Cambridge University Press

0521525837 - Integration-Ready Architecture and Design: Software Engineering with XML, Java, .NET, Wireless,
Speech, and Knowledge Technologies

Jeff Zhuk

Excerpt

More information

. CwprR1
Collaborative Engineering

COllaborative engineering is an important subject that is currently missing in schools,
although some courses include a few of its aspects. I doubt I can cover it all at once, but I
will try my best to integrate development technology and the development process under
one roof, where integration-ready systems can be created.

Technology tends to fragment: to focus on pieces and omit the glue. The development
philosophy that I associate with the terms of collaborative engineering helps keep a better
balance between a narrow focus on particular components and their multiple connections
to the rest of the world. The practice of collaborative engineering also assists in establish-
ing a repeatable—yet flexible and constantly improving—development process. This is the
foundation for integration-ready systems development.

What is collaborative engineering all about? It is about the development process in its
organization, management, and methodology, integrated with innovative development tech-
nologies. I have had the privilege of teaching corporate developers and architects in the
United States and overseas. Many times, I have had the amazing feeling that some of my
brightest students, experienced developers, knew all the pieces of the puzzle and still could
not start putting them together.

For example, almost every programmer knows one of the main design rules: Separate
business from presentation logic. However, there are still more cases that break this rule
than cases that follow it. One of the hardest questions is how to apply the rule properly.

Some developers believe that although theory is good, it is too costly for real life. This
myth prevents many of them from developing the skills (in everyday practice) to quickly
apply an existing design pattern or recognize a new one that will solve the problem “once
and forever” and allow them to move on to other problems.

Guided by this myth, we win time and money on separate projects but miss the bigger
picture, in which the industry pays a high price for overall inefficiency as well as data and
service replication.

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521525837
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521525837 - Integration-Ready Architecture and Design: Software Engineering with XML, Java, .NET, Wireless,
Speech, and Knowledge Technologies

Jeff Zhuk

Excerpt

More information

2 COLLABORATIVE ENGINEERING

I think that by teaching separate pieces of the art and science of development, we omit
the glue, the philosophy of programming that helps us find the right balance between “do
it simply” and “do it once,” which sometimes leads to beautiful solutions in which the two
rules are not in conflict but are happily married.

Software is built from big and small blocks selected by architects and developers. In the
top-to-bottom development pattern, the big blocks are selected first; the developers then try
to fill the holes with the smaller blocks. During this process, they often find that the original
direction of the design was wrong and there is a need for remodeling.

How can you start walking in the right direction before you can see the end of the road?
Even some good developers cannot begin a project until they can see all the details involved.
Unfortunately, the scope of enterprise applications and time limits rarely offer this luxury to
developers.

The right answer is a development process that has a framework yet is flexible — a process
that is understood, followed, and enhanced by developers.

At this point, some readers may be thinking that all this talk about a process is man-
agement’s piece of the pie and not something developers need to worry about. Lets read
further and reserve our judgment. We will see later how much the management style and
the development process contribute to overall results.

MANAGEMENT STYLE AS AN IMPORTANT PART OF THE DEVELOPMENT PROCESS:
TRUE LEADERS VERSUS “PURE” MANAGERS

I do not even have time to read my own email reminders; of course I missed yours.
—From a management conversation (the terrible truth)

While working for multiple corporations as a developer or one of the key managers, I
observed different management styles. In very generic terms, I would distinguish two major
tendencies: “pure” management and true leadership. What is the difference between pure
managers and real leaders? Some companies hire managers with little or no background in
the field they are supposed to supervise. Their role is to provide and track plans and serve
as a layer to smooth the edges among groups related to the plan.

However, project management is not just a Microsoft tool. It takes a leader to build a
team, create a teamwork process, and promote best practices and collaborative technologies.
It takes a leader to make decisions with creativity, not just through multiple-choice answers.
Removing unnecessary layers and dealing with leaders instead of managers can greatly benefit
projects, teams, and companies. I have learned this the hard way, working on multimillion
dollar projects, consulting start-up companies, and teaching (and learning from) enterprise
architects.

Shifting the weight of management toward developers enables those developers to grow
and become leaders themselves. This approach focuses more on people than on cur-
rent projects or tasks. It assumes (and this is the right assumption!) that the main as-
sets of a company are people—and teams. The best teams produce the best products and
services.

Workers (e.g., testers, developers, and system administrators) need to communicate and
to translate to managers the essence of the work they are doing.

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521525837
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521525837 - Integration-Ready Architecture and Design: Software Engineering with XML, Java, .NET, Wireless,
Speech, and Knowledge Technologies

Jeff Zhuk

Excerpt

More information

Management Style as an Important Part of the Development Process 3

This takes minutes if a manager is a leader who knows the work. It takes hours for a
pure manager who tries to learn a subject on the fly. The next time a worker wants to play a
similar song with the manager, he or she has to start from the first music class—this note is
called A, this is a C sharp—again and again. Even then, only a fraction of the information is
retained.

Why? The orchestra conductor (the manager) is not a musician at all. (I know that many
are, in a more literal sense.) There is no background where information can be stored. A pure
manager often feels forced to choose between several opposing voices or lines in a document,
and each voice or line sounds and looks the same as the others.

The management process often turns into a game for such a person, a game with the
following rules:

* Use buzzwords, preferably generic (e.g., “stay focused!”) or at least technological (e.g.,
“scalable solution!”).

* Do not translate words into actions. Actions can be punished, because any action can be
less than 100 percent safe, or incomplete, or not quick enough. Words are always right
(“stay focused!”).

A leader owns the solution that he or she created. This ownership feeling is at the heart of
the development of any creative process. (I just read that again, and it looks like a line from
Ayn Rand.) In this context, ownership means responsibility to make and foresee changes, fix
problems, and answer all questions related to the solution.

Pure management removes ownership feelings, destroys creativity, and makes people
“come and go.” Every developer in the team is a leader who owns and has full responsibility
for a specific area. Experienced developers with teamwork skills become the best managers
or leaders.

On the opposite extreme of this spectrum is a leader who owns all the solutions, thus has
a hard time delegating responsibilities. Such leadership can improve product quality in the
short term (if this leader is the most experienced developer).

At the same time, this “babysitting” removes the ownership feelings of the others and
prevents developers from growing on the job while making all the development tasks a
sequential process funneling through a single leader-bottleneck. A leader should trust and
delegate.

Product design and project management are interrelated. 1 recommend a practice in which
team leaders are not only responsible for the part of the project delivered by their team, but
also personally involved in that part’s integration into the overall project. Leaders keep teams
and projects together as orchestra conductors do with musicians and music.

Where is the border between a leader and a pure manager? We all have elements of both,
in different proportions. We act as pure managers as soon as we start talking about things
beyond our expertise without investing time and effort in learning the field.

Being in a position to issue orders makes the pure manager rather dangerous. Investing
time in active learning is hard—but rewarding—and develops a leader.

“I have no time to even read my email” is a phrase from a Dilbert book. It is still
a very popular line in the management drama. Another extreme is “I have done much
more complicated projects before.” Phrases like these are used to excuse a person from
learning the specifics of a current task or project. Pure managers avoid specifics. This limits

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521525837
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521525837 - Integration-Ready Architecture and Design: Software Engineering with XML, Java, .NET, Wireless,
Speech, and Knowledge Technologies

Jeff Zhuk

Excerpt

More information

4 COLLABORATIVE ENGINEERING

their participation in a development process in which generic frames are filled with specific
details.

DEVELOPMENT METHODOLOGIES: CAPABILITY MATURITY MODEL AND MORE

Some development organizations follow the Capability Maturity Model (CMM), some prefer
ISO 9000 recommendations, and still others use Extreme Programming (XP) or Six Sigma
methodology. None of these models suggests that it is an exhaustive recipe that covers all
cases. The development process that fits your team and project is going to be built and
enhanced by you. The process rules, or steps, should allow flexibility; they cannot be “final,”
in Java terminology.

An Extremely Brief Overview of CMM

The CMM [1] can be used as the basis for diagnosing an organization’s software processes,
establishing priorities, and acting on them. One of the most important goals of CMM (and of
ISO 9000) is the capacity to measure success and reliability of software processes. Measure-
ment results allow for process improvements. Process improvements lead to a maturity level
increase. CMM recognizes five levels of maturity in a software development process. Each
level comprises a set of process goals that, when satisfied, stabilize an important component
of the software process.

1. Initial. The process is characterized as ad hoc and occasionally even chaotic. Few processes
are defined, and success depends on individual effort and heroics. Delivery dates for
projects of similar size are unpredictable and vary widely.

2. Repeatable. Basic project management processes are established to track cost, schedule,
and functionality. The necessary process discipline is in place to repeat earlier successes
on projects with similar applications.

3. Defined. The software process for both management and engineering activities is docu-
mented, standardized, and integrated into a standard software process for the organiza-
tion. All projects use an approved, tailored version of the organization’s standard software
process for developing and maintaining software.

4. Managed. Detailed measures of the software process and product quality are collected.
Both the software process and the products are quantitatively understood and controlled.

5. Optimizing. Continuous process improvement is enabled by quantitative feedback from
the process and from piloting innovative ideas and technologies.

The International Organization for Standardization provides an ISO 9000 document
that serves as a standard to certify processes and procedures. Whereas CMM focuses
strictly on software development, ISO 9000 has a much broader scope: hardware, soft-
ware, processed materials, and services. CMM provides many more details and measurement
criteria.

The bottom line of both methods includes “document before acting,
or “say what you do, and do what you say.”

” W

plan and follow,”

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521525837
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521525837 - Integration-Ready Architecture and Design: Software Engineering with XML, Java, .NET, Wireless,
Speech, and Knowledge Technologies

Jeff Zhuk

Excerpt

More information

Distributed Collaborative Development 5

EXTREME PROGRAMMING: RULES OF THE GAME

Extreme Programming methodology gains more popularity every year. This section provides
an overview of key XP concepts. (I can almost hear an impatient programmer’s voice saying,
“Another extremely brief overview? When are we going to see source code?”)

Software development is not just about coding, as the art of painting is not just about the
right paint selection. The heart of XP is a team of developers able and willing to communicate,
plan, and design before coding. The team owns projects and processes and has fun planning
and playing the project game by its own rules (“establish and follow”). A subset of XP rules
is presented in Figs. 1.1 and 1.2. Does this look like XP?

Six Sicma

Six Sigma is another method that focuses on measurements of process capabilities and
offers an integrated approach to shareholder value creation. Six Sigma suggests establishing
seven to twelve measures in two areas: “critical to your business” (efficiency measures) and
“critical to your client” (effectiveness measures). We select important measurement points
that significantly contribute to overall business success.

Now we can consider an equation where business success depends on the measured
functions. Some of them can serve as leading indicators that invite discussions such as “Why
are these measures not moving in the right direction?” This enhances both discussions and
critical thinking. Six Sigma helps to effectively break down complex processes into a matrix
with multiple components and consistently works on component improvements.

Rational Unified Process
Rational Unified Process (RUP) is a method and a tool developed by Rational Company
(currently a part of IBM, Inc.) that describes development as a four-phase process. In the
inception phase, developers define the business outcome of the project. The elaboration
phase considers basic technology and architecture. Developers deal with detailed design and
source code in the construction phase and finally deploy the system in the transition phase.
RUP offers software products that support developers as they walk through the phases.
Who implements the rules of the development process? People. This is the bottom line:
You can select any methodology that fits your organization. Teams with their managers,
leaders, and developers who understand and share the ideas of the methodology will make
it work.

DiSTRIBUTED COLLABORATIVE DEVELOPMENT

Itis not an easy task to establish and follow a system, even for a single company. Can it work
for a collaboration among several teams? Will this change the rules and the process?

Software communities working on common projects have recently suggested several an-
swers to these questions. Two of the best examples are open source communities and the
Java Community Process. However, there are still several factors that limit the success of
collaborative engineering today.

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521525837
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521525837 - Integration-Ready Architecture and Design: Software Engineering with XML, Java, .NET, Wireless,
Speech, and Knowledge Technologies

Jeff Zhuk

Excerpt

More information

6 COLLABORATIVE ENGINEERING

Expect Changes and accept responsibilities (not just those assigned to you)
Design for iterations, minimize time turning design into release
Make the program easier to understand and modify
Never stop source improvements (re-factoring)
Do the simplest things that could work
Keep your team on the same page
Communicate plan and status
Have an on-site customer

An individual person owns no code
The team (and version control!) owns the code
Keep a local version and work in a collaborative space
Integrate code often and always have a working product
Change when change is needed. Look for quick feedback
Shorten the release cycle, and test immediately with automation
Enhance the process, use and enhance tools to support the process

Keep stable quality and and manageble scope under variable time and cost

Program with small team pairs
Pair-programmed code is better and quicker
The keyboard driver focuses on tactics/implementation
The observer looks for errors and thinks about strategy

The partners maintain a dialogue and change roles

Minimize management layers

Trust and Delegate

Figure 1.1. The Rules of the Game (XP).

The motivation for sharing is very low, and there is no flexibility in establishing the rules
of the game: security, roles, access, and so on. The value of the data to be shared or exchanged
is unknown, and a contributor rarely gets her or his reward because the contribution itself
is not accountable.

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521525837
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521525837 - Integration-Ready Architecture and Design: Software Engineering with XML, Java, .NET, Wireless,
Speech, and Knowledge Technologies

Jeff Zhuk

Excerpt

More information

Distributed Collaborative Development 7

For more than a decade, I have worked with remote students and development groups
in trying to overcome these limitations. I came up with several innovations, described in
a corresponding patent application [2] as distributed active knowledge and process tech-
nologies (DKT). DKT supports the process of distributed development and helps to improve
processes while enhancing technologies.

Distributed Knowledge Technologies

Existing on-line collaborative services allow users to share only a limited set of data types,
usually restricted to messages and files, with the rare addition of a shared organizer or other
similar service. This narrows collaborative actions to a small number of fields and introduces
limitations on the scope of possible collaboration and data sharing. Though some users
are satisfied with restricting their collaborative efforts to sharing files and sending group
messages, such systems are often insufficient in scope to allow for efficient workflow in a
real collaborative setting.

Existing services on the Internet also limit their collaborative structure to data objects
and exclude processes. As a result, the large amounts of data that can accumulate in a group
knowledge base cannot be mapped to better processing methods. As the number of data
objects increases, it becomes more and more difficult to use the information contained in
them to efficiently accomplish goals.

Current system structures do not permit users to collaboratively add objects of unknown
data types and a service to process a particular type of data to best suit the goals of a group.
They also prevent the creation and implementation of preprogrammed processes, services,
or scenarios for distributed processing. This further limits collaborative efficiency.

Existing systems own and fully control their collaborative environments. This limits col-
laboration to a single system and does not permit systems to share data or other system
elements. Data, process, and service sharing between systems belonging to different orga-
nizations is an even more complicated issue because there currently is no way for a system
to determine and specify elements appropriate for free public sharing, elements that are to
be shared on a pay-per-use basis, and elements that are to be exchanged for others of equal
value.

Last, current online collaboration is limited by the unwillingness of users to share their
data. Even in a collaborative setting, users rarely desire to make their data available to all
members of their group, and they make adequate security a condition for sharing information.

The backbone of any online collaborative effort is security, and the current methods of
assigning access privileges as a way to make specified data objects available to the appropriate
viewers are inadequate.

Existing systems allow limited role-based privileges for all collaborative data. A common
system has a limited number of privilege levels (in most cases, two). In such a system, if a
user’s profile defines her as an “administrator,” she has read, write, and delete access to all
group data.

If a user is defined as a “member,” he can read and add messages but cannot edit or delete
existing messages. This kind of system is limiting and does not encourage data sharing
because it does not give users control over their data. Users cannot create new custom roles
on the fly, cannot select who has certain kinds of access to the information they choose to
share, and must provide the same level of access to all members within a privilege class.

The willingness of users to share is also limited by their knowledge of other elements inside
and outside the user’s system and of their values. It is important to know how valuable a

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521525837
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521525837 - Integration-Ready Architecture and Design: Software Engineering with XML, Java, .NET, Wireless,
Speech, and Knowledge Technologies

Jeff Zhuk

Excerpt

More information

8 COLLABORATIVE ENGINEERING

particular service or data object is from a user’s point of view. Current systems provide only
the number of times a file has been downloaded and selected positive comments by current
users. A new mechanism is needed to provide and update more meaningful usage and viewer
response information inside the system and between systems.

DKT covers a need that exists for collaborative systems and permits increased flexibility
in the types of data and services that can be shared. It allows data, processes, and services to
be created and modified within the same collaborative framework and permits the mapping
of appropriate data to these processes. DKT systems can notify interested parties on available
objects, processes, and services and provide dynamic evaluation of data and services based
on their usage.

DKT systems can negotiate several forms of collaboration and establish rules of access
for internal members and outsiders (e.g., pay-per-use, and value-based exchange), using
sufficiently flexible levels of data security to foster online collaboration. Sharing can be an
enjoyable habit and an eye- and mind-opening experience (not a medical term).

This new mechanism to value data and services creates an environment of active participa-
tion in which each contribution is accountable. This accountability motivates contributors to
enter this new marketplace, where knowledge and services play the role of virtual currency.
There are many ways of transforming virtual currency to hard currency. What is the exact
mechanism of this transition? Participants will find or invent a good one.

There are plenty of “how to” details and usage descriptions of DTK systems that might
be too boring in the context of this book. They are very well explained in the DKT patent
application published by the U.S. Patent and Trademark Office [2].

24 < 7 DiSTRIBUTED DEVELOPMENT PRACTICES

Especially important for an international development team with members distributed over
the globe and working twenty-four hours a day, seven days a week, are “24x7” distributed
development practices.

Is it possible to achieve coordination, understanding, and cooperation among multiple
teams working in different time zones, speaking different languages, and living in different
cultures? Can distributed development be cost effective and highly efficient at the same time?

Our virtual team was created as a side effect of several years of on-line training. It was a
very attractive concept: to extend time and resources on a global scale. Learning the ABCs
of important team member qualities/abilities and developing a core of “black belts” (in Six
Sigma terms) for each team was, though very beneficial, quite a challenging task.

Collaborative technologies make the development process highly visible for every team
member as well as for the management team. This visibility helps establish and reinforce
teamwork rules. The system forces developers to provide daily and weekly plans and status
reports that improve analysis and design quality. I say “forces” because the plan and status
jobs are the least loved by developers. DKT makes them unavoidable habits. A notification
engine working with the task management systems provides an action-reminder if a needed
action has not yet been taken.

Global collaboration encourages open expertise exchange under a partnership umbrella. A
very valuable benefit is that we can achieve much more working together than we can achieve
separately. Network specialists from Hong Kong; a “Fifth Dimension” scientific group from
Scandinavia; SZMA (oil and gas factory automation international integrators) engineers;

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521525837
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521525837 - Integration-Ready Architecture and Design: Software Engineering with XML, Java, .NET, Wireless,
Speech, and Knowledge Technologies

Jeff Zhuk

Excerpt

More information

Steps in the Process 9

computer science researchers from St. Petersburg University and Institute of Information
Technology in Russia; JavaSchool students and consultants.: these are some examples of
teams collaborated in the distributed knowledge environment.

This book includes design and code samples and offers a tool that allows you to build
your own system powered by a knowledge engine, support your own development process,
establish your own rules of sharing, and, if you wish, connect to other systems and join in
collaborative engineering.

STEPS IN THE PROCESS

What Is Your Development Mode: Proactive or Reactive?
We are coming back from the heights of management to the specific steps of the development
process. Here is a quick quiz related to your organization’s habits toward time distribution
on a software project.

Which line (1, 2, or 3) represents the percentage of project time your organization allocates
to analysis, design, code, and testing?

Analysis Design Code Testing

1. 40 30 20 10
.10 20 30 40
3. 25 25 25 25

There is no right or wrong answer to this quiz. Your selection sheds some light on your
organization’s development habits. My experience shows that for bigger projects, shifting
gears to line 1 helps to improve quality. However, for really small projects, number 3 works
quite well. I have noticed that the second answer is often, though not always, associated with
start-ups or organizations that are on the learning curve using “let-me-try-it” paths. (I hope
I do not sound critical.)

Amazingly enough, all three ways can work very well for a team that uses one of them as
part of a repeatable development process. Such a team usually understands where steps can
start and stop and is able to recognize cases in which it makes sense to move along in the
cycle. There is no single good answer. This is about your organization development style.

The object-oriented approach to application development is currently the leading ap-
proach in the software industry.

I will describe some basic steps of software application development with this approach;
I have to add that the steps and their sequence can vary. I am sharing my experience, and I
know that there is more than one good methodology, as there is more than one good solution
to almost any problem. The most important thing is to have a system and consistently follow
it: “Plan and follow” or “say what you do and do what you say.”

Basic Development Roles

Developers (or a single developer for a small organization or a small project) play different
development roles at major phases of the development process. System definition is usu-
ally performed by system analysts, subject matter experts, and architects. Architects and

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521525837
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

0521525837 - Integration-Ready Architecture and Design: Software Engineering with XML, Java, .NET, Wireless,
Speech, and Knowledge Technologies

Jeff Zhuk

Excerpt

More information

10 COLLABORATIVE ENGINEERING

designers are responsible for system analysis and design. Developers participate in the im-
plementation and deployment phases. System developers or service providers are different
from application developers, who use provider services to create a higher-level system for
end users. This separation is not always obvious. Service providers also have end users, but
in most cases, their end users are application developers who can use their services.

It is possible that the deployment process requires system integrators. This role might
disappear as more integration-ready products come out after this book is published. (I know
you are smiling.)

Architects do not participate in the deployment process but are responsible for the de-
ployment plan, which is usually expressed in the deployment diagram.

This is a very generic definition that can be customized to fit your development process
specifics. For example, according to Sun Microsystems recommendations, Java 2 Enterprise
Edition (J2EE)-based development involves the following roles:

* Tool provider (for example, Borland): provides development tools

e Application component provider: a generic name for Web component providers that
develop Java server pages (JSPs), tag libraries, servlets, and related business classes
located in the Web container; Enterprise Java Bean (EJB) developers; and Web page
designers

* Application assembler: uses components developed by application component providers
to assemble them into a J2EE application component

* Deployer: responsible for application deployment in a specific environment

* J2EE product provider: implements a J2EE product

* System administrator: provides the configuration and management of the system

* Quality assurance (QA) engineer: provides integrated testing.

Most of the development methods obligate developers to provide “unit testing” of the
part delivered by the developer to a current system release. But system-level testing often
requires a special environment that emulates production and special efforts.

The Role of the Software Architect
Software architecture is the highest level of a software system definition. A software architect
is the one who actually provides this definition. The architect starts with user requirements
and separates them into two categories: functional requirements that refer to system tasks
and nonfunctional requirements that refer to system efficiency, scalability, flexibility, and
other “-ilities.” The architect participates (to some degree) in the analysis and design pro-
cesses but does not go into implementation details; he or she focuses on the larger picture
of the system instead.

It is important for the architect to negotiate with the client about the metrics (not just
words) and priorities of requirements criteria. For example, the “must be scalable” require-
ment should come with some rough range numbers (e.g., expected number of users).

BAsic STEPS OF THE DEVELOPMENT PROCESS WITH AN
OBJECT-ORIENTED APPROACH

The basic steps of the development process are shown in Fig. 1.3. The rest of the chapter
carefully moves over these steps.

© Cambridge University Press www.cambridge.org



http://www.cambridge.org/0521525837
http://www.cambridge.org
http://www.cambridge.org

