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1
MAKING PREDICTIONS

When ancient societies wished to discover what the future held for

them they consulted their soothsayers. The methods by which the

soothsayers made their predictions now appear to us as quite strange:

observing the entrails of animals, noting the position of the planets

or viewing the gleam of sacred stones.

Nowadays we prefer predictions to be based on scientific theories.

Most branches of science embody assumptions (or laws) which can be

expressed as mathematical equations. Predictions are made by solv-

ing the mathematical equations and then interpreting their solutions

in terms of the original scientific problem. In this chapter we illus-

trate these ideas by drawing on just one area of science: the theory

of population growth. This area is sufficiently familiar that its basic

assumptions can be understood easily. At the same time, the equa-

tions to which it leads can have solutions with extremely complicated

behaviour patterns, leading to chaos.

The chaotic behaviour of the solutions has far reaching implications

for the future of scientific endeavour: for many scientific experiments,

accurate predictions of the long term outcomes may not be possible.
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1.1 MATHEMATICAL MODELS

In most scientific theories the assumptions (or laws), and the equa-
tions to which they lead, do not represent the original problem with
complete accuracy. Hence the equations (and the assumptions) are
only a model whose purpose is to capture the essential features of the
original problem while ignoring incidental details.

Predictions about the outcome of the problem are then made by
solving the equations. If the predictions of the theory do not agree
with the observed outcomes to the desired accuracy, the assumptions
of the model are modified to bring them more closely into line with
reality, new predictions are made and the process repeated.

Population growth

Many different mathematical models have been constructed for popu-
lation growth and they will be our main concern in this chapter. Each
of these models is an equation which expresses the rate at which the
population is growing in terms of the size of the population.

From the mathematical model we hope to be able to determine the
number N of individuals in the population at any later time t. Thus
we are assuming that N is a function of t and we would like to be
able to find this function as explicitly as possible. A simple formula
expressing N in terms of t would be the ideal solution, but if this is
not possible we would at least like to have a graph showing how N

behaves as t increases.

Since a population grows by successive addition of individuals, N
must be a discontinuous function of t. Between two consecutive times
at which individuals are added, the population N will remain con-
stant. Hence the graph of N against t must be that of a step function.

Figure 1.1.1 shows graphs of two step functions. The values of
step function (b) have smaller jumps than those of step function (a).
Although step functions are discontinuous, in practice they can ap-
proximate continuous functions very closely. It is not hard to imagine
that if all of the jumps were small enough then the graph of the step
function would be indistinguishable, for practical purposes, from that
of a continuous function.
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Fig. 1.1.1 Two step functions (a) and (b). In each case, the population stays
constant during a time-interval, and then jumps to a new constant value.

These considerations lead us to consider two main types of models
for population growth: continuous and discrete. We now show how
to recognize each type.

Continuous models

The assumption underlying these models is that the size of a popula-
tion varies continuously with time. As noted above, this assumption
can never be strictly true. It is, nevertheless, a reasonable approxi-
mation for large populations with no preferred breeding season: for
example, human populations or large populations of yeast cells. In
such cases the addition of a few individuals will make so little differ-
ence to the overall population that an illusion of continuous variation
will be produced.

Fig. 1.1.2

Data from Carlson (1913),

for a population of yeast cells.

In Figure 1.1.2 the observed values for the number of yeast cells in
a growing population are plotted. Since this is a population for which
a continuous growth model is appropriate, we get the population–time
graph by drawing a continuous curve through these points.
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Fig. 1.1.3

Drawing a continuous curve

through the points gives N

as a continuous function of t.

An elongated–S (or sigmoidal) curve , as shown in Figure 1.1.3, is
often associated with a continuously growing population in an envi-
ronment with only limited food supply. A continuous mathematical
model – one which predicts the sigmoidal shape of the curve – will be
discussed in the next section.

Discrete models

These models are appropriate for populations which have specific
breeding seasons. Because large numbers of the population all breed
at the same time there is a perceptible jump in the size of the popu-
lation at the end of each breeding season. Thus the assumption un-
derlying these models is that the size of a population changes abruptly
at equally spaced times. Many types of insects breed in this way, at
equally spaced intervals of time.

Graphs: For discrete models there are various ways of representing
population against time on a graph. One way is as a step function.

Fig. 1.1.4

The breeding seasons are

equally spaced, hence the

steps have equal width.

Note that there is no change in population between consecutive
breeding seasons. It is thus appropriate to measure the size of the
population at the end of each breeding season.

This allows us to regard the time t as being a non-negative integer
0, 1, 2, . . . . Hence the graph of population against time consists of
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discrete points corresponding to these measurements as illustrated in
Figure 1.1.5.

Fig. 1.1.5

In a discrete model, we regard the

time t as a non-negative integer.

Hence the graph of the population

N against the time t consists of a

sequence of isolated points.

A graph which consists of discrete points, as in Figure 1.1.5, is a
theoretically adequate way to represent the data for a discrete model.
In practice, however, it is customary to join the dots by line segments
to make the pattern of the dots more apparent. Joining the dots we
obtain the graph in Figure 1.1.6.

Fig. 1.1.6

The line segments joining the

dots are not part of the graph.

They are there to help us see

how N varies from one

generation to the next.

Growth patterns

The growth curves for continuous models are typically predictable sig-
moid curves whereas for discrete models there is a variety of possible
growth patterns. They include not only monotonic behaviour but also
oscillatory and chaotic behaviour.

Some typical growth patterns for weevils – for which discrete mod-
els are appropriate – are shown in Figure 1.1.7.
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6 Chapter 1 Making predictions

(a) Callosobruchus chinensis

(Fujii, 1968);

(b) Callosobruchus maculatus

(Utida, 1967);

(c) Callosobruchus maculatus

(Fujii, 1968).

Fig. 1.1.7 Population changes in laboratory cultures of three different strains
of weevils. (Note that the axis which we normally label with the time t is here
labelled generations. You can think of the first generation as occupying the time
interval 0 ≤ t ≤ 1. Then think of the population during generation 1 as the
population when t = 0.)

Exercises 1.1

1.1.1. Give examples of populations in each category:

(a) a continuous model is appropiate,

(b) a discrete model is appropriate.

1.1.2. For each of the graphs in Figure 1.1.7 :

(a) for how many generations are the number of weevils plotted?

(b) what is the number of weevils during the fifth generation?

(c) what is the population when the time t = 3 ?
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1.2 CONTINUOUS GROWTH MODELS

This section contains two models for the continuous growth of a pop-
ulation. The first is a very simple model in which the effect of limited
food and space on the growth are ignored. In the second model, these
limitations are taken into account.

In each case we let N denote the number of individuals in the
population at time t. As we are going to use a differential equation
as the model, we ignore the fact that N , the number of individuals
in the population, must be a whole number and we suppose instead
that N is some differentiable function of the time t. In each model
the derivative

dN

dt

is the rate of increase of the population at time t. Hence the ratio

1
N

dN

dt

where N > 0 is the rate of increase of the population per individual. It
is, on average, the number of offspring which each individual produces
per unit time and is therefore called the individual reproduction rate .
If deaths, as well as births, are to be considered then the above ratio
is equal to {birth rate} – {death rate} per individual. It can then be
negative, but not less than −1.

Unlimited growth model

The simplest model of continuous growth is the assumption that, for
a given type of population in a specified environment, the individual
reproduction rate remains constant. This assumption can be written
as a mathematical equation

1
N

dN

dt
= r,

where r is a constant, and hence as

dN

dt
= rN. (1)
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Thus we have derived a differential equation, which is the mathe-
matical expression of our modelling assumption for population growth1.
The differential equation has the solution

Nt = N0 exp(rt). (2)

We assume enough data is available to determine the constant r. The
solution then enables us to predict the size Nt of the population at
any time t from its initial value N0. For r > 0 the population grows
exponentially, as indicated in the graph of the solution in Figure 1.2.1.

Fig. 1.2.1

The unlimited growth which the

differential equation (1) predicts.

Thomas Malthus (1766 –1834) wrote extensively on the tendency of
human populations to grow exponentially. For this reason, the above
model is often referred to as the Malthusian model.

Limited growth model

For exponential growth to continue indefinitely it is necessary to as-
sume unlimited space and unlimited food supply. In real life, however,
population growth is restricted by food, space and other necessities of
living. The simplest and most familiar model taking this into account
will now be described. It was first introduced in 1844 by Pierre-
François Verhulst (1804 –1849).

In this model it is assumed that, due to the limitations of the
environment, the population has a maximum sustainable size K and

when the size of the population approaches K,
the individual reproduction rate approaches 0.

It is also assumed that

when the size of the population is close to 0,
the individual reproduction rate is close to a number r > 0.

1The differential equation (1), unlike the modelling assumption, still makes
sense when N = 0. Putting Nt = 0 for all t gives a constant solution of (2).
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The simplest assumption for the individual reproduction rate con-
sistent with these two assumptions is that it equals a linear function
of N which drops from r to 0 as N increases from 0 to K. Hence

1
N

dN

dt
= r

(
1− N

K

)
,

and so
dN

dt
= rN

(
1− N

K

)
. (3)

Here K is called the carrying capacity of the environment and r is
called the intrinsic reproduction rate. The differential equation (3)
expresses Verhulst’s model of population growth mathematically. It
is called the logistic equation. Note that the differential equation has
the constant solutions Nt = 0 and Nt = K. This equation also has
the solution

Nt =
K

1 + ((K/N0)− 1)e−rt
. (4)

where N0 > 0 denotes the initial population, when t = 0. We assume
enough data is available to determine the constants r and K. From
the solution (4) we can then predict the size of the population at any
time t provided that we are given its initial value N0. Note that as
the time t becomes indefinitely large, the population approaches the
carrying capacity K and the growth rate approaches zero. The graph
of a typical solution is given in Figure 1.2.2.

Fig. 1.2.2

The limited growth predicted

by the differential equation (3).

How well does the logistic model predict the growth behaviour
of actual populations? For example, how well does it predict the
growth of a population of yeast cells given in Figure 1.1.2 ? According
to [Em]2 it is a reasonably good predictor for bacteria, yeast, and

2References are given at the end of each chapter.
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protozoans. For laboratory populations of water fleas, Daphnia, fruit
flies, Drosophila and sheep it gives a fair fit to data.

In both of our models, whether for limited or unlimited growth,
the solutions of the differential equations are given by simple formulae
which can be used to make the predictions. Because of this, we say
that the solutions can be expressed in closed form.

Exercises 1.2

1.2.1. This exercise refers to the differential equation, with r constant,

dN

dt
= rN.

(a) Show, by separatiing variables, that for N �= 0 the solution is

Nt = N0 exp(rt).

(b) Show the general shape of the graph of a solution in the case
r < 0 and N0 > 0.

(c) What would you say is happening to the population being mod-
elled by this differential equation when r < 0?

1.2.2. This exercise refers to the following differential equation:

dN

dt
= rN

(
1− N

K

)
(r and k constant).

(a) Show, by separating variables, that for N �= 0,K the solution
is

Nt =
K

1 + ((K/N0)− 1)e−rt
.

(b) What does the logistic equation predict when the initial size of
the population is greater than the carrying capacity?

1.2.3. For each of the differential equations in the above exercises,
find all the constant solutions and discuss their biological in-
terpretation.
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1.3 DISCRETE GROWTH MODELS

This section is mainly about discrete versions of the two continuous
models considered in the previous section.

The basic change is to consider the population only at a set of
times which are equally spaced, say at unit time apart. Hence we
regard Nt, the population at time t, as being defined only when t is
restricted to the values 0, 1, 2, . . . .

In place of the derivative, we now have the difference Nt+1 −Nt.

This represents the rate of increase in population during the time in-
terval from t to t+ 1. Hence

1
Nt
(Nt+1 −Nt)

is the the rate of increase of population per individual during the given
time interval.

Unlimited growth model

The simplest model of discrete growth assumes that the individual
reproduction rate is constant ; that is

1
Nt
(Nt+1 −Nt) = r

where r is constant, so Nt+1 = Nt + rNt and hence

Nt+1 = Nt(1 + r). (5)

This is an example of a difference equation. Since (5) is to hold for
t = 0, 1, 2, 3, . . . , it is equivalent to the infinitely many equations

N1 = N0(1 + r)

N2 = N1(1 + r)

N3 = N2(1 + r) (6)
... .
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A solution of the difference equation is an infinite sequence of
numbers N0, N1, N2, N3, . . . which satisfies the equations (6).

A way to work out a solution is to pick a starting value N0 and
then use the first of the equations (6) to calculate N1. We repeat this
process: use the second of the equations (6) to find N2. In this way,
calculate successively N1, N2, N3, . . . in terms of N0. This process of
repeated substitution is called iteration.

1.3.1 Example Let the sequence N0, N1, N2, N3, . . . be a solution

of the difference equation (5). Use iteration to express N1, N2, N3 in

terms of N0.

Solution: Substituting each of the equations in (6) into the equation
which follows it gives in turn

N1 = N0(1 + r)

N2 = N1(1 + r) = N0(1 + r)(1 + r) = N0(1 + r)2

N3 = N2(1 + r) = N0(1 + r)2(1 + r) = N0(1 + r)3.

The above results suggest more generally that every element Nt

of the solution can be obtained from the formula

Nt = N0(1 + r)t. (7)

The validity of this general formula can be proved by mathematical
induction or, alternatively, by checking that

(a) it gives the correct initial value and

(b) when substituted in the difference equation (5) it makes both

sides equal.

The following example illustrates this method.

1.3.2 Example Show, by substitution, that the formula (7) gives

the solution of the difference equation (5) with initial value N0.

Solution: Putting t = 0 in (7) gives the initial value N0(1+r)0, which
is correctly equal to N0.
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Substituting (7) into the difference equation (5) gives, moreover,

LHS = Nt+1 = N0(1 + r)t+1

RHS = Nt(1 + r) = N0(1 + r)t(1 + r) = N0(1 + r)t+1.

Thus the two sides are equal. Hence (7) gives the solution of (5)
satisfying the required initial condition.

We say that (5) has a closed form solution since we have been able
to find a simple formula for the solution. It is only in exceptional
cases, however, that we shall be able to do this.

Limited growth model

The assumptions here are analogous to those in the limited growth
model for continuous growth in the previous section. Hence

1
Nt
(Nt+1 −Nt) = r

(
1− Nt

K

)

and so

Nt+1 = Nt + rNt

(
1− Nt

K

)
. (8)

This difference equation is our limited growth model for discrete
growth.

Other models

Other models are given by the difference equations

Nt+1 = λNt(1 + aNt)−β (9)

and
Nt+1 = λNt exp(−αNt). (10)

In both (9) and (10) λ is the growth rate when the population is small
and a, α and β are constants.

It was easy to show that the difference equation (5) has a closed
form solution. Deciding whether (8), (9) and (10) have closed form
solutions is not so easy. In principle, however, we can solve them
using iteration. Their solutions have a variety of types of behaviour:
monotonic, cyclic, damped oscillatory and chaotic.
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The growth model (8) is of limited interest to biologists. It is
hard, in fact, to find population data which can be predicted by it. It
has the unrealistic feature, moreover, that if Nt is large enough, then
Nt+1 will be negative. In the last two models, however, by choosing
the parameters we can get solutions to fit any one of the three sets
of observations given in Figure 1.1.7. Hence these models appear to
be more realistic than (8). Each of the models in (8) and (9) may be
derived from a particular set of biological assumptions.

Scaling and parameters

The two constants r and K which appear in the difference equation
(8) are called parameters. The idea behind this terminology is that
(8) is essentially not just one difference equation but a family of such
equations — one equation for each choice of r and K. This gives
us flexibility in modelling, since we can choose these numbers in a
way which best fits the data for a particular population in a given
environment.

A standard technique in mathematical modelling is rescaling so as
to lump together as many parameters as possible into a single param-
eter. We shall illustrate this by showing how the two parameters in
(8) can be replaced by one parameter µ.

To achieve this, the trick is to introduce a ‘scaled’ population xt

in place of Nt by putting

xt =
r

(r + 1)K
Nt (t = 0, 1, 2, . . . ).

Solving this equation for Nt and then substituting in (8) gives the
difference equation

xt+1 = µxt(1− xt) (11)

where µ = 1 + r. This gives the scaled population at the end of
the (t + 1)th breeding season in terms of that at the end of the tth

breeding season. The difference equation (11) is called the discrete
logistic equation (with parameter µ.)
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Exercises 1.3

1.3.1. A solution x0, x1, x2, x3, . . . of a difference equation is said to
be constant if all of the x’s are the same. Find all the constant
solutions of the difference equation

xt+1 = xt(1− xt) (t = 0, 1, 2, 3, . . . ) .

1.3.2. Let µ > 0. Repeat Exercise 1 for the difference equation

xt+1 = µxt(1− xt).

1.3.3. For each of the difference equations given in the text, find all
the constant solutions.

1.3.4. This exercise refers to the solution of the difference equation

xt+1 = (xt)2

which satisfies the initial condition x0 = 2.

(a) Use iteration to find the next three elements x1, x2, x3 of the
solution.

(b) Guess a general formula for xt. Check your answer by substi-
tuting it in the difference equation.

(c) What happens to xt as t approaches ∞?

1.3.5. Repeat Exercise 4, but this time use the initial condition x0 =
1. What do you notice about the solution?

1.3.6. This exercise refers to the solution of the difference equation

xt+1 =
√
xt

which satisfies the initial condition x0 = 64.

(a) Use iteration to find the next three elements x1, x2, x3 of the
solution.

(b) Guess a general formula for xt, valid for t = 0, 1, 2, 3, . . . .
Check your answer by substituting it in the difference equation.

(c) What happens to xt as t approaches ∞?
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1.3.7. Repeat Exercise 6, but this time use the initial value x0 = 1.
What do you notice about the solution?

1.3.8. We can define the sum sn = 1+2+3+ · · ·+(n− 1)+n of the
first n positive integers recursively by putting

s1 = 1

sn+1 = sn + (n+ 1) (for n = 1, 2, 3, . . . )

(a) Check that the solution to this difference equation which sat-
isfies the initial condition is obtained by putting

sn =
n(n+ 1)
2

(b) For the purpose of calculating, say s1000, which do you think
is the more convenient:

• iteration using the difference equation (1), or
• using the quadratic formula for the solution from part (a) ?

1.3.9. Derive the scaled form (11) of the difference equation (8).

(a) in the special case where r = 1 and K = 2,

(b) in the general case where there is no restriction on these pa-
rameters.

[Hint. In each case first write the substitution so it expresses
Nt in terms of xt.]

1.3.10. By using a suitable substitution, show how to reduce the dif-
ferential equation

dN

dt
= rN

(
1− N

K

)

to a differential equation involving just one parameter.

[Hint. This differential equation is the continuous analogue of the
difference equation (8) in the text.]
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1.4 NUMERICAL SOLUTIONS

In this section we look briefly at the behaviour of solutions of the
discrete logistic equation

xt+1 = µxt(1− xt) (12)

As we mentioned in the previous section, iteration is used to work
out solutions of discrete equations. It is known that (12) has a closed
form solution when µ = 2 and µ = 4. For any other values of µ, we
do not know whether (12) has a closed form solution. We use the
next example and graphs of solutions to illustrate the behaviour of
the solutions of (12) for various values of µ.

1.4.1 Example Let µ = 1. Use iteration to find the first four

elements of the solution (x0, x1, x2, x3, . . . ) of (12) which satisfies the

initial condition x0 = 2. Guess what happens to xt when t is large.

Solution: Replacing µ = 1 in the formula and x0 = 2 we get

x1 = x0(1− x0) = −2
x2 = x1(1− x1) = −6
x3 = x2(1− x2) = −42.

We guess that as t increases xt becomes increasingly large and nega-
tive, so we guess that xt approaches −∞ as t approaches ∞.

More generally, for initial values outside the interval [0, 1] the sol-
utions very quickly approach minus infinity; hence we are normally
interested only in solutions with initial values in [0, 1].

Graphs of solutions

The graph of the solution of a difference equation is obtained by plot-
ting the value of xt against t. Typical graphs of solutions of a differ-
ence equation are shown in Figure 1.4.1. If enough points are plotted
on the graph, we can sometimes guess the behaviour of the solution
from the pattern of the dots.
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In Figure 1.4.1 we plot the solution of the discrete logistic equation
(12) with initial value x0 = .85, for different values of µ. As µ increases
we observe different types of behaviour.

(a) For µ = 2.5 the so-
lution tends toward a sin-
gle value. (For 1 ≤ µ ≤
3, the results are similar.
The limiting value increases
gradually as µ increases.)

(b) For µ = 3.1 the solu-
tion eventually settles down
to oscillate between two spe-
cific values.

(c) For µ = 3.5 the solu-
tion eventually settles down
to oscillate between four spe-
cific values.

(d) For µ = 4 the solution
appears to bounce around
in a random fashion. This
looks like chaos!

Fig. 1.4.1 The above results suggest that the solutions of the difference equation
become more complicated as µ increases. In particular, the solution with initial
condition x0 = .85 evolves from a constant (when µ = 2.5) to an oscillation
between two specific values (when µ = 3.1) to an oscillation between four specific
values (when µ = 3.5) and finally to chaos (when µ = 4.)
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Exercises 1.4

1.4.1.

(a) Use iteration to find the solution of the difference equation

xt+1 = −xt (t = 0, 1, 2, 3, . . . )

with initial value x0 = 1. Sketch the graph of the solution and
describe its behaviour verbally.

(b) Repeat part (a) when the initial condition is x0 = −1.

1.4.2. Use iteration to find the solution of the difference equation

xt+1 = 4xt(1− xt) (X)

which satisfies the initial condition x0 = 1
2 . Sketch the graph

of the solution and describe its behaviour verbally.

1.4.3. Consider the difference equation

yt+1 = 4yt(1− 2yt). (Y)

(a) Show that if you make the ‘change of variables’ yt = 1
2xt then

you get the difference equation (X) of Exercise 2.

(b) Which change of variables, when applied to the difference equa-
tion (X), gives the difference equation (Y) ?

(c) Use the solution you found for the difference equation (X) and
the change of variables from part (a) to deduce a solution of
(Y).

1.4.4. Find c ∈ R such that, under the change of variables xt = yt+c,
the difference equation

xt+1 = 2xt + 1

reduces to the difference equation

yt+1 = 2yt.
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1.5 DYNAMICAL SYSTEMS

In this chapter we have used models for population growth as an
introduction to dynamical systems: the population changed with time
and we wanted to make long-term predictions about its growth. We
were interested in such questions as:

(a) Does the population become indefinitely large as time increases?

(b) Does the population eventually die out ?

(c) Does the population increase monotonically or does it oscillate
about some value?

(d) Are there values of the parameters for which the population
grows in a chaotic, unpredictable way?

To answer these questions, we set up mathematical models describing
the rate of growth of the population and then solved, or attempted
to solve, the resulting differential or difference equations.

Population growth, however, is only one of many areas in which
the idea of a dynamical system arises. Devaney describes dynami-
cal systems as ‘the branch of mathematics that attempts to describe
processes in motion’. He goes on to say that

Such processes occur in all branches of science. For example, the
motion of the stars and the galaxies in the heavens is a dynami-
cal system, one that has been studied for centuries by thousands
of scientists. The ups and downs of the stock market is another
system that changes in time, as is the weather throughout the
world. The changes chemicals undergo, the rise and fall of popula-
tions, and the motion of a simple pendulum are classical examples
of dynamical systems in chemistry, biology and physics. Clearly
dynamical systems abound [De2].

What is important about ‘dynamical systems’, of course, is that
there is a law which describes their evolution over time. In the models
of population growth studied in this chapter, the law was given by a
differential equation or a difference equation.

To model real world situations, such as those described by De-
vaney, the first step often is to find the right differential or difference
equation — one whose solutions model the observed evolution. As




