
P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB670-FM CB670-McMillan-v2 January 13, 2004 16:10

OBJECT-ORIENTED

PROGRAMMING WITH

VISUAL BASIC.NET

MICHAEL MCMILLAN
Pulaski Technical College, North Little Rock, Arkansas

iii



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB670-FM CB670-McMillan-v2 January 13, 2004 16:10

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

C© Michael McMillan 2004

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2004

Printed in the United States of America

Typefaces ITC Berkeley Oldstyle 11/13.5 pt. and ITC Franklin Gothic System LATEX 2ε [TB]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data

McMillan, Michael, 1957–

Object-oriented programming with Visual Basic.Net / Michael McMillan

p. cm.

Includes bibliographical references and index.

ISBN 0-521-53983-8 (pb.)

1. Object-oriented programming (Computer science) 2. Microsoft Visual BASIC.
3. BASIC (Computer program language) 4. Microsoft.NET. I. Title

QA76.64.M389 2004
005.1′17 – dc22 2003055949

ISBN 0 521 53983 8 paperback

iv



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB670-FM CB670-McMillan-v2 January 13, 2004 16:10

Contents

Preface page ix

Chapter 1
An Overview of the Visual Basic.NET Language 1

NET Programs 1
Data Types and Variables 7
Arithmetic, String, and Relational Operators 15
Summary 42
Exercises 42

Chapter 2
An Overview of Object-Oriented Programming 44

OOP Defined 44
The Characteristics of an OOP Language 46
OOP as an Abstraction Mechanism 52
Abstract Data Types 55
Designing Object-Oriented Programs 59
Summary 62
Exercises 63

Chapter 3
Structures 64

Using Structures 64

v



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB670-FM CB670-McMillan-v2 January 13, 2004 16:10

vi CONTENTS

A Complete Name Structure Implementation 83
Another Structure Example—The Rational Object 85
From Structures to Classes 90
Summary 91
Exercises 91

Chapter 4
Classes 93

Building a Class 93
Class Constructors 96
Copy Constructors 120
Summary 135
Exercises 135

Chapter 5
Access Modifiers 136

Public Access 137
Private Access 139
Protected Access 141
Friend Access 145
Protected Friend Access 147
Shadows 147
Class-Level Access Modifiers 149
Summary 156
Exercises 156

Chapter 6
Abstract Classes and Interfaces 158

Abstract Classes 158
Summary 177
Exercises 177

Chapter 7
Implementing the IEnumerable and IComparable Interfaces 179

The IComparable Interface 180
Implementing the IComparable Interface 180



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB670-FM CB670-McMillan-v2 January 13, 2004 16:10

Contents vii

The IEnumerable Interface 185
Summary 190
Exercises 191

Chapter 8
Designing and Implementing Exception Classes 192

Exception Handling in VB.NET 192
Creating and Using an Exception Class 197
Summary 200
Exercises 201

Chapter 9
Design Patterns and Refactoring 202

Design Patterns 202
Refactoring 206
Summary 221
Exercises 221

Chapter 10
Object Internals: Reflection and Attributes 223

Using Reflection 224
Using Reflection with Class Objects 225
Manipulating Class Objects Using Reflection 234
Attributes and Reflection 244
Intrinsic Attributes 245
Summary 251
Exercises 251

Chapter 11
Object Persistence: Serialization 252

Serialization Defined 252
Serializing a Class Object 253
Deserializing a Class Object 255
Leaving Data Unserialized 258
Summary 259
Exercises 259



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB670-FM CB670-McMillan-v2 January 13, 2004 16:10

viii CONTENTS

Chapter 12
Building a Windows Application 260

VS.NET-Generated Code 261
Considering a Calculator Design 262
A Calculator Model 263
Designing the Calculator User Interface 268
Writing the Calculator Program Code 269
Summary 275
Exercises 276

Chapter 13
Database Programming Using ADO.NET 277

An Overview of ADO.NET 277
Accessing a Database Table Using Non-OOP Techniques 278
OOP Techniques for Database Access 282
Summary 290
Exercises 290

References 291

Index 293



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB670-01 CB670-McMillan-v3 January 13, 2004 11:9

CHAPTER 1

An Overview of the Visual
Basic.NET Language

This chapter presents an overview of the syntax and primary constructs of
the Visual Basic.NET (VB.NET) language for programmers unfamiliar with
VB.NET. This is not a tutorial chapter, however, so if you are new to program-
ming you should study another text on VB.NET before continuing with this
book. If, though, you are coming to VB.NET from some other language, such
as C++ or Java or even Visual Basic 6, you should read through this chapter
to familiarize yourself with the language.

NET PROGRAMS

There are two ways to build programs in VB.NET. One is to use the Vi-
sual Studio.NET Integrated Development Environment (IDE). The other is
to use the command-line compiler packaged as part of the .NET Framework
Software Development Kit (SDK). In this section we’ll discuss developing
programs with the command-line compiler, since this software is free and
can run on any of the modern Windows operating sysems (Windows 98 and
beyond).

1



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB670-01 CB670-McMillan-v3 January 13, 2004 11:9

2 AN OVERVIEW OF THE VISUAL BASIC.NET LANGUAGE

VB.NET Program Types

With VB.NET, you can write many different kinds of programs. A VB.NET
program that makes use of a graphical user interface (GUI) is a Windows
application. A VB.NET program that uses the command-prompt console for
input and output is called a Console application. You can also write Internet
applications, Windows Services applications, and other types of applications.
In this book we will focus on Console and Windows applications, though we
will look at examples of Windows Services and Internet (ASP.NET) applica-
tions in the last few chapters.

Writing a Console Application Using the
Command-Line Compiler

You do not have to be running Visual Studio.NET to compile and run VB.NET
programs. A command-line compiler is shipped with the .NET Framework
and can be used for any VB.NET programs you want to develop.

To get to the compiler, find the Microsoft.NET subdirectory. It is usu-
ally found in the Winnt or Windows (for Windows 98) directory. Then
change directories to the Framework subdirectory. The compiler resides in
yet another subdirectory. The name of the subdirectory depends on which
version of the .NET Framework you are using. The current .NET Frame-
work version stores the compiler in the v1.0.3705 subdirectory, but be sure
to check this on your own system since your version may be different.
The path to the compiler for a typical computer running Windows 2000
is c:\winnt\Microsoft.NET\Framework\v1.0.3705.

Using the compiler is quite simple. First, create a source file using the text
editor of your choice. Make sure the file you create has a .vb extension. Let’s
look at an example of a simple VB.NET program, a program that displays the
text “Hello, world!” on the screen:

Imports System

Module HelloWorld

Sub Main()

Console.WriteLine("Hello, world!")

End Sub

End Module



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB670-01 CB670-McMillan-v3 January 13, 2004 11:9

NET Programs 3

The first line indicates that the program needs to use a class found in the
System namespace. A namespace is a tool used to group related classes and
other types together. Namespaces also allow different classes to share the same
name. Using the keyword Imports allows us to use a class from the specified
namespace (System in this case) without using the namespace name first. We
can just as easily leave the first line of the program out altogether and type in
the fully qualified name of the class:

System.Console.WriteLine("Hello, world!")

Generally, importing a namespace makes your programs easier to write and
easier to read.

The next line defines a module named HelloWorld. A module is one of the
possible packages into which we can write code that we want to compile and
execute. Another package we can use is a class. Generally, though, we want
to save the use of classes for defining our own custom types, so we’ll use
modules for writing Console applications in this book. Modules are begun
with the Module keyword and are closed with the line End Sub.

The first line inside the Module definition defines a subroutine called Main.
This subroutine is the entry point of the application, and the compiler will
report an error if Main is not found somewhere in a module or class. If you
are using a class rather than a module as the packaging for your application,
Main must be defined as a Shared method, which means that the class does
not have to be instantiated for the code to be executed. We’ll explain later in
the book what we mean by a Shared method. Main must be closed with the
line End Sub.

The line that displays the message “Hello, world!” on the display is

Console.WriteLine("Hello, world!")

To display text on the computer’s console, you have to call the Console class
and the proper method for writing text to the console, one of which is the
WriteLine method. This method displays the text passed to it as the argument
on the console and then writes a newline character so that any more text will
be written on the next line.

To end this section, we’ll look at writing the same HelloWorld program
as a class rather than as a module. The codes are similar, and to be honest,
the two techniques are virtually identical. However, because in this book we



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB670-01 CB670-McMillan-v3 January 13, 2004 11:9

4 AN OVERVIEW OF THE VISUAL BASIC.NET LANGUAGE

use classes to define special types, we’ll write all our Console applications as
modules.

Here’s the HelloWorld class code:

Imports System

Class HelloWorld

Shared Sub Main()

Console.WriteLine("Hello, world!")

End Sub

End class

To compile your program (assuming the source file name is test.vb), issue
the following command:

vbc test.vb

If your program compiles successfully, you can simply run the executable file
(test.exe) to run it. If your program has errors in it, the compiler will return
the errors to your console.

Writing a Windows Application Using the
Command-Line Compiler

One of the surprising things about VB.NET is that you don’t have to use Visual
Studio.NET to build a Windows application. Unlike previous versions of the
language, VB.NET gives the programmer the ability to build a GUI directly
from code. Although you probably won’t want to use this feature all that often,
there will be situations when building a GUI from scratch will be necessary.
This is certainly true if you are using Windows 98 or ME and can’t run Visual
Studio.NET.

To demonstrate how to write a Windows application, we’ll rewrite the
HelloWorld program so that the text is displayed in a label on a form. First,
let’s look at the code:

Imports System

Imports System.Drawing

Imports System.Windows.Forms

Public Class HelloWorld

Inherits Form



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB670-01 CB670-McMillan-v3 January 13, 2004 11:9

NET Programs 5

Private lblHelloLabel As Label

Public Shared Sub Main()

Application.Run(New HelloWorld())

End Sub

Public Sub New()

lblHelloLabel = New Label()

With lblHelloLabel

.Location = New Point(50, 50)

.Size = New Size(392, 64)

.Font = New Font("Courier", 24)

.Text = "Hello, world!"

.TabIndex = 0

.TextAlign = ContentAlignment.TopCenter

End With

Me.Text = "A Hello, world! Windows Example"

AutoScaleBaseSize = New Size(10, 20)

FormBorderStyle = FormBorderStyle.FixedSingle

ClientSize = New Size(599, 125)

Controls.Add(lblHelloLabel)

End Sub

End Class

You’ll notice first that there are two new namespaces imported into the pro-
gram. These namespaces are needed for building Windows applications. The
next line is just the definition of the class that holds the program. The follow-
ing line

Inherits Form

tells the compiler that the HelloWorld class is inheriting the Form class, which
is found in the Systems.Windows.Forms namespace. Inheritance is a powerful
technique in object-oriented programming and we will spend at least one
chapter discussing it later in the book.

The next line declares a label for displaying the “Hello, world!” text. Follow-
ing this declaration is the Main subroutine. Be sure to use the Shared modifier
in the heading since we have to use a class for a Windows application.



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB670-01 CB670-McMillan-v3 January 13, 2004 11:9

6 AN OVERVIEW OF THE VISUAL BASIC.NET LANGUAGE

The single line inside Sub Main is

Application.Run(New HelloWorld())

The Application class (which is part of System.Windows.Forms) includes
the Run method, which performs the tasks necessary to run the HelloWorld
program as a Windows application.

Following Sub Main is another subroutine definition—New. The New sub-
routine is a special type called a constructor. Constructors are used to create a
new Class object. This process is called instantiation and every new Class ob-
ject must be instantiated using a constructor. The code inside the constructor
definition is run when the constructor is called, which in this program is the
line

Application.Run(New HelloWorld())

Constructors are discussed in much more detail in Chapter 4.
Inside the constructor method are the details for displaying “Hello, world!”

in a form. First, a new label is instantiated. We’ll place our text inside this
label. The next several lines set several of the label’s properties, including the
font type, the font size, and the location of the label. These lines are placed
inside a With statement, a convenient shortcut to use when you need to make
several changes to or perform other operations on the same object.

The line after the End With statement sets the caption of the current form.
Since there isn’t really a name for the form, we refer to it as Me. We’ll see other
uses for Me throughout the book.

The next three lines set some properties having to do with our form. The
last line before the end of the subroutine adds the label to the form’s Control
collection. The program ends by closing off the subroutine definition and the
class definition.

Windows applications are compiled a little differently than Console appli-
cations. The command to compile the HelloWorld program is as follows:

vbc HelloWorld.vb /reference:System.dll,System.Drawing._

dll, System.Windows.Forms.dll /target:winexe

(Note that the command would be all one line when typed, but here it is
broken into two lines for readability.)



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB670-01 CB670-McMillan-v3 January 13, 2004 11:9

Data Types and Variables 7

FIGURE 1.1. A Hello, World Windows Example

The first thing you notice is the switch—/reference. We have to add ref-
erences to the different namespaces we use in this program for creating a
Windows application. We didn’t need this switch in the Console application
because the compiler automatically includes the System.dll file. The other
files (including System.dll), though, must be referenced specifically.

The last part of the command tells the compiler to build a Windows appli-
cation (winexe). A Console application is compiled to just an .exe file. If you
look at the file created by the compiler, though, it still displayed as wtest.exe.
The compiler adds data internally to the file to enable it as a Windows appli-
cation.

Now we’re ready to run the program and examine the output (see
Figure 1.1).

DATA TYPES AND VARIABLES

VB.NET contains the standard data types for storing numeric, string, char-
acter, and object values, as well as special data types for times, dates, and
monetary values. The primary data types in VB.NET are the following:

� Boolean: True or False.
� Byte: 0–255 (unsigned).
� Char: 0–65535 (unsigned).
� Date: A date and time combination.
� Decimal: 0 through ±79,228,162,514,264,337,593,543,950,335 with no

decimal point; 0 through
±7.9228162514264337593543950335 with 28 places to the
right of the decimal; smallest nonzero number is
±0.0000000000000000000000000001 (±1E−28).



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB670-01 CB670-McMillan-v3 January 13, 2004 11:9

8 AN OVERVIEW OF THE VISUAL BASIC.NET LANGUAGE

� Double: −1.79769313486231570E+308 through
−4.94065645841246544E−324 for negative values;
4.94065645841246544E−324 through
1.79769313486231570E+308 for positive values.

� Integer: −2,147,483,648 through 2,147,483,647.
� Long: −9,223,372,036,854,775,808 through

9,223,372,036,854,775,807.
� Object: Any object.
� Short: −32,768 through 32,767.
� Single: −3.4028235E+38 through −1.401298E−45 for negative

values; 1.401298E−45 through 3.4028235E+38 for positive
values.

� String: 0 to approximately 2 billion Unicode characters.
� Structure: A user-defined type built from other data type components.

Variable Declaration

Variables are declared using the Dim keyword. For example,

Dim mySalary As Integer

Dim empID As String

The reason we use the Dim keyword when declaring a variable dates back to
the early days of the Basic language. In those days, variables did not have to be
declared; they could just pop into existence when needed. Arrays, however,
had to declared first with the dimension of the array. The Dim keyword, then,
identified a variable as an array and not just a plain variable. The use of Dim
has continued through the many different versions of the language right up
to VB.NET.

Multiple variables of the same type can be declared on the same line by
separating each variable with a comma, like this:

Dim num1, num2, num3, num4 As Single

Initializers

An initializer is a variable declaration in which a value is also assigned to the
variable. Initalizers are new to VB.NET, although many other languages have
them. Here are some examples of initializers:



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB670-01 CB670-McMillan-v3 January 13, 2004 11:9

Data Types and Variables 9

Dim salary As Integer = 35000

Dim lastName As String = "Durrwood"

Named Constants

A named constant is a variable whose value is assigned when it is declared and
whose value cannot be changed. Named constants are often called “magic”
values because they are usually used to represent important and/or frequently
used values in a program.

Named constants are declared with the Const keyword. Here are some
examples:

Const PI As Single = 3.14159

Const GREETING As String = "Hello, there."

Const LOGIN_CODE As String = :"letmein"

It is a common programming practice, though not a requirement of the
VB.NET compiler, to use all uppercase letters when declaring a named con-
stant. This helps these “magic” values stand out in your code so that they’re
easier to find.

Implicit Type Conversions and the Option Strict Switch

There are two ways to perform data type conversions in VB.NET. One way
is to simply let the compiler do it for you. This is the easiest way and the
one that is most likely to lead to both subtle and not-so-subtle errors in your
programs. As an example, let’s look at a simple code fragment that converts a
Single value to an Integer:

Dim pi As Single = 3.14159

Dim intPi As Integer = pi

Because intPi is an Integer variable, when it is assigned the value of pi the
compiler assigns the value 3 to the variable. This is called a narrowing con-
version because the value 3.14159. . . is “narrowed” to 3 to fit in an Integer
variable.



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB670-01 CB670-McMillan-v3 January 13, 2004 11:9

10 AN OVERVIEW OF THE VISUAL BASIC.NET LANGUAGE

There are also widening conversions. When an Integer value is stored in
a Single or Double variable, the value increases in size (widens) to hold
the places to the right of the decimal point. Consider the following code
fragment:

Dim intVal As Integer = 3

Dim dblVal As Double = intVal

Here an Integer variable storing the value 256 is assigned to a Double variable,
so that the value 256.0 is stored in the Double. These types of conversions
are called implicit conversions because the compiler performs the conversion
behind the scenes.

Although implicit conversions are allowed, as just shown, that’s not to say
we should prefer allowing the compiler to make conversions for us. There will
be situations when implicit conversions are made that are not what we want
to happen, leading to logical errors or worse. The VB.NET compiler allows
implicit conversions to take place when the Option Strict switch is off.

This switch tells the compiler whether or not to perform strict type check-
ing. When Option Strict is off, implicit conversions will be performed; when
Option Strict is on, a design-time error is flagged when an implicit conver-
sion is attempted. Most, though certainly not all, programmers consider it
good programming practice to set the Option Strict switch on so that any
conversions that take place must be explicitly performed using a conversion
function.

The Option Strict switch is set by writing either Option Strict On or Option
Strict Off at the beginning of your program. In fact, the statement must precede
any declarations or Imports statements, like this:

Option Strict On

Imports System

Module Module1

Sub Main()

' Code here

End Sub

End Module

One more word of caution on leaving the Option Strict switch off. It can
lead to slower code. A simple example will illustrate the problem:



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB670-01 CB670-McMillan-v3 January 13, 2004 11:9

Data Types and Variables 11

Dim n As Object

Dim names As String

For Each n In NameList

names & = n & ","

Next

In this code, NameList is an ArrayList that holds a list of names. The loop
builds a comma-delimited string of the names in the ArrayList. With Option
Strict off, this code compiles and runs because the compiler will convert each
value of n to a String before appending it to names. And that’s the problem with
leaving Option Strict off. Each conversion will take more time than necessary
because the compiler has to perform a test of the data types and then perform
the conversion. An explicit conversion via a conversion function will speed
this up considerably. In the next section we’ll examine how to perform explicit
type conversions using VB.NET’s type conversion functions.

Type Conversion Functions

VB.NET has a full set of built-in conversion functions for performing ex-
plicit type conversions. The following list shows each function and the type
converted to:

� CBool: Boolean
� CByte: Byte
� CChar: Char
� CDate: Date
� CDbl: Double
� CDec: Decimal
� CInt: Integer
� CLng: Long
� CObj: Object
� CSng: Single
� CStr: String

Now let’s look at some examples:

Salary = CInt(Console.ReadLine()) ' Converts console

' input to Integer

' value



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB670-01 CB670-McMillan-v3 January 13, 2004 11:9

12 AN OVERVIEW OF THE VISUAL BASIC.NET LANGUAGE

Salary = CInt(txtSalary.Text) ' Does the same with a

' textbox

taxRate = CDbl(5)

There are many other type conversions you can perform that are not as
intuitive as these. For example, you can convert from a Boolean value to a
String. The Boolean values True and False become “True” and “False” after
the conversion. You can convert an Integer to Boolean—zero converts to False
and a nonzero value converts to True.

Arrays

There are many times when you need to store related values within one vari-
able name. Since regular variables only allow you to store one value in them
at a time, you have to use something else—an array.

An array is a variable that stores multiple values of the same data type. Each
value in an array (also called an element) is indexed by number. Arrays are
created by specifying an array name, the number of elements to store, and the
data type of the elements. The general form for an array declaration is

Dim array-name(n) As Data-type

Here are some array declaration examples:

Dim grades(9) As Integer

Dim names(39) As String

Dim averages(99) As Single

In VB.NET, as in of most other languages, the first index of an array is 0.
For that reason, the number you use to declare the size of an array should
always be one less than the total number of elements you want to store in
the array. In the preceding examples, the grades array stores 10 elements, the
names array stores 40 elements, and the averages array stores 100 elements.

An alternative way to declare an array is to provide an initialization list,
which is a list of values to store in the array. The values are separated by
commas and surrounded within curly braces. Here is an example:

Dim grades() As Integer = {65, 72, 83, 97}



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB670-01 CB670-McMillan-v3 January 13, 2004 11:9

Data Types and Variables 13

The compiler automatically sizes the array based on the number of items in
the initialization list. Putting a number inside the parentheses after the array
name will lead to an exception.

Array objects are treated like class instances in VB.NET. There is a set of
methods associated with arrays you can use in your programming. One of the
most useful of these methods is GetUpperBound. This method returns the
last index number (referencing the last element) in an array. You can use this
method when looping through an array, which is demonstrated later in this
chapter when we discuss repetition statements.

There are also array methods that perform tasks that used to take spe-
cially written code to perform, such as sorting an array and reversing an
array. The two methods for these operations are Sort and Reverse. Here’s an
example:

Imports System

Module Array

Sub Main()

Dim names() As String = {"Mike", "Francis", "Ed", _

"Joan", "Terri"}
names.Sort(names)

Dim name As String

For Each name In names

Console.Write(name & " ")

Next

names.Reverse(names)

Console.WriteLine()

For Each name In names

Console.Write(name & " ")

Next

End Sub

End Module

Multi-dimensional Arrays

Arrays are not limited to one dimension. You can create arrays of multiple
dimensions, though it is uncommon to see arrays of more than three dimen-
sions. The most common multidimensional arrays are two-dimensional arrays
that model a table of data.



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

CB670-01 CB670-McMillan-v3 January 13, 2004 11:9

14 AN OVERVIEW OF THE VISUAL BASIC.NET LANGUAGE

A two-dimensional array creates a set of data in the form of rows and
columns. The rows make up the first, or 0th, dimension of the array, and the
columns make up the second, or 1st, dimension of the array. The general form
of a two-dimensional array declaration is

Dim array-name(rows, cols) As Data-type

For example, the following code declares an Integer array with five rows and
six columns:

Dim nums(4,5) As Integer

You can also use an initialization list in a two-dimensional array declaration.
Each dimension is delimited by curly braces and separated from each other
by a column. Here’s an example:

Dim grades(,) As Integer = {{76, 83, 91}, {100, 75, 66}}

Within the parentheses is a single comma. This comma indicates to the
compiler that the array should be created with two dimensions. An array
created with three dimensions would have two commas.

Array Element Access

Array elements are accessed by referencing their position in the array by index
number. For example, the 0th element of a single-dimensional array named
grades is accessed like this:

current_grade = grades(0)

Accessing an element in a two-dimensional array is similar:

current_grade = grades(1, 3) ' Accesses grade in second

' row, fourth column

You can assign data to an array element in the same way:


