological concepts and traditional uses of intra-operative and non-operative capnography. We have considered both applications where capnography has gained a foothold and is fast becoming a standard of care as well as the newer emerging applications. This calls for expertise in diverse fields. We persuaded over 40 specialists to give account of their findings and applications in essays that could stand as independent reports. As a consequence, this book is in some respects more of a symposium than a textbook while it covers a comprehensive range of topics relating to the application of capnography in health care. For the readers’ comfort we have accepted some overlap and repetition. We have also allowed for differences in perspectives inherent in the background of the author. We are particularly pleased with the historical section of the book, which comprises unique contributions from some of the pioneers of capnography.

J.S. Gravenstein
M.B. Jaffe
D.A. Paulus
COMMONLY USED ABBREVIATIONS

Abbreviation: Subscripts

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, alv</td>
<td>alveolar</td>
</tr>
<tr>
<td>a</td>
<td>arterial</td>
</tr>
<tr>
<td>aw</td>
<td>airway</td>
</tr>
<tr>
<td>B, b</td>
<td>barometric</td>
</tr>
<tr>
<td>d, ds</td>
<td>dead space</td>
</tr>
<tr>
<td>E, exp</td>
<td>expiratory</td>
</tr>
<tr>
<td>I, insp</td>
<td>inspiratory</td>
</tr>
<tr>
<td>Fxi,i</td>
<td>fractional concentration of component i in medium x</td>
</tr>
<tr>
<td>Px,i</td>
<td>partial pressure of component i in medium x</td>
</tr>
<tr>
<td>V</td>
<td>gas volume</td>
</tr>
</tbody>
</table>

BTPS body temperature, barometric pressure and saturation with water vapor under these conditions

Examples

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PaCO2</td>
<td>partial pressure of carbon dioxide in arterial blood</td>
</tr>
<tr>
<td>PetCO2</td>
<td>partial pressure of carbon dioxide at end-tidal</td>
</tr>
<tr>
<td>PACO2</td>
<td>partial pressure of carbon dioxide in alveolar gas</td>
</tr>
<tr>
<td>FECO2</td>
<td>fractional concentration of carbon dioxide in expired gas</td>
</tr>
</tbody>
</table>

Reference

INTRODUCTION

The American Society of Anesthesiologists (ASA) says in its standards for basic anesthetic monitoring:

To ensure adequate ventilation of the patient during all anesthetics ... every patient receiving general anesthesia shall have the adequacy of ventilation continually evaluated ... Continual monitoring for the presence of expired carbon dioxide shall be performed unless invalidated by the nature of the patient, procedure or equipment. Quantitative monitoring of the volume of expired gas is strongly encouraged. When an endotracheal tube or laryngeal mask is inserted, its correct positioning must be verified by clinical assessment and by identification of carbon dioxide in the expired gas. Continual end-tidal carbon dioxide analysis, in use from the time of endotracheal tube/laryngeal mask placement, until extubation/removal or initiating transfer to a postoperative care location, shall be performed using a quantitative method, such as capnography, capnometry, or mass spectrometry.

This ringing endorsement and requirement of capnography by the ASA as well as other medical societies focuses our attention on the successful ventilation of the lungs, as documented by the appearance of carbon dioxide (CO$_2$) with every exhalation. However, the traditional time-based capnography says nothing about the volumes of gas that delivered the CO$_2$. Volumetric capnography, which provides a volume-based view of ventilation, as such brings us wonderful additional intelligence.

The current spotlight on and the growing recognition of the clinical value of time- and volume-based capnography are well deserved. Too many patients have died because of ventilation-related problems. But capnography has much more to offer. For example, a readily available sign of a severe pulmonary embolism is the decrease in end-tidal CO$_2$ at constant tidal volume and minute ventilation. This directs our attention to the delivery of CO$_2$ to the alveoli and thus to pulmonary blood flow. In consequence, capnography tells a story not only about ventilation but it can also provide crucial information on circulation, specifically pulmonary blood flow.

And that is not all. In malignant hyperthermia oxygen consumption and CO$_2$ production go into overdrive. Long before the fever sets in, CO$_2$ production is racing ahead and its concentration in the expired gas rises dramatically, best seen when we can combine the measurements of volume and CO$_2$ so that we can calculate the volume of CO$_2$. Thus, capnography generates early warning signs of a rare but treacherous complication of metabolism. This is but one example of how capnography can alert us to the unexpected appearance of CO$_2$ in the body, or to its decrease. When we take stock of capnography, we recognize that these measurements can provide important insight and crucial information on ventilation and on circulation and on metabolism. How these three factors interact will be an important aspect of the book before you.

In a patient who has suffered trauma to the brain or who undergoes an intracranial operation or who has a mass occupying lesion in the brain, the arterial CO$_2$ levels must be carefully controlled in order to avoid a devastating rise in intracranial pressure or damaging hyperventilation. While we want to monitor arterial CO$_2$ tension in such patients, the management of ventilation will be greatly assisted by capnography, exemplifying another value of capnography.

To recapitulate: The data provided by capnography must be interpreted with a keen awareness that ventilation and circulation and metabolism can affect end-tidal values. Interpretation of the data is greatly aided by volumetric capnography. Furthermore, the effects of CO$_2$ on organs such as the brain make control of arterial CO$_2$ tension an essential component of good clinical management. In view of these four perspectives on capnography, we have decided to collate much of the leading clinical section of this book in four subsections that concentrate on ventilation, circulation, metabolism and organ effects. In each of these subsections you will find clinical examples and much practical information. We follow the clinical section with a look at the basic physiology of CO$_2$, a history of CO$_2$ measurements with perspectives from the fathers of time and volumetric capnography and end it with a detailed examination of the technology that makes all of this possible.

1www.asahq.org/publicationsAndServices/standards/02.pdf