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Introduction

In this introduction we briefly explain the words of the title of these notes,
give a sketch of what we are going to do with these notions, and outline the
viewpoint we will take in order to understand the structures. In the course of
this introduction a lot of other words will be used which are probably no more
familiar than those they are meant to explain — but don’t worry: in the main
text, all these words are properly defined and carefully explained. . .

Frobenius algebras. A Frobenius algebra is a finite-dimensional algebra
equipped with a nondegenerate bilinear form compatible with multiplication.
(Chapter 2 is all about Frobenius algebras.) Examples are matrix rings, group
rings, the ring of characters of a representation, and Artinian Gorenstein rings
(which in turn include cohomology rings, local rings of isolated hypersurface
singularities . . . )

In algebra and representation theory such algebras have been studied for a
century, along with various related notions — see Curtis and Reiner [15].

Frobenius structures. During the past decade, Frobenius algebras have shown
up in a variety of topological contexts, in theoretical physics and in computer
science. In physics, the main scenery for Frobenius algebras is that of topo-
logical quantum field theory (TQFT), which in its axiomatisation amounts to a
precise mathematical theory. In computer science, Frobenius algebras arise in
the study of flowcharts, proof nets, circuit diagrams. . .

In any case, the reason Frobenius algebras show up is that this is essentially
a topological structure: it turns out that the axioms for a Frobenius algebra
can be given completely in terms of graphs — or as we shall do, in terms of
topological surfaces.

Frobenius algebras are just algebraic representations of this structure — the
goal of these notes is to make all this precise. We will focus on topological
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2 Introduction

quantum field theories — and in particular on dimension 2. This is by far the
best picture of Frobenius structures since the topology is explicit, and since
there is no additional structure to complicate things. In fact, the main theorem
of these notes states that there is an equivalence of categories between that of
2-dimensional TQFTs and that of commutative Frobenius algebras.

(There will be no further mention of computer science in these notes.)

Topological quantum field theories. In the axiomatic formulation (due to
Atiyah [5]), an n-dimensional topological quantum field theory is a rule </
which to each closed oriented manifold ¥ (of dimension n — 1) associates a
vector space X7 , and to each oriented n-manifold whose boundary is ¥ as-
sociates a vector in X7 . This rule is subject to a collection of axioms which
express that topologically equivalent manifolds have isomorphic associated
vector spaces, and that disjoint unions of manifolds go to tensor products of
vector spaces, etc.

Cobordisms. The clearest formulation is in categorical terms. First one de-
fines a category of cobordisms nCob: the objects are closed oriented (n — 1)-
manifolds, and an arrow from ¥ to X’ is an oriented n-manifold M whose
‘in-boundary’ is ¥ and whose ‘out-boundary’ is X’. (The cobordism M is
defined up to diffeomorphism rel the boundary.) The simplest example of a
cobordism is the cylinder ¥ x I over a closed manifold X, say a circle. It is a
cobordism from one copy of X to another.

Here is a drawing of a cobordism from the union of two circles to one circle:

Composition of cobordisms is defined by gluing together the underlying man-
ifolds along common boundary components; the cylinder ¥ x [ is the identity
arrow on X. The operation of taking disjoint union of manifolds and cobor-
disms gives this category monoidal structure — more about monoidal categories
later. On the other hand, the category Vecty of vector spaces is monoidal under
tensor products.

Now the axioms amount to saying that a TQFT is a (symmetric) monoidal
functor from nCob to Vecty. This is also called a linear representation of
nCob.

So what does this have to do with Frobenius algebras? Before we come
to the relation between Frobenius algebras and 2-dimensional TQFTs, let us
make a couple of remarks on the motivation for TQFTs.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521540315
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-54031-5 - Frobenius Algebras and 2D Topological Quantum Field Theories
Joachim Kock

Excerpt

More information

Introduction 3

Physical interest in TQFTs comes mainly from the observation that TQFTs
possess certain features one expects from a theory of quantum gravity. It serves
as a baby model in which one can do calculations and gain experience before
embarking on the quest for the full-fledged theory, which is expected to be
much more complicated. Roughly, the closed manifolds represent space, while
the cobordisms represent space-time. The associated vector spaces are then
the state spaces, and an operator associated to a space-time is the time-
evolution operator (also called transition amplitude, or Feynman path integral).
That the theory is topological means that the transition amplitudes do not de-
pend on any additional structure on space-time (like Riemannian metric or
curvature), but only on the topology. In particular there is no time-evolution
along cylindrical space-time. That disjoint union goes to tensor product ex-
presses the common principle in quantum mechanics that the state space of
two independent systems is the tensor product of the two state spaces.

(No further explanation of the relation to physics will be given — the author
of these notes recognises he knows nearly nothing of this aspect. The reader is
referred to Dijkgraaf [17] or Barrett [11], for example.)

Mathematical interest in TQFTs stems from the observation that they pro-
duce invariants of closed manifolds: an n-manifold without boundary is a
cobordism from the empty (n — 1)-manifold to itself, and its image under
&/ is therefore a linear map k — k, i.e. a scalar. It was shown by Witten
how TQFT in dimension 3 is related to invariants of knots and the
Jones polynomial — see Atiyah [6].

The viewpoint of these notes is different however: instead of developing
TQFTs in order to describe and classify manifolds, we work in dimension 2
where a complete classification of surfaces already exists; we then use this
classification to describe TQFTs!

Cobordisms in dimension 2. In dimension 2, ‘everything is known’: since
surfaces are completely classified, one can also describe the cobordism cat-
egory completely. Every cobordism is obtained by composing the following
basic building blocks (each with the in-boundary drawn to the left):

a p2 o g 0 X

Two connected cobordisms are equivalent if they have the same genus and the
same number of in- and out-boundaries. This gives a bunch of relations, and
a complete description of the monoidal category 2Cob in terms of generators
and relations. Here are two examples of relations that hold in 2Cob:
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-t §-02- B

These equations express that certain surfaces are topologically equivalent rel
the boundary.

ey

Topology of some basic algebraic operations. Some very basic principles are
in play here: ‘creation’, ‘coming together’, ‘splitting up’, ‘annihilation’. These
principles have explicit mathematical manifestations as algebraic operations:

Principle Feynman diagram | 2D cobordism | Algebraic operation (in a k-algebra A)

>— &) multiplication ARA— A
creation — 0 unit k — A

merging

splitting

@ comultiplication A—>AQRA

annihilation D) counit A—k

Note that in the intuitive description there is a notion of time involved which
accounts for the distinction between coming-together and splitting-up — or per-
haps ‘time’ is too fancy a word, but at least there is a notion of start and finish.
Correspondingly, in the algebraic or categorical description the notion of mor-
phism involves a direction: morphisms are arrows, and they have well defined
source and target.

It is an important observation from category theory that many algebraic
structures admit descriptions purely in terms of arrows (instead of referring to
elements) and commutative diagrams (instead of equations among elements).
In particular, this is true for the notion of an algebra: an algebra is a vector
space A equipped with two maps A ® A — A and k — A, satisfying the as-
sociativity axiom and the unit axiom. Now according to the above dictionary,
the left-hand relation of Equation (1) is just the topological expression of asso-
ciativity! Put in other words, the associativity equation has topological content:
it expresses the topological equivalence of two surfaces (or two graphs).
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Introduction 5

It gives sense to other operations, like merging (or splitting) three particles:
it makes no difference whether we first merge two of them and then merge the
result with the third, or whether we merge the last two with the first. From the
viewpoint of graphs, the basic axiom (equivalent to Equation (1)) is that two
vertices can move past each other:

Frobenius algebras. In order to relate this to Frobenius algebras the defini-
tion given in the beginning of this introduction is not the most convenient. It
turns out one can characterise a Frobenius algebra as follows: it is an algebra
(multiplication denoted @) which is simultaneously a coalgebra (comulti-
plication denoted @) with a certain compatibility condition between @ and

. This compatibility condition is exactly the right-hand relation drawn in
Equation (1). (Note that by the dictionary, this is just a graphical expression
of a precise algebraic requirement.) In fact, the relations that hold in 2Cob
correspond precisely to the axioms of a commutative Frobenius algebra. This
comparison leads to the main theorem:

Theorem. There is an equivalence of categories
2TQFT =~ cFA,

given by sending a TQFT to its value on the circle (the unique closed connected
1-manifold).

So in this sense, we can say, if we want, that Frobenius algebras are the same
thing as linear representations of 2Cob.

The idea of the proof is this: let A be the image of the circle, under a TQFT
o/ . Now o sends each of the generators of 2Cob to a linear map between
tensor powers of A, just as tabulated above. The relations which hold in 2Cob
are preserved by &/ (since ./ by definition is a monoidal functor) and in its
target category Vect they translate into the axioms for a commutative Frobe-
nius algebra! (Conversely, every commutative Frobenius algebra can be used
to define a 2-dimensional TQFT.)

Monoidal categories. As mentioned, just in order to define the category
TQFT we need the notion of monoidal categories. In fact, monoidal cate-
gories is the best framework to understand all the concepts described above.
The notion of associative multiplication with unit is precisely what the abstract
concept of monoid encodes — and monoids live in monoidal categories.
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The prime example of a monoidal category is the category Vect) of vector
spaces and tensor products, with the ground field as neutral object. In general a
monoidal category is a category equipped with some sort of ‘product’ like ® or
L1, satisfying certain properties. This ‘product’ serves as background for defin-
ing the multiplication maps, i.e. defining monoids: a monoid in (Vecty, ®, k)
is precisely a k-algebra A, since the multiplication map is described as a
k-linear map A ® A — A, etc. Another example of a monoid is the circle in
2Cob. ..

The simplex category A and what it means to monoids and algebras.
There is a little monoidal category which bears some similarity with 2Cob:
the simplex category A is roughly the category of finite ordered sets and
order-preserving maps. It is a monoidal category under disjoint union. To
be more precise, the objects of A are n = {0, 1,2,...,n — 1}, one for each
n € N, and the arrows are the maps f :m — nsuchthati < j = if < jf.
There are several other descriptions of this important category — one is in
graphical terms, and reveals it as a subcategory of 2Cob. The object 1 is a
monoid in A, and in a sense A is the smallest possible monoidal category
which contains a nontrivial monoid. In fact the following universal property
is shown to hold: every monoid in any monoidal category V is the image
of 1 under a unique monoidal functor A — V. This is to say that A is the
free monoidal category containing a monoid. In particular, k-algebras can be
interpreted as ‘linear representations’ of A.

Observing that A can be described graphically, we see that this result is of
exactly the same type as our main Theorem.

Frobenius objects. Once we have taken the step of abstraction from k-algebras
to monoids in an arbitrary monoidal category, it is straightforward to define the
notion of Frobenius object in a monoidal category: it is an object equipped with
four maps as those listed in the table, and with the compatibility condition ex-
pressed in Equation (1). In certain monoidal categories, called symmetric, it
makes sense to ask whether a monoid or a Frobenius object is commutative,
and of course these notions are defined in such a way that commutative Frobe-
nius objects in Vecty are precisely commutative Frobenius algebras.

Universal Frobenius structure. With these general notions, generalisation of
the Theorem is immediate: all the arguments of the proof do in fact carry
over to the setting of an arbitrary (symmetric) monoidal category, and we find
that 2Cob is the free symmetric monoidal category containing a commuta-
tive Frobenius object. This means that every commutative Frobenius object in
any symmetric monoidal category V is the image of the circle under a unique
symmetric monoidal functor from 2Cob.
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Introduction 7

Since the proof of this result is the same as the proof of the original theorem,
this is the natural generality of the statement. The interest in this generality is
that it actually includes many natural examples of TQFTs which could not fit
into the original definition. For example, in our treatment of Frobenius algebras
in Chapter 2 we will see that cohomology rings are Frobenius algebras in a nat-
ural way, but typically they are not commutative but only graded-commutative.
For this reason they cannot support a TQFT in the strict sense. But if instead of
the usual symmetric monoidal category Vect we take for example the category
of graded vector spaces with ‘super-symmetry’ structure, then all cohomology
rings can support a TQFT (of this slightly generalised sort).

It is the good generalised version of the main theorem that makes this clear.
In many sources on TQFTs, the questions of symmetry are swept under the
carpet and the point about ‘super-symmetric’ TQFTs is missed.

In these notes, the whole question of symmetry is given a rather privileged
role. The difficult thing about symmetry is to avoid mistaking it for identity!
For example, for the cartesian product x (which is an important example of
a monoidal structure), it is not true that X x ¥ = Y x X. What is true is that
there is a natural isomorphism between the two sets (or spaces). Similar obser-
vations are due for disjoint union [ [, and tensor product ®. . . While it requires
some pedantry to treat symmetry properly, it is necessary in order to under-
stand the super-symmetric examples just mentioned.

Organisation of these notes. The notes are divided into three chapters each of
which should be read before the others! The first chapter is about topology —
cobordisms and TQFTs; Chapter 2 is about algebra — Frobenius algebras; and
Chapter 3 is mostly category theory. The reader is referred to the Contents for
more details on where to find what.

Although the logical order of the material is not completely linear, hopefully
the order is justified pedagogically: we start with geometry! — the concrete and
palpable — and then we gradually proceed to more abstract subjects (or should
we say: more abstract aspects of our subject), helped by drawings and intuition
provided by the geometry. With the experience gained with these investigations
we get ready to try to understand the abstract structures behind. The ending
is about very abstract concepts and objects with universal properties, but we
can cope with that because we know the underlying geometry — in fact we
show that this very abstract thing with that universal property is precisely the
cobordism category we described so carefully in Chapter 1.

Exercises. Each section ends with a collection of exercises of varying level and
interest. Most of them are really easy, and the reader is encouraged to do them
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8 Introduction

all. A few of them are considered less straightforward and have been marked
with a star.

Further reading. My great sorrow about these notes is that I do not understand
the physical background or interpretation of TQFTs. The physically inclined
reader must resort to the existing literature, for example Atiyah’s book [6] or
the notes of Dijkgraaf [17]. I would also like to recommend John Baez’s web
site [8], where a lot of references can be found.

Within the categorical viewpoint, an important approach to Frobenius struc-
tures which has not been touched upon is the 2-categorical viewpoint, in terms
of monads and adjunctions. This has recently been exploited to great depth by
Miiger [39]. Again, a pleasant introductory account is given by Baez [8], TWF
174 (and 173).

Last but not least, I warmly recommend the lecture notes of Quinn [43],
which are detailed and go in depth with concrete topological quantum field
theories.
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Cobordisms and topological quantum
field theories

Summary

In the first section we recall some basic notions of manifolds with boundary
and orientations, and Morse functions. We introduce the slightly nonstandard
notion of in-boundary and out-boundary, which is particularly convenient for
the treatment of cobordisms.

Section 1.2 is devoted to the basic theory of oriented cobordisms. Roughly
a cobordism between two closed (n — 1)-manifolds is an n-manifold whose
boundary is made up of the two (n — 1)-manifolds. We describe what it means
for two cobordisms to be equivalent. Next we introduce the decomposition of
a cobordism, which amounts to cutting up along a closed codimension-1 sub-
manifold, obtaining two cobordisms. Finally we state the axioms for a topo-
logical quantum field theory (TQFT) in the style of Atiyah [5]: it is a way
of associating vector spaces and linear maps to (n — 1)-manifolds and cobor-
disms, respecting decompositions and disjoint union. A special decomposition
of the cylinder shows that a vector space which is image of a TQFT comes
equipped with a nondegenerate bilinear pairing, in a strong sense, which in
particular forces the vector space to be finite dimensional.

In Section 1.3 we assemble the manifolds and cobordisms into a category
nCob. In order to have a well defined composition we must pass to a quotient,
identifying equivalent cobordisms. The identity arrows are the cylinder classes.
Then we start discussing the monoidal structure: disjoint union of cobordisms.
With this terminology we can define a TQFT as a (symmetric) monoidal func-
tor from nCob to Vecty. (The definition and basic properties of monoidal
categories are given in Chapter 3.)

Finally in Section 1.4 we specialise to dimension 2. Here we can give a com-
plete description of 2Cob in terms of generators and relations for a monoidal
category. These results depend on the classification theorem for topological
surfaces.
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10 Cobordisms and TQFTs

The notion of cobordism goes back to Pontryagin and Thom [47] in the
1950s. Topological quantum field theories were introduced by Witten [50],
and the mathematical axiomatisation was soon after proposed by Atiyah [5]
(1989). The description of 2Cob in terms of generators and relations was first
given explicitly by Abrams [1] (1995), but the proof is already sketched in
Quinn [43], and most likely it goes further back.

1.1 Geometric preliminaries

The reader is expected to be familiar with the most basic notions of differ-
entiable manifolds, their tangent bundles, smooth maps, and their differentials.
Our main reference will be Hirsch [27]. A more elementary introduction which
emphasises the concepts used here is Wallace [48]. In this section we just col-
lect some crucial notions, establish terminology and notation, and give some
basic examples which we will need later on.

Our manifolds are not assumed to be embedded in Euclidean space; an n-
manifold is merely a topological space M covered by open sets homeomorphic
to R". These maps are called coordinate charts, and the collection of all of them
is called an atlas. Smooth means differentiable of class C*; that is, on overlaps
between two such charts, the coordinate change functions are differentiable
maps of class C* (between subsets of R"). A smooth structure on M is a
maximal smooth atlas. Throughout, manifold will mean smooth manifold, i.e. a
manifold equipped with a smooth structure. All our manifolds will be compact,
but we do not assume them to be connected.

Let us note that we regard the empty set as an n-manifold! — we denote it
. This is justified by the observation that every point of &, has a neighbour-
hood homeomorphic to R".

Manifolds with boundary

In a usual n-manifold M, every point x has a neighbourhood homeomorphic
to R". This means that from x you can move a little bit in any direction. This
is possible either because M ‘curves back and closes up itself’ like a circle,
a sphere, or a torus, or because M is open, like for example the open disc
{x € R? | |x| < 1}: here the points are not allowed to sit on the boundary, so
no matter how close you are to it you can always come a little bit closer.

In a manifold with boundary the ‘boundary points’ are included, like for ex-
ample the points on the circumference in {x € R? | |x| < 1}. For such a point,
there are directions in which it is impossible to move: there is no neighbour-
hood homeomorphic to R”, so we need a new sort of chart. It is practical
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