Fourier and Laplace Transforms

This book presents in a unified manner the fundamentals of both continuous and discrete versions of the Fourier and Laplace transforms. These transforms play an important role in the analysis of all kinds of physical phenomena. As a link between the various applications of these transforms the authors use the theory of signals and systems, as well as the theory of ordinary and partial differential equations.

The book is divided into four major parts: periodic functions and Fourier series, non-periodic functions and the Fourier integral, switched-on signals and the Laplace transform, and finally the discrete versions of these transforms, in particular the Discrete Fourier Transform together with its fast implementation, and the z-transform. Each part closes with a separate chapter on the applications of the specific transform to signals, systems, and differential equations. The book includes a preliminary part which develops the relevant concepts in signal and systems theory and also contains a review of mathematical prerequisites.

This textbook is designed for self-study. It includes many worked examples, together with more than 450 exercises, and will be of great value to undergraduates and graduate students in applied mathematics, electrical engineering, physics and computer science.
Fourier and Laplace Transforms

R. J. Beerends, H. G. ter Morsche,
J. C. van den Berg and E. M. van de Vrie

Translated from Dutch by
R. J. Beerends

Cambridge University Press
Contents

Preface ix
Introduction 1

Part 1 Applications and foundations
1 Signals and systems 7
 1.1 Signals and systems 8
 1.2 Classification of signals 11
 1.3 Classification of systems 16
2 Mathematical prerequisites 27
 2.1 Complex numbers, polynomials and rational functions 28
 2.2 Partial fraction expansions 35
 2.3 Complex-valued functions 39
 2.4 Sequences and series 45
 2.5 Power series 51

Part 2 Fourier series
3 Fourier series: definition and properties 60
 3.1 Trigonometric polynomials and series 61
 3.2 Definition of Fourier series 65
 3.3 The spectrum of periodic functions 71
 3.4 Fourier series for some standard functions 72
 3.5 Properties of Fourier series 76
 3.6 Fourier cosine and Fourier sine series 80
4 The fundamental theorem of Fourier series 86
 4.1 Bessel’s inequality and Riemann–Lebesgue lemma 86
 4.2 The fundamental theorem 89
 4.3 Further properties of Fourier series 95
 4.4 The sine integral and Gibbs’ phenomenon 105
Contents

5 Applications of Fourier series 113
 5.1 Linear time-invariant systems with periodic input 114
 5.2 Partial differential equations 122

Part 3 Fourier integrals and distributions

6 Fourier integrals: definition and properties 138
 6.1 An intuitive derivation 138
 6.2 The Fourier transform 140
 6.3 Some standard Fourier transforms 144
 6.4 Properties of the Fourier transform 149
 6.5 Rapidly decreasing functions 156
 6.6 Convolution 158

7 The fundamental theorem of the Fourier integral 164
 7.1 The fundamental theorem 165
 7.2 Consequences of the fundamental theorem 172
 7.3 Poisson’s summation formula∗ 181

8 Distributions 188
 8.1 The problem of the delta function 189
 8.2 Definition and examples of distributions 192
 8.3 Derivatives of distributions 197
 8.4 Multiplication and scaling of distributions 203

9 The Fourier transform of distributions 208
 9.1 The Fourier transform of distributions: definition
 and examples 209
 9.2 Properties of the Fourier transform 217
 9.3 Convolution 221

10 Applications of the Fourier integral 229
 10.1 The impulse response 230
 10.2 The frequency response 234
 10.3 Causal stable systems and differential equations 239
 10.4 Boundary and initial value problems for partial
 differential equations 243

Part 4 Laplace transforms

11 Complex functions 253
 11.1 Definition and examples 253
 11.2 Continuity 256
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3</td>
<td>Differentiability</td>
<td>259</td>
</tr>
<tr>
<td>11.4</td>
<td>The Cauchy–Riemann equations*</td>
<td>263</td>
</tr>
<tr>
<td>12</td>
<td>The Laplace transform: definition and properties</td>
<td>267</td>
</tr>
<tr>
<td>12.1</td>
<td>Definition and existence of the Laplace transform</td>
<td>268</td>
</tr>
<tr>
<td>12.2</td>
<td>Linearity, shifting and scaling</td>
<td>275</td>
</tr>
<tr>
<td>12.3</td>
<td>Differentiation and integration</td>
<td>280</td>
</tr>
<tr>
<td>13</td>
<td>Further properties, distributions, and the fundamental theorem</td>
<td>288</td>
</tr>
<tr>
<td>13.1</td>
<td>Convolution</td>
<td>289</td>
</tr>
<tr>
<td>13.2</td>
<td>Initial and final value theorems</td>
<td>291</td>
</tr>
<tr>
<td>13.3</td>
<td>Periodic functions</td>
<td>294</td>
</tr>
<tr>
<td>13.4</td>
<td>Laplace transform of distributions</td>
<td>297</td>
</tr>
<tr>
<td>13.5</td>
<td>The inverse Laplace transform</td>
<td>303</td>
</tr>
<tr>
<td>14</td>
<td>Applications of the Laplace transform</td>
<td>310</td>
</tr>
<tr>
<td>14.1</td>
<td>Linear systems</td>
<td>311</td>
</tr>
<tr>
<td>14.2</td>
<td>Linear differential equations with constant coefficients</td>
<td>323</td>
</tr>
<tr>
<td>14.3</td>
<td>Systems of linear differential equations with constant coefficients</td>
<td>327</td>
</tr>
<tr>
<td>14.4</td>
<td>Partial differential equations</td>
<td>330</td>
</tr>
</tbody>
</table>

Part 5 Discrete transforms

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Sampling of continuous-time signals</td>
<td>340</td>
</tr>
<tr>
<td>15.1</td>
<td>Discrete-time signals and sampling</td>
<td>340</td>
</tr>
<tr>
<td>15.2</td>
<td>Reconstruction of continuous-time signals</td>
<td>344</td>
</tr>
<tr>
<td>15.3</td>
<td>The sampling theorem</td>
<td>347</td>
</tr>
<tr>
<td>15.4</td>
<td>The aliasing problem*</td>
<td>351</td>
</tr>
<tr>
<td>16</td>
<td>The discrete Fourier transform</td>
<td>356</td>
</tr>
<tr>
<td>16.1</td>
<td>Introduction and definition of the discrete Fourier transform</td>
<td>356</td>
</tr>
<tr>
<td>16.2</td>
<td>Fundamental theorem of the discrete Fourier transform</td>
<td>362</td>
</tr>
<tr>
<td>16.3</td>
<td>Properties of the discrete Fourier transform</td>
<td>364</td>
</tr>
<tr>
<td>16.4</td>
<td>Cyclical convolution</td>
<td>368</td>
</tr>
<tr>
<td>17</td>
<td>The Fast Fourier Transform</td>
<td>375</td>
</tr>
<tr>
<td>17.1</td>
<td>The DFT as an operation on matrices</td>
<td>376</td>
</tr>
<tr>
<td>17.2</td>
<td>The N-point DFT with $N = 2^n$</td>
<td>380</td>
</tr>
<tr>
<td>17.3</td>
<td>Applications</td>
<td>383</td>
</tr>
<tr>
<td>18</td>
<td>The z-transform</td>
<td>391</td>
</tr>
<tr>
<td>18.1</td>
<td>Definition and convergence of the z-transform</td>
<td>392</td>
</tr>
<tr>
<td>18.2</td>
<td>Properties of the z-transform</td>
<td>396</td>
</tr>
</tbody>
</table>
Contents

18.3 The inverse z-transform of rational functions 400
18.4 Convolution 404
18.5 Fourier transform of non-periodic discrete-time signals 407

19 Applications of discrete transforms 412
19.1 The impulse response 413
19.2 The transfer function and the frequency response 419
19.3 LTD-systems described by difference equations 424

Literature 429
Tables of transforms and properties 432
Index 444
Preface

This book arose from the development of a course on Fourier and Laplace transforms for the Open University of the Netherlands. Originally it was the intention to get a suitable course by revising part of the book *Analysis and numerical analysis*, part 3 in the series *Mathematics for higher education* by R. van Asselt et al. (in Dutch). However, the revision turned out to be so thorough that in fact a completely new book was created. We are grateful that Educaboek was willing to publish the original Dutch edition of the book besides the existing series.

In writing this book, the authors were led by a twofold objective:
- the ‘didactical structure’ should be such that the book is suitable for those who want to learn this material through self-study or distance teaching, without damaging its usefulness for classroom use;
- the material should be of interest to those who want to apply the Fourier and Laplace transforms as well as to those who appreciate a mathematically sound treatment of the theory.

We assume that the reader has a mathematical background comparable to an undergraduate student in one of the technical sciences. In particular we assume a basic understanding and skill in differential and integral calculus. Some familiarity with complex numbers and series is also presumed, although chapter 2 provides an opportunity to refresh this subject.

The material in this book is subdivided into parts. Each part consists of a number of coherent chapters covering a specific part of the field of Fourier and Laplace transforms. In each chapter we accurately state all the learning objectives, so that the reader will know what we expect from him or her when studying that particular chapter. Besides this, we start each chapter with an introduction and we close each chapter with a summary and a selftest. The selftest consists of a series of exercises that readers can use to test their own knowledge and skills. For selected exercises, answers and extensive hints will be available on the CUP website.

Sections contain such items as definitions, theorems, examples, and so on. These are clearly marked in the left margin, often with a number attached to them. In the remainder of the text we then refer to these numbered items.
Preface

For almost all theorems proofs are given following the heading *Proof*. The end of a proof is indicated by a right-aligned black square: ■. In some cases it may be wise to skip the proof of a theorem in a first reading, in order not to lose the main line of argument. The proof can be studied later on.

Examples are sometimes included in the running text, but often they are presented separately. In the latter case they are again clearly marked in the left margin (with possibly a number, if this is needed as a reference later on). The end of an example is indicated by a right-aligned black triangle: ◄.

Mathematical formulas that are displayed on a separate line may or may not be numbered. Only formulas referred to later on in the text have a number (right-aligned and in brackets).

Some parts of the book have been marked with an asterisk: *. This concerns elements such as sections, parts of sections, or exercises which are considerably more difficult than the rest of the text. In those parts we go deeper into the material or we present more detailed background material. The book is written in such a way that these parts can be omitted.

The major part of this book has been written by Dr R.J. Beerends and Dr H.G. ter Morsche. Smaller parts have been written by Drs J.C. van den Berg and Ir E.M. van de Vrie. In writing this book we gratefully used the comments made by Prof. Dr J. Boersma and the valuable remarks of Ir G. Verkroost, Ir R. de Roo and Ir F.J. Oosterhof.

Finally we would like to thank Drs A.H.D.M. van Gijsel, E.D.S. van den Heuvel, H.M. Welte and P.N. Truijen for their unremitting efforts to get this book to the highest editorial level possible.