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Preliminaries, notations and conventions

Finite measures and various classes of functions, including random vari-
ables, are examples of elements of natural Banach spaces and these
spaces are central objects of functional analysis. Before studying Ba-
nach spaces in Chapter 2, we need to introduce/recall here the basic
topological, measure-theoretic and probabilistic notions, and examples
that will be used throughout the book. Seen from a different perspective,
Chapter 1 is a big “tool-box” for the material to be covered later.

1.1 Elements of topology

1.1.1 Basics of topology We assume that the reader is familiar with
basic notions of topology. To set notation and refresh our memory, let us
recall that a pair (S,U) where S is a set and U is a collection of subsets
of S is said to be a topological space if the empty set and S belong to
U , and unions and finite intersections of elements of U belong to U . The
family U is then said to be the topology in S, and its members are called
open sets. Their complements are said to be closed. Sometimes, when
U is clear from the context, we say that the set S itself is a topological
space. Note that all statements concerning open sets may be translated
into statements concerning closed sets. For example, we may equivalently
define a topological space to be a pair (S, C) where C is a collection of
sets such that the empty set and S belong to C, and intersections and
finite unions of elements of C belong to C.

An open set containing a point s ∈ S is said to be a neighborhood of
s. A topological space (S,U) is said to be Hausdorff if for all p1, p2 ∈ S,
there exists A1, A2 ∈ U such that pi ∈ Ai, i = 1, 2 and A1 ∩ A2 = ∅.
Unless otherwise stated, we assume that all topological spaces considered
in this book are Hausdorff.

1

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521539374 - Functional Analysis for Probability and Stochastic Processes: An Introduction
A. Bobrowski
Excerpt
More information

http://www.cambridge.org/0521539374
http://www.cambridge.org
http://www.cambridge.org


2 Preliminaries, notations and conventions

The closure, cl(A), of a set A ⊂ S is defined to be the smallest closed
set that contains A. In other words, cl(A) is the intersection of all closed
sets that contain A. In particular, A ⊂ cl(A). A is said to be dense in
S iff cl(A) = S.

A family V is said to be a base of topology U if every element of U
is a union of elements of V. A family V is said to be a subbase of U if
the family of finite intersections of elements of V is a base of U .

If (S,U) and (S′,U ′) are two topological spaces, then a map f : S → S′

is said to be continuous if for any open set A′ in U ′ its inverse image
f−1(A′) is open in S.

Let S be a set and let (S′,U ′) be a topological space, and let {ft, t ∈ T}
be a family of maps from S to S′ (here T is an abstract indexing set).
Note that we may introduce a topology in S such that all maps ft are
continuous, a trivial example being the topology consisting of all subsets
of S. Moreover, an elementary argument shows that intersections of finite
or infinite numbers of topologies in S is a topology. Thus, there exists
the smallest topology (in the sense of inclusion) under which the ft

are continuous. This topology is said to be generated by the family
{ft, t ∈ T}.

1.1.2 Exercise Prove that the family V composed of sets of the form
f−1

t (A′), t ∈ T, A′ ∈ U ′ is a subbase of the topology generated by ft, t ∈
T.

1.1.3 Compact sets A subset K of a topological space (S,U) is said to
be compact if every open cover of K contains a finite subcover. This
means that if V is a collection of open sets such that K ⊂ ⋃

B∈V B,
then there exists a finite collection of sets B1, . . . , Bn ∈ V such that
K ⊂ ⋃n

1=1 Bi. If S is compact itself, we say that the space (S,U) is
compact (the reader may have noticed that this notion depends as much
on S as it does on U). Equivalently, S is compact if, for any family
Ct, t ∈ T of closed subsets of S such that

⋂
t∈T

Ct = ∅, there exists
a finite collection Ct1 , . . . , Ctn of its members such that

⋂n
i=1 Cti = ∅.

A set K is said to be relatively compact iff its closure is compact.
A topological space (S,U) is said to be locally compact if for every
point p ∈ S there exist an open set A and a compact set K, such that
s ∈ A ⊂ K. The Bolzano–Weierstrass Theorem says that a subset
of R

n is compact iff it is closed and bounded. In particular, R
n is locally

compact.
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1.2 Measure theory 3

1.1.4 Metric spaces Let X be an abstract space. A map d : X×X → R
+

is said to be a metric iff for all x, y, z ∈ X

(a) d(x, y) = d(y, x),
(b) d(x, y) ≤ d(x, z) + d(z, y),
(c) d(x, y) = 0 iff x = y.

A sequence xn of elements of X is said to converge to x ∈ X if
limn→∞ d(xn, x) = 0. We call x the limit of the sequence (xn)n≥1 and
write limn→∞ xn = x. A sequence is said to be convergent if it con-
verges to some x. Otherwise it is said to be divergent.

An open ball B(x, r) with radius r and center x is defined as the set
of all y ∈ X such that d(x, y) < r. A closed ball with radius r and center
x is defined similarly as the set of y such d(x, y) ≤ r. A natural way to
make a metric space into a topological space is to take all open balls as
the base of the topology in X. It turns out that under this definition a
subset A of a metric space is closed iff it contains the limits of sequences
with elements in A. Moreover, A is compact iff every sequence of its
elements contains a converging subsequence and its limit belongs to the
set A. (If S is a topological space, this last condition is necessary but
not sufficient for A to be compact.)

A function f : X → Y that maps a metric space X into a normed
space Y is continuous at x ∈ X if for any sequence xn converging to
x, limn→∞ f(xn) exists and equals f(x) (xn converges in X, f(xn) con-
verges in Y). f is called continuous if it is continuous at every x ∈ X

(this definition agrees with the definition of continuity given in 1.1.1).

1.2 Measure theory

1.2.1 Measure spaces and measurable functions Although we assume
that the reader is familiar with the rudiments of measure theory as
presented, for example, in [103], let us recall the basic notions. A family
F of subsets of an abstract set Ω is said to be a σ-algebra if it contains Ω
and complements and countable unions of its elements. The pair (Ω,F)
is then said to be a measurable space. A family F is said to be an
algebra or a field if it contains Ω, complements and finite unions of its
elements.

A function µ that maps a family F of subsets of Ω into R
+ such that

µ(
⋃
n∈N

An) =
∞∑

n=1

µ(An) (1.1)
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4 Preliminaries, notations and conventions

for all pairwise-disjoint elements An, n ∈ N of F such that the union⋃
n∈N

An belongs to F is called a measure. In most cases F is a σ-
algebra but there are important situations where it is not, see e.g. 1.2.8
below. If F is a σ-algebra, the triple (Ω,F , µ) is called a measure space.

Property (1.1) is termed countable additivity. If F is an algebra
and µ(S) < ∞, (1.1) is equivalent to

lim
n→∞µ(An) = 0 whenever An ∈ F , An ⊃ An+1,

∞⋂
n=1

An = ∅. (1.2)

The reader should prove it.
The smallest σ-algebra containing a given class F of subsets of a set is

denoted σ(F). If Ω is a topological space, then B(Ω) denotes the smallest
σ-algebra containing open sets, called the Borel σ-algebra. A measure
µ on a measurable space (Ω,F) is said to be finite (or bounded) if
µ(Ω) < ∞. It is said to be σ-finite if there exist measurable subsets Ωn,
n ∈ N, of Ω such that µ(Ωn) < ∞ and Ω =

⋃
n∈N

Ωn.
A measure space (Ω,F , µ) is said to be complete if for any set A ⊂ Ω

and any measurable B conditions A ⊂ B and µ(B) = 0 imply that A

is measurable (and µ(A) = 0, too). When Ω and F are clear from the
context, we often say that the measure µ itself is complete. In Exercise
1.2.10 we provide a procedure that may be used to construct a complete
measure from an arbitrary measure. Exercises 1.2.4 and 1.2.5 prove that
properties of complete measure spaces are different from those of mea-
sure spaces that are not complete.

A map f from a measurable space (Ω,F) to a measurable space
(Ω′,F ′) is said to be F measurable, or just measurable iff for any
set A ∈ F ′ the inverse image f−1(A) belongs to F . If, additionally, all
inverse images of measurable sets belong to a sub-σ-algebra G of F , then
we say that f is G measurable, or more precisely G/F ′ measurable.
If f is a measurable function from (Ω,F) to (Ω′,F ′) then

σf = {A ∈ F|A = f−1(B) where B ∈ F ′}
is a sub-σ-algebra of F . σf is called the σ-algebra generated by f . Of
course, f is G measurable if σf ⊂ G.

The σ-algebra of Lebesgue measurable subsets of a measurable subset
A ⊂ R

n is denoted Mn(A) or M(A) if n is clear from the context, and
the Lebesgue measure in this space is denoted lebn, or simply leb. A stan-
dard result says that M := M(Rn) is the smallest complete σ-algebra
containing B(Rn). In considering the measures on R

n we will always
assume that they are defined on the σ-algebra of Lebesgue measurable
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1.2 Measure theory 5

sets, or Borel sets. The interval [0, 1) with the family of its Lebesgue
subsets and the Lebesgue measure restricted to these subsets is often
referred to as the standard probability space. An n-dimensional
random vector (or simply n-vector) is a measurable map from a proba-
bility space (Ω,F , P) to the measurable space (Rn,B(Rn)). A complex-
valued random variable is simply a two dimensional random vec-
tor; we tend to use the former name if we want to consider complex
products of two-dimensional random vectors. Recall that any random n-
vector X is of the form X = (X1, ..., Xn) where Xi are random variables
Xi : Ω → R.

1.2.2 Exercise Let A be an open set in R
n. Show that A is union of

all balls contained in A with rational radii and centers in points with
rational coordinates. Conclude that B(R) is the σ-algebra generated by
open (resp. closed) intervals. The same result is true for intervals of the
form (a, b] and [a, b). Formulate and prove an analog in R

n.

1.2.3 Exercise Suppose that Ω and Ω′ are topological spaces. If a map
f : Ω → Ω′ is continuous, then f is measurable with respect to Borel
σ-fields in Ω and Ω′. More generally, suppose that f maps a measurable
space (Ω,F) into a measurable space (Ω,F ′), and that G′ is a class of
measurable subsets of Ω′ such σ(G′) = F ′. If inverse images of elements
of G′ are measurable, then f is measurable.

1.2.4 Exercise Suppose that (Ω,F , µ) is a measure space, and f maps
Ω into R. Equip R with the σ-algebra of Borel sets and prove that f

is measurable iff sets of the form {ω|f(ω) ≤ t}, t ∈ R belong to F .

(Equivalently: sets of the form {ω|f(ω) < t}, t ∈ R belong to F .) Prove
by example that a similar statement is not necessarily true if Borel sets
are replaced by Lebesgue measurable sets.

1.2.5 Exercise Let (Ω,F , µ) be a complete measure space, and f be
a map f : Ω → R. Equip R with the algebra of Lebesgue measurable
sets and prove that f is measurable iff sets of the form {ω|f(ω) ≤ t},
t ∈ R belong to F . (Equivalently: sets of the form {ω|f(ω) < t}, t ∈ R

belong to F .)

1.2.6 Exercise Let (S,U) be a topological space and let S′ be its
subset. We can introduce a natural topology in S′, termed induced

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521539374 - Functional Analysis for Probability and Stochastic Processes: An Introduction
A. Bobrowski
Excerpt
More information

http://www.cambridge.org/0521539374
http://www.cambridge.org
http://www.cambridge.org


6 Preliminaries, notations and conventions

topology, to be the family of sets U ′ = U ∩ S′ where U is open in S.
Show that

B(S′) = {B ⊂ S′|B = A ∩ S′, A ∈ B(S)}. (1.3)

1.2.7 Monotone class theorem A class G of subsets of a set Ω is termed
a π-system if the intersection of any two of its elements belongs to the
class. It is termed a λ-system if (a) Ω belongs to the class, (b) A,B ∈ G
and A ⊂ B implies B\A ∈ G and (c) if A1, A2, ... ∈ G, and A1 ⊂ A2 ⊂ . . .

then
⋃

n∈N
An ∈ G. The reader may prove that a λ-system that is at the

same time a π-system is also a σ-algebra. In 1.4.3 we exhibit a natural
example of a λ-system that is not a σ-algebra. The Monotone Class
Theorem or π–λ theorem, due to W. Sierpiński, says that if G is
a π-system and F is a λ-system and G ⊂ F , then σ(G) ⊂ F . As a
corollary we obtain the uniqueness of extension of a measure defined on
a π-system. To be more specific, if (Ω,F) is a measure space, and G is
a π-system such that σ(G) = F , and if µ and µ′ are two finite measures
on (Ω,F) such that µ(A) = µ′(A) for all A ∈ G, then the same relation
holds for A ∈ F . See [5].

1.2.8 Existence of an extension of a measure A standard construction
involving the so-called outer measure shows the existence of an extension
of a measure defined on a field. To be more specific, if µ is a finite
measure on a field F , then there exists a measure µ̃ on σ(F) such that
µ̃(A) = µ(A) for A ∈ F , see [5]. It is customary and convenient to omit
the “˜” and denote both the original measure and its extension by µ.

This method allows us in particular to prove existence of the Lebesgue
measure [5, 106].

1.2.9 Two important properties of the Lebesgue measure An important
property of the Lebesgue measure is that it is regular, which means that
for any Lebesgue measurable set A and ε > 0 there exists an open set
G ⊃ A and a compact set K ⊂ A such that leb(G \ K) < ε. Also, the
Lebesgue measure is translation invariant, i.e. lebA = lebAt for any
Lebesgue measurable set A and t ∈ R, where

At = {s ∈ R; s − t ∈ A}. (1.4)

1.2.10 Exercise Let (Ω,F) be a measure space and µ be a measure,
not necessarily complete. Let F0 be the class of subsets B of Ω such that
there exists a C ∈ F such that µ(C) = 0 and B ⊂ C. Let Fµ = σ(F∪F0).
Show that there exists a unique extension of µ to Fµ, and (Ω,Fµ, µ) is a

© Cambridge University Press www.cambridge.org

Cambridge University Press
0521539374 - Functional Analysis for Probability and Stochastic Processes: An Introduction
A. Bobrowski
Excerpt
More information

http://www.cambridge.org/0521539374
http://www.cambridge.org
http://www.cambridge.org


1.2 Measure theory 7

complete measure space. Give an example of two Borel measures µ and
ν such that Fµ 
= Fν .

1.2.11 Integral Let (Ω,F , µ) be a measure space. The integral
∫

f dµ

of a simple measurable function f , i.e. of a function of the form
f =

∑n
i=1 ci1Ai where n is an integer, ci are real constants, Ai be-

long to F , and µ(Ai) < ∞, is defined as
∫

f dµ =
∑n

i=1 ciµ(Ai). We
check that this definition of the integral does not depend on the choice
of representation of a simple function. The integral of a non-negative
measurable function f is defined as the supremum over integrals of non-
negative simple measurable functions fs such that fs ≤ f (µ a.e.). This
last statement means that fs(ω) ≤ f(ω) for all ω ∈ Ω outside of a mea-
surable set of µ-measure zero. If this integral is finite, we say that f is
integrable.

Note that in our definition we may include functions f such that
f(ω) = ∞ on a measurable set of ωs. We say that such functions have
their values in an extended non-negative half-line. An obvious necessary
requirement for such a function to be integrable is that the set where it
equals infinity has measure zero (we agree as it is customary in measure
theory that 0 · ∞ = 0).

If a measurable function f has the property that both f+ = max(f, 0)
and f− = max(−f, 0) are integrable then we say that f is absolutely
integrable and put

∫
f dµ =

∫
f+ dµ− ∫

f− dµ. The reader may check
that for a simple function this definition of the integral agrees with the
one given initially. The integral of a complex-valued map f is defined
as the integral of its real part plus ı (the imaginary unit) times the
integral of its imaginary part, whenever these integrals exist. For any
integrable function f and measurable set A the integral

∫
A

f dµ is defined
as

∫
1Af dµ.

This definition implies the following elementary estimate which proves
useful in practice: ∣∣∣∣

∫
A

f dµ

∣∣∣∣ ≤
∫

A

|f |dµ. (1.5)

Moreover, for any integrable functions f and g and any α and β in R,

we have ∫
(αf + βg) dµ = α

∫
f dµ + β

∫
g dµ.

In integrating functions defined on (Rn,Mn(Rn), lebn) it is customary
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8 Preliminaries, notations and conventions

to write ds1... dsn instead of d lebn(s) where s = (s1, ..., sn). In one
dimension, we write ds instead of dleb(s).

There are two important results concerning limits of integrals de-
fined this way that we will use often. The first one is called Fatou’s
Lemma and the second Lebesgue Dominated Convergence The-
orem. The former says that for a sequence of measurable functions fn

with values in the extended non-negative half-line lim supn→∞
∫

fn dµ ≥∫
lim supn→∞ fn dµ, and the latter says that if fn is a sequence of mea-

surable functions and there exists an integrable function f such that
|fn| ≤ f (µ a.e.), then limn→∞

∫
fn dµ =

∫
g dµ, provided fn tends

to g pointwise, except perhaps on a set of measure zero. Observe that
condition |fn| ≤ f implies that fn and g are absolutely integrable; the
other part of the Lebesgue Dominated Convergence Theorem says that∫ |fn − g|dµ tends to zero, as n → ∞. The reader may remember that
both above results may be derived from the Monotone Convergence
Theorem, which says that if fn is a sequence of measurable functions
with values in the extended non-negative half-line, and fn+1(ω) ≥ fn(ω)
for all ω except maybe on a set of measure zero, then

∫
A

fn dµ tends to∫
A

limn→∞ fn(ω) dµ regardless of whether the last integral is finite or in-
finite. Here A is the set where limn→∞ fn(ω) exists, and by assumption
it is a complement of a set of measure zero.

Note that these theorems are true also when, instead of a sequence of
functions, we have a family of functions indexed, say, by real numbers
and consider a limit at infinity or at some point of the real line.

1.2.12 Exercise Let (a, b) be an interval and let, for τ in this inter-
val, x(τ, ω) be a given integrable function on a measure space (Ω,F , µ).
Suppose furthermore that for almost all ω ∈ Ω, τ → x(τ, ω) is con-
tinuously differentiable and there exists an integrable function y such
that supτ∈(a,b) |x′(τ, ω)| ≤ y(ω). Prove that z(τ) =

∫
Ω

x(τ, ω) µ(dω) is
differentiable and that z′(τ) =

∫
Ω

x′(τ, ω) µ(dω).

1.2.13 Product measures Let (Ω,F , µ) and (Ω′,F ′, µ′) be two σ-finite
measure spaces. In the Cartesian product Ω × Ω′ consider the rect-
angles, i.e. the sets of the form A × A′ where A ∈ F and A′ ∈ F ′,
and the function µ ⊗ µ′(A × A′) = µ(A)µ′(A′). Certainly, rectangles
form a π-system, say R, and it may be proved that µ ⊗ µ′ is a mea-
sure on R and that there exists an extension of µ ⊗ µ′ to a measure on
σ(R), which is necessarily unique. This extension is called the prod-
uct measure of µ and µ′. The assumption that µ and µ′ are σ-finite
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1.2 Measure theory 9

is crucial for the existence of µ ⊗ µ′. Moreover, µ ⊗ µ′ is σ-finite, and it
is finite if µ and µ′ are. The Tonelli Theorem says that if a func-
tion f : Ω × Ω′ → R is σ(R) measurable, then for all ω ∈ Ω the
function fω : Ω′ → R, fω(ω′) = f(ω, ω′) is F ′ measurable and the
function fω′

: Ω → R, fω′
(ω) = f(ω, ω′) is F measurable. Further-

more, the Fubini Theorem says that for a σ(R) measurable function
f : Ω × Ω′ → R

+,∫
Ω×Ω′

f d(µ ⊗ µ′) =
∫

Ω

[
∫

Ω′
fω(ω′) µ(dω′)] µ(dω)

=
∫

Ω′
[
∫

Ω

fω′
(ω) µ(dω)] µ(dω′),

finite or infinite; measurability of the integrands is a part of the theorem.
Moreover, this relation holds whenever f is absolutely integrable.

1.2.14 Absolute continuity Let µ and ν be two measures on a measure
space (Ω,F); we say that µ is absolutely continuous (with respect
to ν) if there exists a non-negative (not necessarily integrable) function
f such that µ(A) =

∫
A

f dν for all A ∈ F . In such a case f is called
the density of µ (with respect to ν). Observe that f is integrable (with
respect to ν) iff µ is finite, i.e. iff µ(Ω) < ∞. When it exists, the density
is unique up to a set of ν-measure zero.

1.2.15 Change of variables formula Suppose that (Ω,F , P) is a mea-
sure space and f is a measurable map from (Ω,F) to another mea-
surable space (Ω′,F ′). Consider the set function µf on F ′ defined by
µf (A) = µ(f−1(A)) = µ(f ∈ A). We check that µf is a measure in
(Ω′,F ′). It is called the transport of the measure µ via f or a mea-
sure induced on (Ω′,F ′) by µ and f. In particular, if µ is a probability
measure, and Ω′ = (Rn,Mn(Rn)), µf is called the distribution of f.

Note that a measurable function x defined on Ω′ is integrable with
respect to µf iff x ◦ f is integrable with respect to µ and

∫
Ω′

x dµf =
∫

Ω

x ◦ f dµ. (1.6)

To prove this relation, termed the change of variables formula, we
check it first for simple functions, and then use approximations to show
the general case. A particular case is that where a measure, say ν, is
already defined on (Ω′,F ′), and µf is absolutely continuous with respect
to ν. If φ is the density of µf with respect to ν, then the change of
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10 Preliminaries, notations and conventions

variables formula reads:∫
Ω

x ◦ f dµ =
∫

Ω′
x dµf =

∫
Ω′

xφdν.

Of particular interest is the case when Ω′ = R
n and ν = lebn.

If µ = P is a probability measure on (Ω,F) and Ω′ = R, we usually
denote measurable maps by the capital letter X. We say that X has a
first moment iff X is integrable, and then write E X ≡ ∫

X dP. E X

is called the first moment or expected value of X. The Hölder in-
equality (see 1.5.8 below) shows that if X2 has a first moment then X

also has a first moment (but the opposite statement is in general not
true). E X2 is called the (non-central) second moment of X. If E X2

is finite, we also define the central second moment or variance of X

as D2 X = σ2
X = E (X − E X)2. The reader will check that σ2

X equals
E X2 − (E X)2.

If the distribution of a random variable X has a density φ with respect
to Lebesgue measure, than E X exists iff f(ξ) = ξφ(ξ) is absolutely
integrable and then E X =

∫ ∞
−∞ ξφ(ξ) dξ.

1.2.16 Convolution of two finite measures Let µ and ν be two finite
measures on R. Consider the product measure µ ⊗ ν on R × R, and a
measurable map f : R×R → R, f(ς, τ) = ς + τ. The convolution µ ∗ ν

of µ with ν is defined as the transport of µ ⊗ ν via f. Thus, µ ∗ ν is a
bounded measure on R and, by the change of variables formula,∫

x d(µ ∗ ν) =
∫ ∫

x(ς + τ) µ(dς)ν(dτ). (1.7)

We have µ∗ν(R) = µ⊗ν(R×R) = µ(R)ν(R). In particular, the convolu-
tion of two probability measures on R is a probability measure. Observe
also that µ ∗ ν = ν ∗ µ, and that (µ ∗ µ′) ∗ µ′′ = µ ∗ (µ′ ∗ µ′′) for all
bounded measures µ, µ′ and µ′′.

1.2.17 Convolution of two integrable functions For two Lebesgue in-
tegrable functions φ and ψ on R their convolution φ ∗ ψ is defined by
ϕ(ξ) =

∫ ∞
−∞ φ(ξ− ς)ψ(ς) dς. The reader will use the Fubini–Tonelli The-

orem to check that φ ∗ ψ is well-defined for almost all ξ ∈ R.

1.2.18 Exercise Suppose that µ and ν are two finite measures on R,

absolutely continuous with respect to Lebesgue measure. Let φ and ψ

be the densities of µ and ν, respectively. Show that µ ∗ ν is absolutely
continuous with respect to Lebesgue measure and has a density ϕ = φ∗ψ.
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