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Chapter 1

Introduction

1.1 Solitons and soliton equations

Ever since the observation of the “great wave of translation” in water waves,
by J. Scott Russell in 1834 [146, 147] while he rode on horseback near a nar-
row canal in Edinburgh, localized (nonoscillatory) solitary waves have been
known to researchers studying wave dynamics. Despite Russell’s detailed ob-
servations, it was many years before mathematicians formulated the relevant
equation, now known as the Korteweg—de Vries (KdV) equation that governs
those waves (cf. [38, 39, 112]). From the period 1895-1960, the study of water
waves was essentially the only application in which solitary waves were found.
However, in the 1960s it was discovered that the KdV equation is a relevant
model in many other physical contexts, such as plasma physics, internal waves,
lattice dynamics, and others. Critically, in their study of the Fermi—Pasta—Ulam
lattice equation [75] Zabusky and Kruskal (1965) found that the KdV equation
was the governing equation (cf. [189]). Moreover, in a wholly new discovery,
Zabusky and Kruskal observed that the solitary waves of KdV are “elastic”
in their interaction. That is, the solitary waves pass through one another and
subsequently retain their characteristic form and velocity. Zabusky and Kruskal
called these elastically interacting solitary waves solitons. The work of Gardner,
Green, Kruskal, and Miura [82] showed how direct and inverse scattering tech-
niques could be used to linearize the initial-value problem of KdV. The soli-
tons also were shown to correspond to eigenvalues of the time-independent
Schrodinger equation. The remarkable discovery of the soliton was the first
in a chain of events that culminated in a mathematical theory of solitons in
KdV. This work opened a rich vein of research that continues today, more than
35 years later. Further discussion of both the historical background and subse-
quent development of soliton theory can be found in [21].
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Subsequent to the development of a mathematical theory of the solitons of
KdV, further research revealed that solitons, with their distinctive elastic in-
teractions, arise in numerous important physical systems. These systems are
governed, respectively, by a diverse collection of evolution equations that are
characterized mainly by the fact that they admit soliton solutions. For example,
soliton solutions have been found in a number of nonlinear partial differential
equations in 1 + 1 dimensions (i.e., one space and one time dimension) and
2 41 (i.e., two spatial dimensions and one time dimension). In addition, soli-
ton solutions have been found in semi-discrete (discrete in space, continuous
in time) and doubly discrete (discrete in space and time) nonlinear evolution
equations and in nonlinear singular integro-differential equations, among oth-
ers. A survey of some of these can be found in [6]. It should also be noted
that there is a four-dimensional system, referred to as the self-dual Yang—Mills
(SDYM) equations, that plays an important role in the study of soliton theory or
integrable systems. Indeed, the SDYM equations can be viewed as a “master”
integrable system from which virtually all other systems can be obtained as spe-
cial reductions (cf. Atiyah and Ward [25]; Ward [181, 182, 183]; Belavin and
Zakharov [29]; Mason et al. [124, 125]; Chakravarty et al. [50, 51]; Maszczyk
et al. [126]; Ablowitz et al. [5]).

Researchers in physics and engineering have understood that stable localized
solitary waves, even those that do not have the special property of elastic inter-
action, have many important applications, and their study has led to substantial
research in specialized fields (e.g., nonlinear optics) all by itself. Nevertheless,
the systems in which the solitary waves interact elastically, the “true” soliton
systems, are important special cases. Moreover, there is an intrinsic richness in
the mathematical theory of these soliton systems. Accordingly, the field of re-
search associated with integrable systems has grown, developed, and expanded
in many directions. One centrally important issue is the method of solution,
sometimes referred to as the inverse scattering transform (IST), for these soli-
ton equations. For a number of physically significant equations, the IST can
be carried out in an explicit, effective, and illuminative manner. In particular,
the IST is a fruitful approach, and it is the basis for the study of the nonlinear
Schrodinger systems described in this book.

There are numerous books, review articles, and edited collections (see, for
instance, [6, 21, 47, 65, 74, 140]) that delve widely and deeply into the theory
of integrable systems. In this book, we give a detailed description of both the
IST and the soliton solutions of integrable nonlinear Schrodinger systems,
which are mathematically and physically important soliton equations. The
collection of systems examined in this book comprises both continuous and
semi-discrete systems of equations. As will be described in Section 1.4, these
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particular systems arise in the modeling of a wide array of physical wave phe-
nomena. In this book, we present most of the known results for these nonlinear
Schrodinger systems, as well as some new ones, in a comprehensive, unified
framework built with the mathematical machinery of the inverse scattering
transform.

1.2 The inverse scattering transform — Overview

The IST is a method that allows one to linearize a class of nonlinear evolution
equations. In doing so one can obtain global information about the structure of
the solution. In many respects, one can view the IST as a nonlinear version of
the Fourier transform.

The solution of the initial-value problem of a nonlinear evolution equation
by IST proceeds in three steps, as follows:

1. the forward problem — the transformation of the initial data from the original
“physical” variables to the transformed “scattering” variables;

2. time-dependence —the evolution of the transformed data according to simple,
explicitly solvable evolution equations;

3. the inverse problem — the recovery of the evolved solution in the original
variables from the evolved solution in the transformed variables.

In fact, with the IST machinery one can do more than solve the initial-value
problem; one also can construct special solutions of the evolution equation by
positing an elementary solution in the transformed variables and then applying
the inverse transformation to obtain the corresponding solution in the original
variables. In general, the soliton and multisoliton solutions of soliton equations
can be constructed in this way. In particular, in the subsequent chapters of this
book, we explicitly construct the soliton solutions of four different nonlinear
Schrodinger (NLS) systems. Moreover, one can in principle obtain the long-time
asymptotics of solutions. In this book, we obtain formulas for the collision-
induced phase shifts of solitons in NLS systems, including the polarization
shift of solitons in the vector systems, from the asymptotics of the associated
scattering data.

An essential prerequisite of the IST method is the association of the nonlinear
evolution equation with a pair of linear problems, a linear eigenvalue problem
and a second associated linear problem, such that the given evolution equation
results as the compatibility condition between them. The pair of linear operators
used to construct the associated linear problems is sometimes referred to as a
“Lax pair,” due to a formulation by Lax [115]. The solution of the nonlinear
evolution equation appears as a coefficient in the associated linear eigenvalue
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problem. For example, in the work of Gardner et al., the solution of the KdV
equation is associated with the potential in the linear Schrodinger equation. The
eigenvalues and continuous spectrum of this linear eigenvalue problem consti-
tute the transformed variables. The second associated linear problem determines
the evolution of the transformed variables.

The associated eigenvalue problem introduces an intermediate stage in both
the forward and inverse problems of the IST. In the forward problem, the first
step is to construct eigenfunction solutions of the associated linear problem.
These eigenfunctions depend on both the original spatial variables and the
spectral parameter (eigenvalue). Second, with these eigenfunctions, one deter-
mines scattering data that are independent of the original spatial variables. In
the inverse problem, the first step is the recovery of the eigenfunctions from the
(evolved) scattering data. Finally, one recovers the solution in the original vari-
ables from these (evolved) eigenfunctions. As noted previously, the evolution
of the scattering data is determined by the second associated linear operator
and can be computed explicitly.

The properties of the eigenfunctions are key to the formulation of the inverse
problem. In general, the solutions of the associated eigenvalue problem also
satisfy linear integral equations. For the NLS systems discussed here (as well
as other soliton equations in 1 4 1 dimensions), by using such integral equations
one can show that the eigenfunctions are sectionally analytic functions of the
spectral parameter. By taking into account the analyticity properties of the eigen-
functions, one can formulate the inverse problem (in particular, the recovery of
the eigenfunctions from the scattering data) as a generalized Riemann—Hilbert
problem. The Riemann—Hilbert problem is then transformed into a system of
linear algebraic—integral equations. Typically in the formulation of the IST, and
in particular for the nonlinear Schrédinger systems considered in this book, the
scattering data satisfy symmetry relations that are independent of the evolution.
These symmetries in the scattering data are essential and must be taken into
account in the solution of the inverse problem.

As explained previously, to apply the IST to a nonlinear evolution equation,
one must first find a pair of linear operators that can be associated with the
nonlinear equation. However, the general method of construction of the Lax
pair for a given evolution equation remains on open problem. Nevertheless, for
several equations of physical and mathematical interest, such a pair has been
found and the IST developed.

In a major step forward, following the works of Gardner et al. [82] and Lax
[115],in 1972 Zakharov and Shabat [192] showed that the method also could be
applied to another physically significant nonlinear evolution equation, namely,
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the nonlinear Schrodinger equation (NLS). Subsequently, Manakov extended
this approach to the solution of a pair of coupled NLS equations [120]. In fact,
Manakov’s work applies equally well to a system of N coupled NLS equations,
a system that we refer to as vector NLS (VNLS). Using these ideas, Ablowitz,
Kaup, Newell, and Segur developed a method to find a rather wide class of
nonlinear evolution equations solvable by this technique [10]. In their work
they named the technique the inverse scattering transform (IST). Later, Beals
and Coifman analyzed the direct and inverse scattering associated with higher
order systems of linear operators [28].

The IST has been extended to semi-discrete nonlinear evolution equations
(discrete in space and continuous in time) as well as doubly discrete (discrete in
both space and time) systems. Flaschka adapted the IST to solve the Toda lattice
equation [79], and Manakov used a similar formulation to solve a nonlinear
ladder network [121]. Subsequently, Ablowitz and Ladik developed a method
to construct families of semi-discrete and doubly discrete nonlinear systems
along with their respective linear operator pairs, as required for the solution of
the nonlinear systems via the IST [11, 12] (see also [21]). Included in the for-
mulation of Ablowitz and Ladik are an integrable semi-discretization of NLS
(which we refer to as integrable discrete NLS, or IDNLS) as well as a doubly
discrete integrable NLS. In Chapter 5 we will further extend the IST method to
an integrable semi-discretization of the VNLS that was introduced in [18].

While the work mentioned in the preceding paragraphs consists of applica-
tions of the IST method to 1 + 1-dimensional evolution equations, since the
early 1980s significant progress has also been made in the extension of the
IST approach to 2 + 1-dimensional systems. For example, the Kadomtsev—
Petviashvili equation [100], which is a 2 + 1-dimensional generalization of
the KdV equation, and the Davey—Stewartson equation [59], which is a natural
2 + 1-dimensional integrable extension of the NLS equation, can be solved via
the IST. However, the extension of the IST to such systems is beyond the scope
of this book. A review of some developments in the application of the IST to
2 4+ l1-dimensional systems can be found in [6].

It should also be noted that IST for periodic and other boundary conditions
has been considered, but we will not discuss this here. Additional references
can be found in the Bibliography.

1.3 Nonlinear Schrodinger systems

The scalar nonlinear Schrodinger (NLS) equation

iqr =g £219° q (13.1)



6 1 Introduction

is a physically and mathematically significant nonlinear evolution equation. It
results from the coupled pair of nonlinear evolution equations

iqr = qux — 2rq” (1.3.2a)
—iry = e — 2q1° (1.3.2b)

if we letr = Fq*.

The NLS equation (1.3.1) arises in a generic situation. It describes the evolu-
tion of small amplitude, slowly varying wave packets in nonlinear media [30].
Indeed, it has been derived in such diverse fields as deep water waves [190, 31];
plasma physics [191]; nonlinear optical fibers [91, 92]; magneto-static spin
waves [194]; and so on. Mathematically, it attains broad significance because
it is integrable by the IST [192], it admits soliton solutions, it has an infinite
number of conserved quantities, and so on.

We also note that the form of the NLS equation (1.3.1) with a minus sign in
front of the nonlinear term is sometimes referred to as the “defocusing” case. The
defocusing NLS equation does not admit soliton solutions that vanish at infinity.
However, it does admit soliton solutions that have a nontrivial background
intensity (called dark solitons) [92, 193]. We will only discuss the IST for
functions decaying sufficiently rapidly at infinity.

The vector nonlinear Schrédinger equation,

ig" =g +2(1g"1* + 1g?17) ¢V (1.3.3a)
ig” =q2 +2 (117 +14?P) ¢®, (1.3.3b)

arises, physically, under conditions similar to those described by the NLS when
there are two wavetrains moving with nearly the same group velocities [144,
185]. Moreover, VNLS models physical systems in which the field has more
than one component; for example, in optical fibers and waveguides, the propa-
gating electric field has two components that are transverse to the direction of
propagation. Manakov [120] first examined equation (1.3.3) as an asymptotic
model for the propagation of the electric field in a wageguide. Subsequently,
this system was derived as a key model for lightwave propagation in optical
fibers (cf. [72], [122], [131], [179]).

In the literature, the system (1.3.3) is sometimes referred to as the coupled
NLS equation. This system admits vector—soliton solutions, and the soliton col-
lision is elastic. Moreover, the dynamics of soliton interactions can be explicitly
computed [120]. (In [142] a different point of view is discussed.) Vector—soliton
collisions are analyzed in Sections 4.3 (continuous) and 5.3 (discrete). In these
sections, the elasticity of vector—soliton interactions and the order-dependence
of these interactions are described in detail.
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Both the VNLS equation (1.3.3) and its generalization,
iq = q. =21lql’ q, (1.3.4)

where q is an N-component vector and || - || is the Euclidean norm, are integrable
by the IST. In [120] only the case N = 2 is studied, but the extension to more
components is straightforward. The N-component equation can be derived,
with some additional conditions, as an asymptotic model of the interaction of
N wavetrains in a weakly nonlinear, conservative medium (cf. [144]).

In optical fibers and waveguides, depending on the physics of the particular
system, the propagation of the electromagnetic waves may be described by
variations of equation (1.3.3). Note that the VNLS equation is the ideal (exactly
integrable) case. For example, a model with physical significance is [131, 132,
150, 184, 187]

ig!” =g +2(1gVP + Blg®P) ¢ (1.3.52)

ig® =q@ +2(BlgVP +194?1%) 42, (1.3.5b)

which is equivalent to equation (1.3.3) when B = 1. However, based on the
properties of equations (1.3.5), apparently it is not integrable when B # 1 (see
the discussion in [18]).

The VNLS (1.3.4) has a natural matrix generalization in the system

iQt - Qxx - 2(21{() (1363)
—iR; = R,y —2RQR, (1.3.6b)

where Qand Rare N x M and M x N matrices, respectively. When R = 7Q*
(here and in the following, the superscript H denotes the Hermitian, i.e., con-
jugate transpose), the system (1.3.6a)—(1.3.6b) reduces to the single matrix
equation

iQ, = Q. £2QQ"Q, (1.3.7)

which we refer to as matrix NLS or MNLS. The VNLS corresponds to the
special case when Q is an N-component row vector and R is an N-component
column vector, or vice versa. In particular, we obtain the system (1.3.3) when
M=1and N =2.

Both the NLS and the VNLS equations admit integrable discretizations that,
besides being used as the basis for constructing numerical schemes for the
continuous counterparts, also have physical applications as discrete systems
(see, e.g., Aceves et al. [22, 23]; Braun and Kivshar [40]; Christodoulides
and Joseph [54]; Claude et al. [55]; Darmanyan et al. [57, 58]; Davydov [60,
61, 62]; Eilbeck et al. [69]; Eisenberg et al. [70, 71]; Flach et al. [76, 77];



8 1 Introduction

Its et al. [97]; Kenkre et al. [102, 103]; Kivshar, Kivshar, and Luther-Davies
[106, 107]; Ledereretal. [116, 117]; Malomed and Weinstein [118]; Morandotti
et al. [136, 137, 138]; Scott and Macneil [148]; Vakhnenko et al. [173, 174]).

A natural discretization of NLS (1.3.1) is the following:

i%qn = h—12 (gn+1 —2qn + qu-1) £ |61n|2 (Gn+1 + qn-1) (1.3.8)

which is referred to here as the integrable discrete NLS (IDNLS). It is a O(h?)
finite-difference approximation of (1.3.1) that is integrable via the IST and has
soliton solutions on the infinite lattice [11], [12]. We note that, if we change
the nonlinear term in (1.3.8) to 2 |qn ’2 qn. the equation, which is often called
the discrete NLS (DNLS) equation, is apparently no longer integrable, and it
has been found that in certain circumstances chaotic dynamics results [19]. It
should be remarked that the (apparently nonintegrable) DNLS equation arises
in many important physical contexts (cf. [22], [23], [40], [54], [70], [71], [76],
[104], [107], [116], and [136]-[138]). See also [17], [68], [105] for additional
useful references.

Correspondingly, we will consider the discretization of the VNLS given by
the following system:

. d 1
lEqn = ﬁ (qn-H - 2(1n + qn—l) —Ip - Qy (qn+l + qn—l) (1398.)

d 1

—i—r, = — @ —2r,+1,1)—1,-q, (1, r,_1), 1.3.9b
i 72 T +r,-1) Qn (Cuy1 +1-1),  ( )
where q, and r, are N-component vectors and - is the inner product. Under
the symmetry reduction r, = Fq;; (here and in the following * indicates the

complex conjugate), the system (1.3.9a)—(1.3.9b) reduces to the single equation

i%qn = hl_z(qn-&-l —2Gn + Qu—1) £ G lI* (Qur1 + Qu1) - (1.3.10)
which, for q, = q(rh) in the limit 4 — 0, nh = x, gives the VNLS (1.3.4).
In [18] it was shown that its solitary wave solutions interact elastically and
that (1.3.10) admits multisoliton solutions. Thus the expectation was that the
discrete vector NLS system (1.3.10) is indeed integrable. We refer to (1.3.10)
as the integrable discrete vector NLS (IDVNLS).

An associated pair of linear operators (Lax pair) for the system (1.3.9a)—
(1.3.9b) was constructed in [170]. In fact, the Lax pair for the vector system
(1.3.10) is a reduction of a matrix generalization of the Lax associated with
IDNLS. The matrix analog of the vector system (1.3.9) is given by

. d
lEQn = Qn-H - ZQn + AQn + QnB + Qn—l - Qn+anQ11 - QanQn—l
(13.11a)
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d
_ld_Rn = Rn-H - 2Rn + BRn + RnA + Rn—l - Rn+lQan - RnQan—la

T
(1.3.11b)

where Q,, R, are N x M and M x N matrices, respectively, A is an N x N
diagonal matrix, and B is an M x M diagonal matrix. A and B represent a
gauge freedom in the definition of the integrable discrete MNLS (IDMNLS)
that will be used in the following. In [83], [84] the IST for an eigenvalue problem
that is equivalent to the scattering problem considered in [18], [19], [167], [170]
had been formulated.

Note that the system (1.3.11a)—(1.3.11b) does not, in general, admit the
reduction

R, = :FQf, (1.3.12)
However, for N = M one can restrict R,, and Q,, to be such that
RnQn = Qan = oIy, (1.3.13)

where Iy is the identity N x N matrix and o, is a scalar, and with this res-
triction R, = :FQ,’;’ is a consistent reduction of the system (1.3.11a)—(1.3.11b)
that results in the single matrix equation

d
iEQn = Qn+1 - 2Qn + AQn + QnB + Qn—l + QnQ,[l-l (QrH—l + Qn—l) .
(1.3.14)

Similarly, the IST for (1.3.14) follows the same lines as that for (1.3.11a)—
(1.3.11b) with additional symmetry conditions imposed. The additional sym-
metry (1.3.13) (which has no analog in the continuous case) has essential con-
sequences for the IST, which are discussed in detail in Section 5.2.2.

1.4 Physical applications

As indicated in the previous section, NLS systems have broad application in
physical problems. In this section we briefly describe how certain NLS systems
arise in nonlinear optics. We choose to discuss nonlinear optics because of its
many scientific and technological applications. Here we will only sketch the
key ideas behind the derivation of the NLS equations for some of the nonlinear
optics applications. Interested readers will be able to find additional details and
applications in the cited references. It should also be noted that this section can
be read independently from the text describing the IST analysis.

We begin with a discussion of pulse propagation in optical fibers. Among
the physical properties of optical fibers, nonlinearity and dispersion are serious
sources of signal distortion. Signal loss in fibers was also a major limitation;
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however, in the 1980s this was largely overcome due to the development of
all-optical amplifiers (cf. [24]).

Dispersion originates from the frequency dependence of the refractive index
of the fiber and leads to frequency-dependence of the group velocity; this is
usually called group velocity dispersion or simply GVD. Due to GVD, different
spectral components of an optical pulse propagate at different group velocities
and thus arrive at different times. This leads to pulse broadening, resulting in
signal distortion.

Fiber nonlinearity is due to the so-called Kerr effect, where the refractive
index depends on the intensity of the optical pulse. In the presence of GVD and
Kerr nonlinearity, the refractive index is expressed as

n(w, E) = no(w) + na| EJ%, (1.4.15)

where w and E represent the frequency and electric field of the lightwave,
respectively; no(w) is the frequency-dependent linear refractive index; and
the constant n,, referred to as the Kerr coefficient, has a value of approxi-
mately10~2> m?>/W. Even though fiber nonlinearity is small, the nonlinear ef-
fects accumulate over long distances and can have a significant impact due to
the high intensity of the lightwave over the small fiber cross section. By itself,
the Kerr nonlinearity produces an intensity-dependent phase shift that results
in spectral broadening during propagation.

In the usual transmission process with lightwaves, the electric field is modu-
lated into a slowly varying amplitude of a carrier wave. Concretely, a modulated
electromagnetic lightwave is written as

E(z, 1) = E(z, 1)e! 03D 4 ¢ ¢, (1.4.16)

where c.c. denotes complex conjugation, z the distance along the fiber, ¢ the
time, ko = ko(wp) the wavenumber, wy the frequency, and £(z, t) the envelope
of the electromagnetic field.

Hasegawa and Tappert [91] first derived the NLS equation in the context
of fiber optics. Detailed derivations can be found in texts (cf. Hasegawa and
Kodama [90] and references therein). A simplified derivation is conveniently
obtained from the nonlinear dispersion relation:

w 2
ko, E) = — (no(@) + mal EI?) , (1.4.17)

where ¢ denotes the speed of light.
A Taylor series expansion of k(w, E) around the carrier frequency w = wy
yields

k//
(wo)(w —wo + wony

E|?, 1.4.18
5 " |E| ( )

k — ko = k'(wo)(@ — wp) +
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where ’ represents the derivative with respect to w and ko = k(wy). Replac-
ing k — ko and w — wy by their Fourier operator equivalents id/dz and id/d¢,
respectively, using k — ko = ¢no(w), and letting equation (1.4.18) operate on
€ yields

(0E ., 0E\  Kl(wp) 0%E e
l<az+k0(a}0)at> S TVIEPE=0. (1419)

oy
CAcft
1/ A¢g comes from a more detailed derivation that takes into account the finite

size of the fiber; the factor 1/ A is needed to account for the variation of field
intensity in the cross section of the fiber). We note that k{(wp) = 1/v,, where
v, represents the group velocity of the wavetrain.

where v = and A.¢ is the effective cross-section area of the fiber (the factor

In order to obtain a dimensionless equation, it is standard to introduce
a retarded time coordinate t.., =t — ky(wp)z =t — z/v, and dimensionless
variables t’ = t.o/ /s, 2’ = 2/74,and ¢ = £/+/P,, where t,, z,., P, are the char-
acteristic time, distance, and power, respectively. Substituting this coordi-
nate transformation, choosing the dimensionless variables as z, = 1/v P, tf =
Z«| — k" (wy)|, and dropping the prime yields the NLS equation

g sgn(—kg(an)) 3¢
jod 4 BTV L g

. > o g =0. (1.4.20)

There are two cases of physical interest depending on the sign of —k) (wo). The
so-called focusing case occurs when —k{(wp) < 0; this is called “anomalous”
dispersion. The defocusing case is obtained when the dispersion is “normal”:
—kg (wp) > 0. In the anomalous case we will see later, in Chapter 2, that
equation (1.4.20) has a special soliton solution given by

q(z, 1) = e  HEFUE =G0 gechdn(t — 267 —tp)  (1.4.21)

(see equation (2.3.88) and note the redefinition of variables and the factor of %
difference between equations (1.4.20) and (2.3.88)).

Since solitons are stable localized pulses, Hasegawa and Tappert (1973) sug-
gested their use as the “bit” format for the transmission of information in
optical fiber systems. Remarkably, in 1980 scientists at Bell Laboratories ob-
served the solitons described by the NLS equations (1.4.19)—(1.4.20) in optical
fibers [135]. One of the serious difficulties however was fiber loss. Fortuitously,
in the mid-1980s scientists developed all-optical amplifiers (erbium-doped am-
plifiers: EDFAs, [127, 64]). This development allowed for the transmission of
information optically over long distances (e.g., 10,000 km, which is roughly
the distance from the United States to Japan).
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With damping and amplification included, the NLS equation (1.4.20) takes

the form
" 2

ig—z n w%’ +2(2lglg =0, (1.4.22)
where g(z) = a% exp(—2I'z/z,), 0 < z < z, and periodically extended there-
after, with I" the normalized damping coefficient and ag determined by < g >=
é J ¢ 8(z/z4)dz = 1 with z, = I,/zy, l, being the amplifier length. Typically
74 1s small, approximately 0.1. Asymptotic analysis shows that, to leading or-
der, q(z, t) still satisfies the NLS equation (1.4.20). Note that since g(z) is
rapidly varying, equation (1.4.22) is satisfied with g replaced by its averaged
value < g >= 1 in the period z, (cf. [90]).

The introduction of amplifiers, however, introduces small amounts of noise
to the system. This in turn causes the temporal position of the soliton to fluctu-
ate. In 1986, Gordon and Haus [88] showed that this fluctuation seriously limits
the distance signals could be reliably transmitted. Soliton control mechanisms
were introduced in the early 1990s to deal with these difficulties (cf. [108],
[129], [128], [134]). Due to these and other issues, all-optical transmission
systems in the 1990s employed a nonsoliton format referred to as “non-return-
to-zero” (NRZ). In the NRZ format a continuous wave is transmitted over the
total time slot of successive “1” bits, whereas in the RZ format, which includes
solitons, an individual pulse is transmitted for each “1” bit regardless of the se-
quence. NRZ pulses have a lower peak intensity than RZ pulses having the same
average power within a given bit slot. It should be noted, however, that the peak
intensity must be enhanced and the pulse width decreased accordingly as the
bit rate increases, since the average power within a bit slot must be maintained
at a certain level so that the signal is not buried by amplifier noise. Thus NRZ
pulses also suffer from nonlinearity, especially at high bit rates.

Importantly, the NLS equations (1.4.20) and (1.4.22) and related equations
with perturbations due to dispersion variations, higher order chromatic dis-
persion, and nonlinear effects are the central models used in fiber commu-
nications, regardless of the transmission format. It is not feasible to numeri-
cally simulate Maxwell’s equations over the distances required (thousands of
kilometers) due to the disparate scales inherent in the equations.

The development of all-optical transmission systems also took a major leap
forward in the 1990s with the advent of wavelength-division-multiplexing
(WDM) (cf. [89]). WDM is the simultaneous transmission of multiple sig-
nals in different frequency (or, equivalently, wavelength) channels. In terms
of soliton communications, this means that different solitons will travel at dif-
ferent velocities, thus causing interactions, some of which, such as frequency
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and timing shifts due to WDM collisions, can be debilitating (cf. [133], [130],
[3]). One of the central problems that arises from interactions is unwanted
resonant amplifier induced instabilities in adjacent frequency channels ([119],
[2]). This phenomenon, called four-wave mixing (FWM), was so serious that
researchers began to investigate dispersion-managed (DM) transmission sys-
tems. DM systems also reduce other unwanted effects, such as Gordon—-Haus
and collision-induced timing jitters.

In a dispersion-managed transmission system the fiber is composed of alter-
nating sections of positive (normal) and negative (anomalous) dispersion fibers.
The (dimensionless) NLS equation that governs this phenomena is

dq  d(z)dq

2
—+ =0, 1423
i, T2 2 T8W@Wldlg ( )

where d(z) is usually taken to be a periodic, large, rapidly varying function of the
formd(z) = §, + A(z) with |[A(z)| >> 1 and having zero average in the period
z, (the period is usually taken to be the same as that of the amplifier). There
has been considerable research in the field of dispersion-managed transmission
systems (cf. [89] and references therein).

Researchers have shown that equation (1.4.23) admits various types of op-
tical pulses, such as DM solitons [80, 4], quasi-linear modes [9], and so on.
Importantly, both types of pulses can be described via a unified framework
[9, 8]. We shall not delve into this matter any further here, because it would
take us well outside the scope of this book.

In many applications vector NLS systems are the key governing equations.
In optical fibers with constant birefringence (i.e., constant phase and group ve-
locities as a function of distance) Menyuk [131, 132] has shown that the two
polarization components of the electromagnetic field £ = (u, v)’ that are or-
thogonal to the direction of propagation, z, along the fiber asymptotically satisfy
the following nondimensional equations (assuming anomalous dispersion):

i(uz + 8u) + Sug + (Jul* + alv)Hu =0 (1.4.24a)
i(v. — 8v) + Svi + (ful® + [v[>)u =0, (1.4.24b)

where § represents the group velocity “mismatch” between the u, v components
of the electromagnetic field and « is a constant that depends on the polariza-
tion properties of the fiber. In deriving equation (1.4.24) it is assumed that
the electromagnetic field is slowly varying (as in the scalar problem); certain
nonlinear (four-wave mixing) terms are neglected in the derivation of equation
(1.4.24) because the lightwave is rapidly varying due to large, but constant,
linear birefringence. In this context, birefringence means that the phase and
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group velocities of the electromagnetic wave in each polarization component
are different.

In a communications environment, due to the distances involved (hundreds
of thousands of kilometers), the polarization properties evolve rapidly and ran-
domly as the lightwave evolves along the propagation distance z. Not only does
the birefringence evolve, but it does so randomly, and on a scale much faster
than the distances required for communication transmission (birefringence po-
larization changes on a scale of 10-100 m). In this case, researchers (cf. [180],
[72], [122]) have shown that the relevant nonlinear equation is equation (1.4.24)
but with § = 0 and @ = 1. Indeed, this is the integrable vector NLS equation
first derived by Manakov (1974) and is studied in Chapter 4 of this book via
the IST method. Hence we see that both the scalar- and vector-continuous NLS
systems arise naturally in the field of nonlinear optical fiber communications.

Finally, we briefly mention some applications in discrete NLS systems. Our
prototype application is coupled nonlinear optical waveguides. In this case we
consider an optical material in which waveguides are “etched” into suitable
optical material and each waveguide is well separated from each other in, say,
the x-direction (or “n”-direction) with propagation occurring in the longitudinal,
say z, direction. (See, e.g., Figure 1.1.)

From Maxwell’s equations, we model the governing wave equation for the
electromagnetic field in the x-direction in Kerr nonlinear material to be [188]

Voo + W + (f(x) + 8 W)W =0, (1.4.25)

where |§] << 1and f{x) models the linear index of refraction. One now expands
the solution W in terms of a suitable series of functions (cf. [16]); that is, W is

Figure 1.1
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expressed in the form

W= " En(Z)Ym(x)e ™", (1.4.26)

m=—0oQ

where Z = 6z, ¥, = ¥(x — md), d is the spacing of the waveguide array (cf.
Figure 1.1), and 1, has one boundstate eigenvalue Ay. We then substitute
equation (1.4.26) into equation (1.4.25), multiply the result by ¥, exp (iAoz),
integrate over x (x ranges from —0o < x < 00), and assume that v, (x) satisfies

Qux¥m + (fn(x) = 2)¢m =0, (1.4.27)

where f,,(x) = f(x — md) is a localized function. By carrying out these cal-
culations, we obtain

m=—0oo Y

RIS JoE,, %Y,

o0
+8 Y EnEwE}ym I/Imrlﬂl:;,,:| Y =0. (1.4.28)

m’,m"=—00

Using (1.4.27), we find that

= OE, [ *
> |2 [ waviarE, [ A
0Z J_ o —o0

m=—0oQ
o0
+6 > EnEwE}, / YU W pidx | = 0, (1.4.29)
m/,m/r —0Q

where Af,, = f(x) — f.(x). The eigenfunctions are assumed to be localized
corresponding to waveguides that are well separated (see Figure 1.1). Maximal
balance is achieved when the relevant integrals are defined by

/dX(f(X) — [ W |* = 8co
/ dx(f(x) = fut1 DY Winey = 8c1
/dem|4 = 8807

where cg, c1, go are O(1) constants and higher order terms in § are dropped.
The resulting equation turns out to be the discrete NLS (DNLS) equation in
the form

i07E, + c1(Eng1 + Eno1) + c0Ey + g0l E4|*E, = 0. (1.4.30)
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By transforming variables, one can put the equation in the form

i02¢n + (a1 + b1 — 20)/ h* + 2|dul’ ¢y = 0. (1.4.31)

The DNLS equation was first derived in the context of nonlinear optics by
Christodoulides and Joseph [54]. It was studied earlier by Davydov [60] in
molecular biology and by Su, Schieffer, and Heeger in condensed matter physics
[151]; there are numerous other applications as well (cf. [148], [149], [123]).
Various authors studied the interaction and collision processes associated with
the localized solitary wave solutions of the DNLS equation (cf. [22], [23],
[113]).

Experimentally, the solitary waves of the DNLS equation were observed
in a nonlinear optical array by Eisenberg et al. [70] and Morandotti et al.
[137]. Linear diffraction management of the optical array system was sub-
sequently studied by Eisenberg et al. [71] and nonlinear focusing and defo-
cusing by Morandotti et al. [138]. Theoretically speaking, diffraction-managed
solitons, whose width and peak amplitude vary periodically and which are
the discrete analog of dispersion-managed solitons, have been obtained [14].
More recently, DNLS equations have been proposed for Bose—Einstein con-
densation [166]. Vector extensions of the DNLS equation have also been
derived and studied (cf. [15], [16], [57]). While these DNLS equations are
not transformable to the integrable discrete systems studied in this book, the
integrable systems nevertheless provide useful insight into discrete equations
and solitary wave phenomena. For more information about DNLS equations,
related problems, and references, the reader may wish to consult the review
article [105].

1.5 Outline of the work

Chapter 2 is dedicated to the scalar NLS equation (1.3.1). Chapter 3 is con-
cerned with the IDNLS equation (1.3.8), which is the integrable discretization
of the NLS equation. Chapter 4 describes the IST for the matrix nonlinear
Schrédinger equation (MNLS) and, in particular, for the VNLS system (1.3.3),
and Chapter 5 describes the integrable discrete matrix NLS (IDMNLS), that is,
the system (1.3.11a)—(1.3.11b) with special attention to the case where the sym-
metry (1.3.12)—(1.3.13) holds, including the reduction to the integrable discrete
vector NLS equation (1.3.10).

For pedagogical reasons we study separately the scalar and the vector cases.
We believe that understanding the scalar case is helpful in the comprehension
of the vector systems. We have followed a similar outline in each chapter.
For each system, we give explicit conditions on the solution of the evolution



