The process of programmed cell death or apoptosis has, in the past decade, been shown to be centrally involved in the pathogenesis of the significant majority of human illnesses and injury states. The cellular attrition observed in most degenerative conditions is apoptotic in nature; conversely, a failure of apoptosis has been proposed to underlie many forms of cancer. The central role of apoptosis in human disease clearly brings with it clinical promise: for example, the strong possibility exists that attenuation of apoptotic death will significantly modulate the severity of degenerative disorders. Similarly, conditions such as cancer, autoimmune disease, psoriasis, and endometriosis, in which aberrant cellular proliferation is observed, may benefit from enhanced rates of apoptosis. This book surveys the underlying molecular mechanisms of apoptosis, investigates its role in degenerative and other diseases, and evaluates potential therapies that will permit appropriate activation or inhibition of apoptosis in disease and injury states.

Martin Holcik, Ph.D. is a scientist at the Apoptosis Research Centre of the Children’s Hospital of Eastern Ontario. He is also a Canadian Institutes of Health Research New Investigator.

Eric C. LaCasse, Ph.D. is a scientist and Group Leader at Aegera Oncology Inc., a biotech company founded on the initial discovery of the cellular inhibitors of apoptosis.

Alex E. MacKenzie, M.D., Ph.D. is a molecular geneticist and an attending pediatrician at the Children’s Hospital of Eastern Ontario. He was the leader of the spinal muscular atrophy positional cloning effort which, in 1995, resulted in the isolation of the NAIp gene.

Robert G. Korneluk, Ph.D., F.R.S.C. is a well-recognized human molecular geneticist with an established track record in cloning inherited human disease genes, notably the gene for myotonic dystrophy in 1990. He is a director of Apoptosis Research Center.
Apoptosis in Health and Disease
Clinical and Therapeutic Aspects

Edited by

Dr. Martin Holcik
University of Ottawa

Dr. Eric C. LaCasse
Ægera Oncology Inc.

Professor Alex E. MacKenzie
Children’s Hospital of Eastern Ontario

and

Professor Robert G. Korneluk
University of Ottawa
Contents

<table>
<thead>
<tr>
<th>List of contributors</th>
<th>page vii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>ix</td>
</tr>
</tbody>
</table>

1 Apoptosis in health, disease, and therapy: overview and methodology 1
Eric C. LaCasse, Martin Holcik, Robert G. Korneluk, and Alex E. MacKenzie
1.1 Introduction: life cannot exist without cellular death 1
1.2 Apoptosis: roles in health 10
1.3 Apoptosis: roles in disease 11
1.4 Therapeutic strategies targeting apoptosis 17
1.5 Methods in apoptosis research 24
1.6 Conclusion 28

2 Developmental apoptosis in health and disease 49
Hyung Don Ryoo and Hermann Steller
2.1 Introduction 49
2.2 Apoptosis in *C. elegans* 50
2.3 Apoptosis in *Drosophila* 54
2.4 Apoptosis during mammalian development 61

3 Apoptosis and cancer 75
Erinn L. Soucie, Gerard Evan, and Linda Z. Penn
3.1 Introduction 75
3.2 Defining cancer in apoptotic terms 75
3.3 Molecular mechanisms of apoptotic deregulation in cancers 77
3.4 Reactivating the death pathway to combat cancer 82
3.5 On the horizon 88
3.6 Conclusions 89

4 Neuronal cell death in human neurodegenerative diseases and their animal/cell models 96
Lee J. Martin, Zhiping Liu, Juan Troncoso, and Donald L. Price
4.1 Introduction 96
4.2 Types of cell death 96
4.3 Molecular and cellular regulation of apoptosis 102
Contents

4.4 Regulation of developmental PCD in the nervous system 115
4.5 Cell death in human neurodegenerative diseases 115

5
Apoptosis in the cardiovascular system: incidence, regulation, and therapeutic options 156
Martin R. Bennett
5.1 Incidence of apoptosis 156
5.2 Regulation of apoptosis 162
5.3 Therapeutic options for apoptosis treatment 170
5.4 Outstanding questions 174
5.5 Summary 175

6
Cytotoxic lymphocytes, apoptosis, and autoimmunity 188
Pere Santamaria and R. Chris Bleackley
6.1 Introduction 188
6.2 Cell-mediated cytotoxicity; kissing the offender 189
6.3 TNF/TNFR family members and CTL killing without target cell engagement: looks can kill 192
6.4 Apoptosis and autoimmunity 194
6.5 Concluding remarks 204

7
Pro- and anti-apoptotic strategies of viruses 219
Helmut Fickenscher, Bernhard Fleckenstein, and Armin Ensser
7.1 Introduction 219
7.2 Major anti-apoptotic pathways targeted by viruses 220
7.3 Specific viral strategies to induce or block apoptosis 228
7.4 Conclusions 234

Index 246
Contributors

Martin R. Bennett
British Heart Foundation Professor of Cardiovascular Sciences, Unit of Cardiovascular Medicine, Addenbrooke’s Centre for Clinical Investigation, Level 6, Box 110, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 2QQ, UK

R. Chris Bleackley
Department of Biochemistry, University of Alberta, Faculty of Medicine and Dentistry, Edmonton, Alberta T6G 2H7, Canada

Armin Ensser
Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany

Gerard Evan
Cancer Research Institute, Box 0875, University of California San Francisco, San Francisco, CA 94143-0875, USA

Helmut Fickenscher
Abteilung Virologie, Hygiene-Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany

Bernhard Fleckenstein
Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany

Martin Holcik
Department of Pediatrics, University of Ottawa and Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, Canada, K1H 8L1

Robert G. Korneluk
Departments of Pediatrics, and Biochemistry, Microbiology and Immunology, University of Ottawa and Apoptosis Research Centre, Children’s Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, Canada, K1H 8L1

Eric C. LaCasse
Ægera Oncology Inc., Room 306, Children’s Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, ON, Canada, K1H 8L1

Zhiping Liu
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
List of contributors

Alex E. MacKenzie
Department of Pediatrics, University of Ottawa and Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa, ON, Canada, K1H 8L1

Lee J. Martin
Department of Pathology, Division of Neuropathology, Neuroscience, and Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

Linda Z. Penn
Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario, Canada, M5G 2M9

Donald L. Price
Department of Pathology, Division of Neuropathology, Neuroscience, and Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA

Hyung Don Ryoo
Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, Box 252, New York, NY 10021, USA

Pere Santamaria
Department of Microbiology and Infectious Diseases and Julia McFarlane Diabetes Research Centre, Faculty of Medicine, The University of Calgary, 3330 Hospital Drive NW, Calgary, Canada, T2N 4N1

Erinn L. Soucie
Department of Medical Biophysics, University of Toronto, Ontario Cancer Institute, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario, Canada, M5G 2M9

Hermann Steller
Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, Box 252, New York, NY 10021, USA

Juan Troncoso
Department of Pathology, Division of Neuropathology, Neuroscience, and Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
Multicellular organisms are remarkable in their complexity, comprised of an almost unimaginably diverse array of molecular mechanisms enabling the propagation, differentiation, and maintenance of their component cells. But just as there exist precisely programmed mechanisms to generate and maintain the cellular constituents of metazoans, so too there exist elaborate means of ending the lives of cells. Homeostasis is achieved at the cost of a certain intolerance; cells have defined life spans, limited ability to deal with physical, chemical, electrical, thermal, or biologic stress, and a narrow scope of acceptable behavior, deviation from which rapidly results in death. Thus, cells which have served their purpose in development, have reached the end of their natural life span post-development, have sustained an injury, or in some way have become dysregulated conduct a rapid self-disassembly and then die efficiently, committing suicide. This programmed cell death or apoptosis is a natural ongoing process, necessary for life. As logical as this state of affairs may appear in hindsight, a full appreciation has only come over the last two decades.

Although, as might be expected, the number of molecular pathways enacting this cellular attrition pales in comparison with that required to generate a cell, they are nonetheless remarkably complex. The past decade has witnessed the delineation of many, and likely most, of the central molecular mechanisms and the constituent parts by which apoptosis occurs. This gratifying molecular progress leads directly to the question of therapeutic relevance. Just as “normal” programmed cell death is essential for life, dysregulated programmed cell death is observed in the significant majority of diseases and injury states. The ubiquity of such dysregulation invokes the obvious question: does the pharmacologic or biologic modulation of this process impact disease severity? In the following pages, internationally recognized experts attempt to address this central and still largely unanswered question showing where we are in the pursuit of apoptosis modulation-based therapies.

This book attempts to summarize some of the key apoptosis findings and how they apply to medicine. This general subject is vast and cannot be justly covered in a single chapter or book. In addition, we apologize to our many colleagues whose work could not be cited for lack of space.