Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthina angelica</td>
<td>49</td>
</tr>
<tr>
<td>accelerating function</td>
<td>73, 117</td>
</tr>
<tr>
<td>accuracy</td>
<td></td>
</tr>
<tr>
<td>adapted to anthropogenic change</td>
<td>167–168</td>
</tr>
<tr>
<td>as a result of natural selection</td>
<td></td>
</tr>
<tr>
<td>adaptive dynamics</td>
<td>141, 161</td>
</tr>
<tr>
<td>additive genetic variance</td>
<td>48, 54, 59</td>
</tr>
<tr>
<td>relationship to G-matrix</td>
<td>59</td>
</tr>
<tr>
<td>advertising</td>
<td></td>
</tr>
<tr>
<td>age-dependency</td>
<td>79</td>
</tr>
<tr>
<td>in state-dependent models</td>
<td></td>
</tr>
<tr>
<td>of migratory decisions</td>
<td>160</td>
</tr>
<tr>
<td>of tree shape</td>
<td>118</td>
</tr>
<tr>
<td>agriculture</td>
<td>133</td>
</tr>
<tr>
<td>alarm calling</td>
<td>36</td>
</tr>
<tr>
<td>albatross</td>
<td>96</td>
</tr>
<tr>
<td>Allee effect</td>
<td>152</td>
</tr>
<tr>
<td>alleles</td>
<td>13, 16, 34, 39, 192</td>
</tr>
<tr>
<td>antipredatory defences</td>
<td>49–58</td>
</tr>
<tr>
<td>applied models</td>
<td>10</td>
</tr>
<tr>
<td>Arabidopsis</td>
<td>139</td>
</tr>
<tr>
<td>argument</td>
<td></td>
</tr>
<tr>
<td>in MATLAB 28, 196</td>
<td></td>
</tr>
<tr>
<td>of a function</td>
<td>80</td>
</tr>
<tr>
<td>verbal 7, 8, 9, 15, 159, 162, 192</td>
<td></td>
</tr>
<tr>
<td>assumptions 65–66, 75, 189, 191</td>
<td></td>
</tr>
<tr>
<td>changing one at a time 9, 77, 184, 189</td>
<td></td>
</tr>
<tr>
<td>differences between models 86, 184, 190</td>
<td></td>
</tr>
<tr>
<td>differences between model methods</td>
<td></td>
</tr>
<tr>
<td>assumptions to 10, 87–88, 89, 189, 192</td>
<td></td>
</tr>
<tr>
<td>validity of 10, 23, 74, 88, 89, 110, 139, 159</td>
<td></td>
</tr>
<tr>
<td>asymptotic behaviour</td>
<td>120</td>
</tr>
<tr>
<td>Axelrod, Robert</td>
<td>185</td>
</tr>
<tr>
<td>axiom</td>
<td>160</td>
</tr>
<tr>
<td>backwards calculations</td>
<td>94, 95, 102, 105</td>
</tr>
<tr>
<td>bank loan</td>
<td>41–43</td>
</tr>
<tr>
<td>barnacle</td>
<td>49–58, 60, 191</td>
</tr>
<tr>
<td>Basic (software)</td>
<td>11</td>
</tr>
<tr>
<td>behavioural ecology</td>
<td>3</td>
</tr>
<tr>
<td>best response</td>
<td>126–127, 130, 133, 191</td>
</tr>
<tr>
<td>bet-hedging</td>
<td>160</td>
</tr>
<tr>
<td>binomial distribution</td>
<td>165</td>
</tr>
<tr>
<td>biological interpretation</td>
<td></td>
</tr>
<tr>
<td>biomass</td>
<td>115, 116, 137</td>
</tr>
<tr>
<td>black grouse</td>
<td>9</td>
</tr>
<tr>
<td>body size</td>
<td>40, 41, 46</td>
</tr>
<tr>
<td>covariance with other traits</td>
<td>59</td>
</tr>
<tr>
<td>environmental influence</td>
<td>45</td>
</tr>
<tr>
<td>lack of response to selection</td>
<td>46</td>
</tr>
</tbody>
</table>

© Cambridge University Press
Index

Borges, Jorge Luis 3
boundaries 73, 76, 99, 128
Box, George 5
brute force methods 91
bus lanes 113
butterflies see Glanville fritillary
C (software) 11
calculus 54, 59, 71
history of 128
Callosobruchus maculatus 14, 15, 20, 38
Campbell, Naomi 1
cannibalism see fish
capillary action 116
carotenoids 65
carrying capacity 77
Casares, Adolfo Bioy 3
central limit theorem 40
cheating 65, 66, 71, 87, 185, 186
consequences for honesty see dishonesty
chipmunk 96
choice of modelling method 10–12, 89, 138, 163, 184, 185, 188–193
specializing in one method 188, 189
value of using multiple methods 183, 193
Chthamalus anisopoma 49
citation patterns 170
climatic change 167
discrete vs. continuous time 76, 100
convergence 79
to normal distribution see law of large numbers
correlation among traits 59
depletion of 105
differential see honesty
dependence on numbers of competitors 119, 140, 141, 179
for breeding habitat 143–159, 160, 168, 170, 175, 179, 184, 186
for light 115–130
predictions in the absence of 134, 137
computers 166
computing time 176, 204
confidence intervals 182
cognitive see cognition
creating boundaries where fitness maxima may occur 74
genetic see genetic architecture
physiological see physiology
strength of 190, 191
constraint 63, 69, 193
canonical see kin competition
cartesian see coordinate system
central limit theorem 40
costs 88
differential see honesty
empirical tests 88
marginal 88
need to model using proper life history definitions 86
of antipredatory defence 54, 55
of male sexual displays 63, 68, 75, 77, 85
pre- or postreproductive 78
convergence 79
to normal distribution see law of large numbers
coregulation see altruism
absence of see selfishness
copepod 91
costs 88
differential see honesty
empirical tests 88
marginal 88
need to model using proper life history definitions 86
of antipredatory defence 54, 55
of male sexual displays 63, 68, 75, 77, 85
pre- or postreproductive 78
covariance among traits 59
as a result of genetic linkage 59
Index

evolutionary invasion analysis 141, 161
evolutionary rescue 167, 168, 169, 176–182
efficiency of 185
evolutionary stability 124, 128, 142
mathematical definition of 124
types of 161
evolutionary trajectories 59, 176
evolution
as a result of selection see natural selection
definition of 13
timescales involved see time
expected value 79, 95
experiments 6–7, 183
as tests of models see assumptions
exponential function 42, 129
extinction 122, 150, 152, 167, 178

fat stores see energy reserves
fecundity 24, 29, 35, 36, 37, 152, 170
costs of antipredatory defences 49
covariation with other life history traits 59
feedback see eco-evolutionary feedback
covariation with other life history traits 59
fighting 121, 186
kicking during copulation 14, 38
fish 59, 143
cannibalistic fathers 64
fisheries causing evolutionary change 59
protection based on marine reserves 186
Fisher process 7, 63
fitness 23, 43, 48, 58, 65, 67, 69, 71, 75, 78
as a pay-off in games 115, 116
as lifetime reproductive success 78–80, 88, 89, 96, 142, 144
correct currencies see currency
in diploid sexual populations 151
in evolutionary invasions see mutant strategy
\(\lambda \) and \(r \) as measures of 41–43
limitations of additive “benefits minus costs” calculations 24, 69, 74, 78, 88
maximization under constraints 66
on a logarithmic scale 43
problems in the definition of 89
proxies for 88, 89, 115, 122, 126
relationship to the selection differential 48
fixation 26, 31, 34
floating see non-breeding
food chains 58
foraging 64, 65, 91, 97–108, 138
risks of 98

forest
as an outcome of competition for light 137
presenting challenges for wintering birds 96
forwards calculation
as an inefficient way to solve for optimal strategies 95
for calculating individual states once the optimal strategy is known 109
frequency-dependent selection 114, 188
based on changes in resources or the numbers of competitors 140, 145
creating outcomes determined by initial conditions 126
explaining partial migration 154
frequency
of genes or alleles 13, 16, 17, 26, 30, 44, 124, 152, 196
of mating pairs 19
function 17, 61, 62, 67, 69, 71, 116
accelerating or decelerating 73
exponential see exponential function
families of 117
in MATLAB 28, 196
relaxing specific shape assumptions 129
sigmoidal see sigmoidal function
future fitness components 80, 104
Galilei, Galileo 117
game theory 108, 112, 140, 185, 189, 190, 192
suboptimal outcomes for population 113, 158
gene see allele
gene flow 58, 186, 191, 193
generality of conclusions 68, 71, 184, 189
in analytical models see analytical solutions
generation 17, 44, 46, 54
non-overlapping 24
overlapping 137
genetic architecture 62, 65, 90, 138, 139, 192
genetic drift 13, 37
genetic linkage 59, 63
general models
comparing with phenotypic approaches 89, 138–139, 190–191
population genetic see population genetic models
quantitative genetic see quantitative genetic models
relevant timescales 139
Index

honesty 66, 67, 68, 75, 84, 85, 87
breakdown of see dishonesty
limitations of the ‘differential costs’ argument 75, 77, 85
mistakes in literature 87, 88
on average 87
horse carriages 113
host–parasite interactions 36, 64, 186
human societies 138
cultural differences 114, 125–126
game-theoretic study of see social sciences
policies used in 114

IBMs see simulation
immunocompetence 64, 65
implicit solution 129
inbreeding 37, 152
inclusive fitness 130, 134
indexing 101, 106, 149, 200–202
individual-based model see simulation
infinite series 79
infinite sum 79, 144
initial conditions 126
insectivory 143
instantaneous rates 41
invasion see mutant strategy 124, 150
invasion fitness 142, 145

‘just so’ stories 89
juvenile life stage 78

kin competition 136
selecting for dispersal 167, 184
kin selection 136, 167, 184

λ (Fitness, linear measure) 41, 43
law of large numbers 39–40, 164
leaf height 116
models see Givnish model of plant height
Leibniz, Gottfried Wilhelm 128
life
advice on how to live it 92, 93, 193
spontaneous generation of 183
life cycle 89
life history theory 36, 59, 75, 84, 89, 97, 159
adaptiveness of skipping breeding attempts 96
allocation decisions see allocation
lifespan see survival
lifetime reproductive success see fitness

genetic quality 64
genetic variance see additive genetic variance
genotype 23, 41, 43
determining an evolutionary strategy 124
effect on phenotype 45–48
not expressed 25
under perfect heritability 43
German Rechtschreibreform 43
Givnish model of plant height 116, 119, 120, 137
Glanville fritillary 166
G-matrix 59
constancy of 60
goldcrest 97, 143
‘good genes’ 64
gravity 73, 116
great tit 192
green party 111
growth
of individuals 49, 59, 119, 137, 139
of populations see population growth
per capita 76, 152
habitat 145
connectivity of 169
creating limits for population numbers 151
evolutionary consequences of habitat quality 158
patchy distribution of 166
habitat selection 138, 147
Hamilton, Bill 185
Hamilton’s rule 130, 134
approximations inherent in 136
counting shared gene copies 138
hammer–nail analogy 188
haplodiploidy 151
haploidy 18–19
evolution of 19
happiness 92, 94
relation to wealth see money
hare–lynx cycles see predator–prey interactions
herbs 116
heritability 13, 41, 43, 45–48, 184
effect on speed of evolution 58
of condition 64
hip width in humans 36
histogram 9
hoarding 100, 110
light
 - competition for see competition
 - polarization leading to egg-laying mistakes 66
limit 121
limit cycle 2
lion 191
local mate competition 10
logarithm 41–43, 44
logistic growth 76, 120
long-term evolution see evolution, relevant timescales
loops 122, 204
Lotka–Volterra dynamics 2, 5
maladaptation 64, 66, 191
 - laying eggs on asphalt roads 66
male mate choice 36
mammals 143
Maple (software) xi, 80, 150
 - maps 3–4, 8
marginal cost see cost
marine reserves 186
Maslow, Abraham 188
mate-searching 78
mate choice see female preferences
 - by males see male mate choice
 - creating selection on males see mating success
 - mutual see mutual mate choice
mate desertion 140, 141
Mathematica (software) 11, 80, 150
mathematicians
 - characteristics of 11, 61–62, 79
 - communication problems with empiricists 11, 161–162
mathematics
 - as a skill based on practice 160, 165
 - beauty of 11, 79
 - proofs see proof
maturation 78
maxima and minima 66, 70, 71, 85
 - algorithms for finding 86, 202
 - local 61, 62, 72, 73, 190
mayflies 66
Melitaea cinxia 166, 168
metapopulation theory 166
 - evolution of dispersal in metapopulations see migration
 - predictions on population persistence see population persistence
Methuselah 81
micro organisms 183
Microsoft Excel 11, 22
migration
 - evolution in metapopulations 169–187
 - in the sense of dispersal 166–184
 - of birds 3, 89, 142, 189
 - partial 143–159
 - terminological confusion 144, 166
miniature models 5
minima see maxima
mistakes
 - accumulation of numerical errors 85
 - double accounting 117, 136–137
 - erroneous reasoning 7, 92, 144, 160, 165
 - in publications 87
 - mathematical 189
 - of animals see maladaptation
 - premature conclusions 182–183
model building
 - causal transparency 8, 11, 164
 - choice between methods see choice of modelling methods
 - choice of evolving and fixed traits 19
 - need to simplify aspects of reality 5, 9, 10, 75, 88, 163, 189
 - optimal complexity 3–6, 8–9, 37–38, 74–75, 88, 184, 188, 189–190
 - sufficient biological relevance 9, 11, 74–75, 189–192
money 41
 - borrowing see debt
 - limitations as a pay-off in human games 114, 115
 - limited correlation with happiness 115
morphs
 - as antipredatory defences 49, 50, 124
 - developmental cues 51, 52
 - lateral dimorphism 184
Index

mortality see survival
moths 64
moult 110
mutant strategy 124, 142
 fitness of 152, 154
 invasion of 124, 141, 150, 152, 156
 rarity of 124, 152
mutation 26, 124, 138, 170, 184
mutual mate choice 36
Nash equilibrium 114, 124
natural selection 13, 44, 62, 89, 115, 167
 ability to find game-theoretic equilibria 138–139
 ability to find optima 65, 66, 89, 190, 191, 192
 inability to benefit groups or populations 126, 133, 166
nature documentaries 58
Needham, John 183
net condition 75, 77
network 92, 166, 169
neutrality see alleles
Newton, Isaac 128
niche 143
niche construction 36
non-breeding 148
non-equilibrium dynamics see equilibrium
 as a temporary evolutionary stop
 normal distribution 7, 40, 44, 46, 145
 normalization 44
not (operator) 203
notation 55
 conventions used 16, 17
 detail vs. succinctness 160
 different conventions causing problems 36, 145, 166
 importance of clarity 16–17, 137
 legacies of history 43, 128–136
 in programming languages 16
null hypothesis 187
numerical calculations 49, 85, 165
 accuracy of 31, 61, 85, 150, 164
 as solutions to evolutionary problems 31, 81, 163
 as thinking aids 25
 downsides of 31–32, 105
one-sex models 151
Onthophagus taurus 64
optimality 63, 65, 190
as a modelling assumption 62, 65, 88–90, 115, 188, 190
as a result of rules of thumb 65
 creating honesty 67, 71
 limitations of see phenotype
order effects 170
ornaments 63, 65, 66, 67, 68
 allocation into 67, 75
ovipositioning 14, 20, 38, 168
ownership 143
oystercatchers 145
pairwise invasion plot 142, 152, 156, 157, 161
parameters 16, 20, 26, 28, 118, 132, 145, 146, 183
 from real data 168, 171
 large numbers of combinations 182–183
parental care 59, 64, 140, 141, 161
Concorde fallacy in 92
parsimony 183
partial derivative see derivative
partial migration see migration
Pasteur, Louis 183
paternity 14
pay-off matrix 121–122
pay-offs 112, 115, 140
 changed by policy makers 111, 114
 dependency on the actions of others 116
 dependency on numbers of others 140, 142
peak shift 63, 69
Pearl, Raymond 76
phenotype 43, 47, 90
 determined by reaction norm 50
 influenced by many loci 39
 limitations of approaches based on 89–90, 138–139, 189
 methods based on 60, 62, 65, 89, 138, 190
 phenotypic variance 44, 48, 59
 shifts in distribution due to selection 41–49
 phenotypic plasticity 58, 139
photosynthesis 116, 118, 119, 121, 125, 130, 133
physics 73, 117
physiology 64, 65
 implementing decision rules 66
 creating constraints 66, 138, 192
PIP 142, 152, 156, 157, 161
 using MATLAB 153
plasticity see phenotypic plasticity
pocket calculator 21, 42
pollution 114
polygenic traits 39, 50
population density 37, 175
population dynamics 120
cycles 2, 6
evolutionary consequences of 158–159
in self-consistent models 141
of two sexes 151
population genetic models 16–37, 192
limitations of 39
population growth 76
calculated based on individual behaviour
149–150
density-dependent 76
exponential 73
regulated see population regulation
towards equilibrium see population size
population persistence 37, 151, 158, 166, 186
in metapopulations 167, 179
population regulation 142, 146, 189
feedback see eco-evolutionary feedback
population size 30, 138, 146, 149, 157, 175,
179
buffered 186
finiteness of 37
in a simulation 176
interpretation of equations for 150–151
not maximized by natural selection 158
solving for equilibrium 149–150
positive feedback 126
predator-prey interactions 1, 5, 49–58, 74
hare–lynx cycles 2, 5–6
predation costs of foraging 98, 105, 106,
191, 192
predation costs of sexual displays 78
principle of dynamic optimization 91, 92,
93, 95
prior residence effect 143, 144, 158
selecting for overwintering 157
Prisoner’s Dilemma 185–186
probabilities
as weights in lifespan calculations 79
flipping coins 164
independence of events 165
throwing dice 39, 40
programming languages 11, 185, 188
choice of 22
proof 11, 79, 159, 160
proportionality 68, 80
constant of 80
public opinion 113
public transport 111–114, 125
publication pressure 161
quality
as an indicator of condition 68
quantitative genetics 39–45
empirical use of 59, 60
notation used in 43
relation to optimality approaches 60,
61–62, 190
strengths and weaknesses 58–60, 139, 189
r
as a fitness measure 41, 43
as a growth rate 43
as a relatedness measure see relatedness
R (software) 11
random numbers 170
random variable 165
normally distributed 9
randomization test 187
Rapoport, Anatol 186
rationality 113
not needing conscious thought 124
reaction norm 50, 51, 65, 66, 192
as a determinant of sexual signals see
condition-dependence
as a response to density 139
reciprocity see social behaviour
Redi, Francesco 183
regret 92
reintroduction programs see conservation
ecology
relatedness 130, 184
complications in models 136
individuals’ ability to measure 139
r as a coefficient of 134
reducing effects of competition 134–136
relative performance 115, 116, 120, 125
replication see simulation
reproductive effort
of females see clutch size
of long-lived birds 96
of males see sexual displays
reproductive value 89, 97, 110
resident strategy 124, 142, 147, 150
environment created by 142, 147, 149,
150, 152
terminological confusion 144
Rice, Bill 36
Index

leading to harassment see sexual harassment
leading to male–female fights see fighting
sexual display 65–88
as an allocation decision 77
as an indicator of condition 65, 66, 75
sexual harassment 14, 36
sexual selection 7, 36, 37, 87
sexual signalling 64–88
honesty of see honesty
shading 115, 119, 130, 132, 133, 139
sheep 14
short-term evolution see evolution, relevant timescales
siblicide 136
sigmoidal function 76, 77, 120
consequences of nonlinearity for honesty 86
simplification
beauty of 79
from reality to models, see model building of algebraic expressions 23, 33, 150
simulation 10, 164–187
definition 164
individual-based 11, 164, 183, 186
medical 5
Monte Carlo 164
need to replicate 176, 177, 182
strengths and weaknesses 164, 171, 184–185
use for verifying analytical results 165, 185
sink populations see source–sink population structure
slide rule 42
slope 48, 61, 62, 191
'small bird in the winter' problem 96–108, 110, 190, 192
snails 49, 58
snakes 14
social behaviour 137, 138
cooperation see altruism
forgiveness 186
in humans see social sciences
reciprocity 186
retaliation 186
social sciences 114
Soininvaara, Osmo 111
source–sink population structure 158, 186
Spallanzani, Lazzaro 183
spatial structure 11, 175, 184

risk 97, 98
in migration contexts 143, 158, 167, 168, 175
predation of undefended morphs see morphs
predation while foraging see foraging
temporal variation in 110
road tolls 111
robustness 193
rules of thumb see optimality
runaway 7
salmon (proverbial) 32, 33, 35, 128
saturation 76, 120
scalar values 200
scale
allometric see allometric scaling
arbitrariness of 80
correct currencies see currency
of functions describing traits 68, 70, 75–77, 168–169
of maps 8
script 28, 199
sea urchin 143
seasonality 91, 149
spring vs. autumn population size 149
seduction 64
seed beetle 14, 15
selection 13, 46, 48
frequency-dependent see frequency-dependent selection
weak and strong 48, 136
selection differential 47, 48, 54, 58, 61
self-consistency 89, 122, 140, 158, 160, 161
connecting winter days and nights 109–110
selfish gene 14
selfishness 113, 136
lowering group or population performance 126, 133, 158, 167
unselfish acts by humans 114, 186
self-maintenance 65, 66, 75
semelparity 84
seminal fluid 14
sensory exploitation 64
sex allocation 115
sex ratios 10, 37, 138
effect on population dynamics 151
in haplodiploid organisms 151
unity assumption 151
sex roles 92, 140
sexual conflict 14, 37, 39
intraspecific 35
Index

speciation 186
species ranges 59
species-level arguments 158
failure to explain evolutionary processes
 see natural selection
spelling
 English 43
 German 43
spiders 64, 65, 67, 68, 69, 74–75, 78, 143
drumming to attract mate 64, 65, 66, 68, 69, 74
spontaneous generation 183
spreadsheet 21
S-shaped function see sigmoidal function
stability see equilibrium
stalk-eyed flies 64
state-dependency 91, 97, 159, 191
 frequency of reaching various states 191
 in games see dynamic games
 transitions between states 96, 100, 118
static vs. dynamic problems 91, 137, 188
statistical analysis 60, 176
stickleback 64, 65, 86
stochasticity 37, 160, 183
 analytical methods to deal with 165, 187
 as an explanation of dispersal 167
 as an explanation of partial migration 160
demographic 152
 environmental 163, 164
strategy 100, 116, 124, 143, 169
genetic coding of 124
invadable 124, 128, 142
lack of assumption of conscious thought 124
structural tissue 116, 117
Suarez Miranda, J. A. 3
sunlight 115, 119
survival 14, 75–77, 78, 87, 159, 164
 of residents and migrants 143, 156
 relation to lifespan 78, 80, 81, 144, 160
 relation to resources 76, 85, 87
scale of 75
switchpoint 52, 53, 55, 56, 58
symmetry 130
SysQuake LE 11
tactic 124
terminal reward 97, 102
territorial contests 121
respect for ownership 143
territoriality 146, 152
creating population regulation 146
tiger analogy 116
time
 how to model see continuous vs. discrete
time
 relevant scales in evolution 13, 62, 138
to complete migration 89
time budgets 91
timing of breeding 167
tit for tat 186
trade-off 59, 64, 75, 89, 134, 159, 191
 age-dependency of 91
 between plant tissues 116, 130
different currencies 92
 experienced by students 91–92, 197–199
 optimization under 66, 67
 visualized as a cake 76
traffic jam 111–114, 125–126
trail
 costs 71
 optimal routes 92–96
 time 112, 114
Travels of Praiseworthy Men 3
tree height 115–136
 ultimate limits 116
treecreeper 96
trivial equilibrium see equilibrium
truth values 101, 106, 203–204
uniform distribution 52, 58, 170
units see scale
updating rules 186
variable 16
 in MATLAB 194, 197
 names of 16
vector 22, 195
vectorization 11, 130, 131, 204
virtual world 169
designing rules of 183
getting lost in 11, 185
VisualBasic (software) xi
weather see stochasticity
weighted sum 79
workspace 196
zebra 139, 191