
P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-FM CB496-Akin October 7, 2002 11:48

Object-Oriented Programming via
Fortran 90/95
� �

ED AKIN
Rice University

iii

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-FM CB496-Akin October 7, 2002 11:48

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE
The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS
The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

C© Ed Akin 2003

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2003

Printed in the United States of America

Typefaces Times Ten 9.5/12 pt. with Helvetica Neue, Optima, and Lucida Typewriter
System LATEX 2ε [TB]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication data available

ISBN 0 521 52408 3 paperback

We make no warranties, express or implied, that the programs contained in this volume
are free of error, or are consistent with any particular standard of merchantability, or that
they will meet your requirements for any particular application. They should not be relied
on for solving a problem whose incorrect solution could result in injury to a person or loss
of property. If you do use the programs in such a manner, it is at your own risk. The
authors and publisher disclaim all liability for direct or consequential damages resulting
from your use of the programs.

iv

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-FM CB496-Akin October 7, 2002 11:48

Contents

Preface page ix

One. Program Design 1
1.1 Introduction 1
1.2 Problem Definition 4
1.3 Modular Program Design 6
1.4 Program Composition 11
1.5 Program Evaluation and Testing 18
1.6 Program Documentation 21
1.7 Object-Oriented Formulations 21
1.8 Exercises 24

Two. Data Types 26
2.1 Intrinsic Types 26
2.2 User-Defined Data Types 28
2.3 Abstract Data Types 31
2.4 Classes 33
2.5 Exercises 35

Three. Object-Oriented Programming Concepts 36
3.1 Introduction 36
3.2 Encapsulation, Inheritance, and Polymorphism 37
3.3 Object-Oriented Numerical Calculations 42
3.4 Discussion 51
3.5 Exercises 51

Four. Features of Programming Languages 56
4.1 Comments 57
4.2 Statements and Expressions 57
4.3 Flow Control 63
4.4 Subprograms 76
4.5 Interface Prototype 84
4.6 Characters and Strings 85
4.7 User-Defined Data Types 92
4.8 Pointers and Targets 99
4.9 Accessing External Source Files and Functions 102

v

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-FM CB496-Akin October 7, 2002 11:48

vi Contents

4.10 Procedural Applications 103
4.11 Exercises 115

Five. Object-Oriented Methods 119
5.1 Introduction 119
5.2 The Drill Class 119
5.3 Global Positioning Satellite Distances 121
5.4 Exercises 136

Six. Inheritance and Polymorphism 137
6.1 Introduction 137
6.2 Sample Applications of Inheritance 137
6.3 Polymorphism 142
6.4 Subtyping Objects (Dynamic Dispatching) 152
6.5 Exercises 156

Seven. OO Data Structures 157
7.1 Data Structures 157
7.2 Stacks 157
7.3 Queues 159
7.4 Linked Lists 164
7.5 Direct (Random) Access Files 175
7.6 Exercises 177

Eight. Arrays and Matrices 178
8.1 Subscripted Variables: Arrays 178
8.2 Matrices 195
8.3 Exercises 206

Nine. Advanced Topics 209
9.1 Managing Dynamic Memory 209
9.2 Large-Scale Code Development 216
9.3 Nonstandard Features 227
9.4 Exercises 227

Appendix A. Fortran 90 Overview 229
A.1 List of Language Tables 229
A.2 Alphabetical Table of Fortran 90 Intrinsic Routines 246
A.3 Syntax of Fortran 90 Statements 258

Appendix B. Selected Exercise Solutions 277
B.1 Problem 1.8.1: Checking Trigonometric Identities 277
B.2 Problem 1.8.2: Newton–Raphson Algorithm 278
B.3 Problem 1.8.3: Game of Life 278
B.4 Problem 2.5.1: Conversion Factors 280
B.5 Problem 3.5.3: Creating a Vector Class 282
B.6 Problem 3.5.4: Creating a Sparse Vector Class 289
B.7 Problem 3.5.5: Creating an Inventory Object 297
B.8 Problem 4.11.1: Count the Lines in an External File 299
B.9 Problem 4.11.3: Computing CPU Time Usage 300
B.10 Problem 4.11.4: Converting a String to Uppercase 301
B.11 Problem 4.11.8: Read Two Values from Each Line of an External File 301

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-FM CB496-Akin October 7, 2002 11:48

Contents vii

B.12 Problem 4.11.14: Two-line Least-square Fits 301
B.13 Problem 4.11.15: Find the Next Available File Unit 305
B.14 Problem 5.4.4: Polymorphic Interface for the Class ‘Position Angle’ 306
B.15 Problem 5.4.5: Building an Object Inventory System 307
B.16 Problem 6.4.1: Using a Function with the Same Name in Two Classes 312
B.17 Problem 6.4.3: Revising the Employee–Manager Classes 312
B.18 Problem 8.3.5: Design a Tridiagonal Matrix Class 312
B.19 Problem 9.1: Count the Integer Word Memory Leak 317

Appendix C. Companion C++ Examples 319
C.1 Introduction 319

Bibliography 327

Glossary of Object-Oriented Terms 329

Index 335

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

CHAPTER ONE
� �

Program Design

1.1 Introduction

The programming process is similar in approach and creativity to writing a paper. In compo-
sition, you are writing to express ideas; in programming, you are expressing a computation.
Both the programmer and the writer must adhere to the syntactic rules (grammar) of a
particular language. In prose, the fundamental idea-expressing unit is the sentence; in pro-
gramming, two units – statements and comments – are available.

Composition, from technical prose to fiction, should be organized broadly, usually through
an outline. The outline should be expanded as the detail is elaborated and the whole reex-
amined and reorganized when structural or creative flaws arise. Once the outline settles,
you begin the actual composition process using sentences to weave the fabric your outline
expresses. Clarity in writing occurs when your sentences, both internally and globally, com-
municate the outline succinctly and clearly. We stress this approach here with the aim of
developing a programming style that produces efficient programs humans can easily under-
stand.

To a great degree, no matter which language you choose for your composition, the idea
can be expressed with the same degree of clarity. Some subtleties can be better expressed in
one language than another, but the fundamental reason for choosing your language is your
audience: people do not know many languages, and if you want to address the American
population, you had better choose English over Swahili. Similar situations happen in pro-
gramming languages, but they are not nearly so complex or diverse. The number of languages
is far fewer, and their differences minor. Fortran is the oldest language among those in use
today. The C and C++ languages differ from it somewhat, but there are more similarities
than not (see Bar-David [6], Barton and Nackman [7], Hanly [22], Hubbard [24], and Nielsen
[30]). Matlab, written in C and Fortran, was created much later than these two, and its
structure is so similar to the others that it can easily be mastered (see Hanselman and Little-
field [23], and Pratap [33]). The C++ language is an extension of the C language that places its
emphasis on object-oriented programming (OOP) methods. Fortran added object-oriented
capabilities with its F90 standard, and additional enhancements for parallel machines were
issued with F95(see Adams et al. [1], Gehrke [17], Hahn [21], Kerrigan [25], and Press et al.
[34]). The Fortran 200X standard is planned to contain more user-friendly constructs for
polymorphism and will thus enhance its object-oriented capabilities. This creation of a new
language and its similarity to more established ones are this book’s main points: more com-
puter programming languages will be created during your career, but these new languages
will probably not be much different than ones you already know. Why should new languages

1

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

2 Program Design

evolve? In the case of Matlab, the desire to express matrix-like expressions easily motivated
its creation. The difference between Matlab and Fortran 90 is infinitesimally small compared
with the gap between English and Swahili.

An important difference between programming and composition is that in programming
you are writing for two audiences: people and computers. As for the computer audience,
what you write is “read” by interpreters and compilers specific to the language you used.
They are very rigid about syntactic rules, and perform exactly the calculations you say. It is
like a document you write being read by the most detailed, picky person you know; every
pronoun is questioned, and if the antecedent is not perfectly clear, then they throw up their
hands, rigidly declaring that the entire document cannot be understood. Your picky friend
might interpret the sentence “Pick you up at eight” to mean that you will literally lift him
or her off the ground at precisely 8 o’clock and will then demand to know whether the time
is in the morning or afternoon and what the date is.

Humans demand even more from programs. This audience consists of two main groups
whose goals can conflict. The larger of the two groups consists of users. Users care about
how the program presents itself, its user interface, and how quickly the program runs that
is, how efficient it is. To satisfy this audience, programmers may use statements that are
overly terse because they know how to make the program more readable by the computer’s
compiler, enabling the compiler to produce faster but less human-intelligible programs. This
approach causes the other portion of the audience – programmers – to boo and hiss. The
smaller audience, of which you are also a member, must be able to read the program to
enhance or change it. A characteristic of programs that further distinguishes it from prose is
that you and others will seek to modify your program in the future. For example, in the 1960s,
when the first version of Fortran was created, useful programs by today’s standards (such as
matrix inversion) were written. Back then, the user interface possibilities were quite limited,
and the use of visual displays was limited. Thirty years later, you would (conceivably) want
to take an old program, and provide a modern user interface. If the program is structurally
sound (a good outline and organized well) and is well written, reusing the “good” portions
is easy accomplished.

The three-audience situation has prompted most languages to support both computer-
and human-oriented “prose.” The program’s meaning is conveyed by statements and is what
the computer interprets. Humans read this part, which in virtually all languages bears a strong
relationship to mathematical equations, and also read comments. Comments are not read by
the computer at all but are there to help explain what might be expressed in a complicated
way by programming language syntax. The document or program you write today should
be understandable tomorrow, not only by you, but also by others. Sentences and paragraphs
should make sense after a day or so of gestation. Paragraphs and larger conceptual units
should not contain assumptions or leaps that confuse the reader. Otherwise, the document
you write for yourself or others serves no purpose. The same is true with programming; the
program’s organization should be easy to follow, and the way you write the program, using
both statements and comments, should help you and others understand how the computation
proceeds. The existence of comments permits the writer to express the program’s outline
directly in the program to help the reader comprehend the computation.

These similarities highlight the parallels between composition and programming. Dif-
ferences become evident because programming is, in many ways, more demanding than
prose writing. On one hand, the components and structure of programming languages are
far simpler than the grammar and syntax of any verbal or written language. When read-
ing a document, you can figure out the misspelled words and not be bothered about every
little imprecision in interpreting what is written. On the other hand, simple errors, akin to

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

1.1 Introduction 3

misspelled words or unclear antecedents, can completely undermine a program, rendering
it senseless or causing it to go wildly wrong during execution. For example, there is no
real dictionary when it comes to programming. You can define variable names containing
virtually any combination of letters (upper- and lowercase), underscores, and numbers. A
typographical error in a variable’s name can therefore lead to unpredictable program behav-
ior. Furthermore, computer execution speeds are becoming faster and faster, meaning that
increasingly complex programs can run very quickly. For example, the program (actually
groups of programs) that runs NASA’s space shuttle might be comparable in size to Hugo’s
Les Misérables, but its complexity and immediate importance to the “user” far exceed that
of the novel.

As a consequence, program design must be extremely structured and have the ultimate
intentions of performing a specific calculation efficiently with attractive, understandable,
efficient programs. Achieving these general goals means breaking the program into compo-
nents, writing and testing them separately, and then merging them according to the outline.
Toward this end, we stress modular programming. Modules can be on the scale of chapters
or paragraphs and share many of the same features. They consist of a sequence of statements
that by themselves express a meaningful computation. They can be merged to form larger
programs by specifying what they do and how they interface to other packages of software.
The analogy in prose is agreeing on the character’s names and what events are to happen
in each paragraph so that events happen to the right people in the right sequence once the
whole is formed. Modules can be reused in two ways. As with our program from the 1960s,
we would “lift” the matrix inversion routine and put a different user interface around it. We
can also reuse a routine within a program several times. For example, solving the equations
of space flight involves the inversion of many matrices. We would want our program to use
the matrix inversion routine over and over, presenting it with a different matrix each time.

The fundamental components of good program design are

1. Problem definition, leading to a program specification;
2. Modular program design, which refines the specification;
3. Module composition, which translates specification into executable program;
4. Module and program evaluation and testing, during which you refine the program and

find errors; and
5. Program documentation, which pervades all other phases.

The result of following these steps is an efficient, easy-to-use program that has a user’s
guide (to enable someone else run your program) and internal documentation so that other
programmers can decipher the algorithm.

Today it is common in a university education to be required to learn at least one foreign
language. Global interactions in business, engineering, and government make such a skill
valuable to one’s career. So it is in programming. One often needs to be able to read two
or three programming languages – even if you compose programs in only one language. It is
common for different program modules, in different languages, to be compiled separately
and then brought together by a “linker” to form a single executable. When something goes
wrong in such a process it is usually helpful to have a reading knowledge of the programming
languages being used.

When one composes to express ideas there are, at least, two different approaches to con-
sider: poetry and prose. Likewise, in employing programming languages to create software
distinctly different approaches are available. The two most common ones are “procedural
programming” and “object-oriented programming.” The two approaches are conceptually

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

4 Program Design

Generation n Generation n+1

• • • • • •

Figure 1.1: Here, the game is played on an 8 × 8 square array, and the filled squares indicate the
presence of life. The arrows emanating from one cell radiate to its eight neighbors. The rules are
applied to the nth generation to yield the next. The row of three filled cells becomes a column of three,
for example. What is going to happen to this configuration in the next generation?

sketched in Figure 1.1. They differ in the way that the software development and mainte-
nance are planned and implemented. Procedures may use objects, and objects usually use
procedures called methods. Usually the object-oriented code takes more planning and is
significantly larger, but it is generally accepted to be easier to maintain. Today when one can
have literally millions of users active for years or decades, maintenance considerations are
very important.

1.2 Problem Definition

The problem the program is to solve must be well specified. The programmer must broadly
frame the program’s intent and context by answering several questions.

� What must the program accomplish?
From operating the space shuttle to inverting a small matrix, some thought must be given
to how the program will do what is needed. In technical terms, we need to define the
algorithm employed in small-scale programs. In particular, numeric programs need to
consider well how calculations are performed. For example, finding the roots of a general
polynomial demands a numeric (non-closed form) solution. The choice of algorithm is
influenced by the variations in polynomial order and the accuracy demanded.

� What inputs are required and in what forms?
Most programs interact with humans and other programs. This interaction needs to be
clearly specified as to what format the data will take and when the data need to be
requested or arrive.

� What is the execution environment and what should be in the user interface?
Is the program a stand-alone program, calculating the quadratic formula for example,
or do the results need to be plotted? In the former case, simple user input is probably
all that is needed, but the programmer might want to write the program so that its key
components could be used in other programs. In the latter, the program probably needs
to be written so that it meshes well with some prewritten graphics environment.

� What are the required and optional outputs, and what are their formats (printed, magnetic,
graphical, audio)?
In many cases, output takes two forms: interactive and archival. Interactive output means
that the programs results must be provided to the user or to other programs. The data

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

1.2 Problem Definition 5

format must be defined so that the user can quickly see or hear the programs results.
Archival results need to be stored on long-term media, such as disk, so that later inter-
pretation of the file’s contents is easy (recall the notion of being able to read tomorrow
what is written today) and the reading process is easy.

The answers to these questions help programmers organize their thoughts and can lead to
decisions about programming language and operating environment. At this point in the pro-
gramming process, the programmer should know what the program is to do and for whom
the program is written. We do not yet have a clear notion of how the program will accomplish
these tasks; that comes down the road. This approach to program organization and design
is known as top–down design. Here, broad program goals and context are defined first with
additional detail filled in as needed. This approach contrasts with bottom–up design, where
the detail is decided first and then merged into a functioning whole. For programming,
top–design makes more sense, but you as well as professional programmers are frequently
lured into writing code immediately, which is usually motivated by the desire to get some-
thing running and figure out later how to organize it all. That approach is prompted by
expediency but usually winds up being more inefficient than a more considered, top–down
approach that takes longer to get off the ground but has increased likelihood of working
more quickly. The result of defining the programming problem is a specification: how the
program is structured, what computations it performs, and how it should interact with the
user.

An Extended Example: The Game of Life
� �

To illustrate how to organize and write a simple program, let us structure a program that
plays The Game of Life. Conway's “Game of Life" was popularized in Martin Gardner's Math-
ematical Games column in the October 1970 and February 1971 issues of Scientific Amer-
ican. This game is an example of what is known in computer science as cellular automata.
An extensive description of the game can be found in The Recursive Universe by William
Poundstone (Oxford University Press, 1987).

The rules of the game are quite simple. Imagine a rectangular array of square cells that are
either empty (no living being present) or filled (a being lives there). As shown in Figure 1.1,
each cell has eight neighboring cells. At each tick of the clock, a new generation of beings
is produced according to how many neighbors surround a given cell.

� If a cell is empty, fill it if three of its neighboring cells are filled; otherwise, leave it empty.
� If a cell is filled, it

dies of loneliness if it has zero or one neighbors,
continues to live if it has two or three neighbors, or
dies of overcrowding if it has more than three neighbors.

The programming task is to allow the user to “play the game" by letting him or her define
initial configurations, start the program, which applies the rules and displays each genera-
tion, and stop the game at any time the user wants, returning to the initialization stage so
that a new configuration can be tried. To understand the program task, we as programmers
need to pose several questions, some of which might be

� What computer(s) are preferred, and what kind of display facilities do they have?
� Is the size of the array arbitrary or fixed?
� Am I the only programmer?

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

6 Program Design

No matter how these questions are answered, we start by forming the program's basic out-
line. Here is one way we might outline the program in a procedural fashion.

1. Allow the user to initialize the rectangular array or quit the program.
2. Start the calculation of the next generation.

(a) Apply game rules to the current array.
(b) Generate a new array.
(c) Display the array.
(d) Determine whether the user wants to stop or not.

i. If not, go back to 2a.
ii. If so, go to step 1.

Note how the idea of reusing the portion of the program that applies game rules arises
naturally. This idea is peculiar to programming languages, having no counterpart in prose
(it's like being told at the end of a chapter to reread it!). This kind of looping behavior also
occurs when we go back and allow the user to restart the program.
� �

This kind of outline is a form of pseudocode: ∗ a programming–language-like expression
of how the program operates. Note that at this point, the programming process is language
independent. Thus, informal pseudocode allows us to determine the program’s broad struc-
ture. We have not yet resolved the issue of how, or if, the array should be displayed: Should
it be refreshed as soon as a generation is calculated, or should we wait until a final state is
reached or a step limit is exceeded? Furthermore, if calculating each generation takes a fair
amount of time, our candidate program organization will not allow the user to stop the pro-
gram until a generation’s calculations have been finished. Consequently, we may, depending
on the speed of the computer, want to limit the size of the array. A more detailed issue is
how to represent the array internally. These issues can be determined later; programmers
frequently make notes at this stage about how the program would behave with this structure.
Informal pseudocode should remain in the final program in the form of comments.

Writing a program’s outline is not a meaningless exercise. How the program will behave
is determined at that point. An alternative would be to ask the user how many generations
should be calculated and then calculate all generations and display the results as a movie,
allowing the user to go backward, play in slow motion, freeze-frame, and so forth. Our
outline will not allow such visual fun. Thus, programmers usually design several candidate
program organizations, understand the consequences of each, and determine which best
meets the specifications.

1.3 Modular Program Design

We now need to define what the routines are and how they are interwoven to archieve the
program’s goals. (We will deepen this discussion to include objects and messages when we
introduce object-oriented formulations in Sec. 1.7.) What granularity – how large should a
routine be – comes with programming experience and depends somewhat on the language

∗ The use of the word code is interesting here. It means program as both a noun and a verb: From the earliest
days of programming, what the programmer produced was called code, and what he or she did was “code
the algorithm.” The origin of this word is somewhat mysterious. It may have arisen as an analogy to Morse
code, which used a series of dots and dashes as an alternative to the alphabet. This code is tedious to read
but ideal for telegraphic transmission. A program is an alternate form of an algorithm better suited to
computation.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

1.3 Modular Program Design 7

Program

Main Control

Subprogram #2

Subprogram #1

Figure 1.2: Modular program organization relies on self-contained routines in which the passage of
data (or messages) from one to the other is very well defined and each routine’s (or objects) role in the
program becomes evident.

used to express it. A program typically begins with a main segment that controls or directs the
solution of the problem by dividing it into subtasks (see Figure 1.2). Each of these may well
be decomposed into other routines. This stepwise refinement continues as long as necessary
and as long as it benefits program clarity and efficiency. This modular program design is the
key feature of modern programming design practice. Furthermore, routines can be tested
individually and replaced or rewritten as needed. Before actually writing each routine, a
job known in computer circles as the implementation, the program’s organization can be
studied: Will the whole satisfy design specifications? Will the program execute efficiently?
As the implementation proceeds, each routine’s interface is defined: How does it interact
with its master – the routine that called it – and how are data exchanged between the two?
In some languages, this interface can be prototyped: the routine’s interface – what it expects
and what values it calculates – can be defined and the whole program merged and compiled
to check for consistency without performing any calculations. In small programs, where you
can have these routine definitions easily fitting onto one page, this prototyping can almost
be performed visually. In complex programs, where there may be hundreds or thousands of
routines, such prototyping really pays off. Once the interfaces begin to form, we ask whether
they make sense: Do they exchange information efficiently? Does each routine have the
information it needs, or should the program be reorganized so that data exchange can be
accomplished more efficiently?

From another viewpoint, you should develop a programming style that “hedges your
bets:” programs should be written in such a way that allows their components to be used in a
variety of contexts. Again, using a modular programming style, the fundamental components
of the calculation should be expressed as a series of subroutines or functions, the interweaving
of which is controlled by a main program that reads the input information and produces the
output. A modular program can have its components extracted and used in other programs
(program reuse) or interfaced to environments. So-called monolithic programs, which tend
not to use routines and express the calculation as a single, long-winded program, should not
be written.

We emphasize that this modular design process proceeds without actually writing
program statements. We use a programming-like language known as formal pseudocode to
express in prose what routines call others and how. This prose might reexpress a graphic

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

8 Program Design

representation of program organization such as that shown in Figure 1.2. In addition,
expressing the program’s design in pseudocode eases the transition to program composi-
tion, the actual programming process. The components of formal pseudocode at this point
are few:

� comments that we allow to include the original outline and to describe computational
details;

� functions that express each routine, whether it be computational or concerned with the
user interface;

� conditionals that express changing the flow of a program; and
� loops that express iteration.

Comments. A comment begins with a comment character, which in our pseudocode we
take to be the exclamation point !, and ends when the line ends. Comments can consume
an entire line or the right portion of some line.

! This is a comment: you can read it, but the computer won’t

statements

statement ! From the comment character to end of this line is a comment

statements

The statements cited in the lines above share the status of the sentence that characterizes
most written languages. They are made up of components specific to the syntax of the
programming language in use. For example, most programming books begin with a program
that does nothing but print “Hello world” on the screen (or other output device). The
pseudocode for this might have the following form:

! if necessary, include the device library

initiate my program, say main

send the character string ‘‘Hello world’’ to the output device library

terminate my program

Figure 1.3 illustrates this in three common languages beginning with F90. At this point
it is possible to say we are multilingual in computer languages. Here, too, we may note
that, unlike the other two languages shown, in Fortran, when we begin a specific type of
software construct, we almost always explicitly declare where we are ending its scope. Here
the construct pair was program and end program, but the same style holds true for if and
end if pairs, for example. All languages have rules and syntax to terminate the scope of
some construct, but when several types of different constructs occur in the same program
segment, it may be unclear in which order they are terminating.

Functions. To express a program’s organization through its component routines we use
the notation of mathematical functions. Each program routine accepts inputs expressed as
arguments of a function, performs its calculations, and returns the computational results as
functional values.

output 1 = routine (input 1,...,input m)

or

call routine (input 1,..., input m, output 1,..., output n)

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

1.3 Modular Program Design 9

[1] ! This is a comment line in Fortran 90

[2]

[3] program main ! a program called main

[4] ! begin the main program

[5] print *,"Hello, world" ! * means default format

[6] end program main ! end the main program

[1] // This is a comment line in C++

[2] #include <iostream.h> // standard input output library

[3]

[4] main () // a program called main

[5] // begin the main program

[6] cout << "Hello, world" << endl ; // endl means new line

[7] return 0; // needed by some compilers

[8] // end the main program

[1] % This is a comment line in MATLAB

[2]

[3] function main () % a program called main

[4] % begin the main program

[5] disp (’Hello, world’); % display the string

[6] % end the main program

Figure 1.3: ‘Hello World’ program and comments in three languages.

In Fortran, a routine evaluating a single-output object, as in the first style, is called a
function and, otherwise, it is called a subroutine. Other languages usually use the term
function in both cases. Each routines’s various inputs and results are represented by variables,
which, in sharp contrast to mathematical variables, have text-like names that indicate what
they contain. These names contain no spaces but may contain several words. There are two
conventions for variable names containing two or more words: either words are joined by the
underbar character “ ” (like next generation) or each word begins with an uppercase
letter (like NextGeneration). The results of a routines’s computation are always indicated
by a sequence of variables on the left side of the equals sign =. The use of an equals sign
does not mean mathematical equality; it is a symbol in our pseudocode that means “assign
a routines’s results to the variables (in order) listed on the left.”

Conditionals. To create something other than a sequential execution of routines, condition-
als form a test on the values of one or more variables and continue execution at one point
or another depending on whether the test was true or false. That is usually done with the
if statement. It either performs the instruction(s) that immediately follow (after the then
keyword) if some condition is valid (like x>0) or those that follow the else statement if
the condition is not true.

if test then

statement group A ! executed if true

else

statement group B ! executed if false

end if

The test here can be very complicated but is always based on values of variables. Parentheses
should be used to clarify exactly what the test is. For example,

((x > 0) and (y = 2))

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

10 Program Design

One special statement frequently found in if statements is stop: This command means to
stop or abort the program – usually with a fatal error message.

Conditionals allow the program to execute nonsequentially (the only mode allowed by
statements). Furthermore, program execution order can be data-dependent. In this way, how
the program behaves – what output it produces and how it computes the output – depends
on what data, or messages, it is given. This means that exact statement execution order is
determined by the data, messages, or both, and the programmer – not just the programmer.
It is this aspect of programming languages that distinguishes them from written or spo-
ken languages. An analogy might be chapters in a novel being read in the order specified
by the reader’s birthday; what that order might be is determined by the novelist through
logical constructs. The tricky part is that, in programming languages, each execution or-
der must make sense and not lead to inconsistencies or, at worst, errors: the novel must
make sense in all the ways the novelist allows. This data- and message-dependent execu-
tion order can be applied at all programming levels from routine execution to statements.
Returning to our analogy with the novel, we recall that chapter (routine) and sentence
(statement) order depend on the reader’s birthday. Such complexity in prose has little utility
but does in programming. How else can a program be written that informs the user on what
day of the week and under what phase of the moon he or she was born given the birth
date?

Loops. Looping constructs in our formal pseudocode take the form of do loops, where the
keyword do is paired with the key phrase end do to mean that the expressions and routine
invocations contained therein are calculated in order (from top to bottom), then calculated
again starting with the first, then again, then again, . . . , forever. The loop ceases only when
we explicitly exit it with the exit command. The pseudocode loop shown below on the left
has the execution history shown on the right.

do

y = routine 1(x)

z = routine 2(y)

x = routine 3(z)

if x > 0 then

exit

end if

end do

y = routine 1(x)

z = routine 2(y)

x = routine 3(z) [let’s say x=-1]

y = routine 1(x)

z = routine 2(y)

x = routine 3(z) [let’s say x=1]

[program ends]

Infinite loops occur when the Boolean expression always evaluates to true; these are
usually not what the programmer intended and represent one type of program error – a
“bug.”∗ The constructs enclosed by the loop can be anything: statements, logical constructs,
and other loops! Because of this variety, programs can exhibit extremely complex behaviors.
How a program behaves depends entirely on the programmer and how his or her definition
of the program flows based on user-supplied data and messages. The pseudocode loops are
defined in Table 1.1.

∗ This term was originated by Grace Hopper, one of the first programmers. In the early days of computers,
they were partially built with mechanical devices known as relays. A relay is a mechanical switch that
controls which way electric current flows: the realization of the logical construct in programming languages.
One day, a previously working program stopped being so. Investigation revealed that an insect had crawled
into the computer and had become lodged in a relay’s contacts. She then coined the term “bug” to refer not
only to such hardware failures but to software ones as well since the user becomes upset no matter which
occurs.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

1.4 Program Composition 11

Table 1.1: Pseudocode Loop Constructs

Loop Pseudocode

Indexed loop do index = b,i,e
statements

end do
Pretest loop while (test)

statements

end while
Posttest loop do

statements

if (test) exit
end do

1.4 Program Composition

Composing a program is the process of expressing or translating the program design into
computer language(s) selected for the task. Whereas the program design can often be ex-
pressed as a broad outline, each routine’s algorithm must be expressed in complete detail.
This writing process elaborates the formal pseudocode and contains more explicit statements
that more greatly resemble generic program statements.

Generic programming language elements fall into five basic categories: the four we had
before – comments, loops, conditionals, and functions – and statements. We will expand the
variety of comments, conditionals, loops, and functions/subroutines that define routines and
their interfaces. The new element is the statement, the workhorse of programming. It is
the statement that actually performs a concrete computation. In addition to expanding the
repertoire of programming constructs for formal pseudocode, we also introduce what these
constructs are in Matlab, Fortran, and C++. As we shall see, formal pseudocode parallels
these languages; the translation from pseudocode to executable program is generally easy.

1.4.1 Comments
Comments need no further elaboration for pseudocode. However, programmers are encour-
aged to make heavy use of comments.

1.4.2 Statements
Calculation is expressed by statements, which share the structure (and the status) of the
sentence that characterizes virtually all written language. Statements are always executed
one after the other as written. A statement in most languages has a simple, well-defined
structure common to them all such as

variable = expression

Statements are intended to bear a great resemblance to mathematical equations. This anal-
ogy with mathematics can appear confusing to the first-time programmer. For example, the
statementa = a+1, which means “increment the variableaby one” makes perfect sense as a
programming statement but no sense as an algebraic equality since it seems to say that 0 = 1.
Once you become more fluent in programming languages, what is mathematics and what is
programming become easily apparent. Statements are said to be terminated when a certain

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

12 Program Design

character is encountered by the interpreter or the compiler. In Fortran, the termination char-
acter is a carriage return or a semicolon (;). In C++, all statements must be terminated with
a semicolon or a comma; carriage returns do not terminate statements. Matlab statements
may end with a semicolon ‘;’ to suppress display of the calculated expression’s value. Most
statements in Matlab programs end thusly.

Sometimes, statements become quite long, becoming unreadable. Two solutions to im-
prove clarity can be used: decompose the expression into simpler expressions or use contin-
uation markers to allow the statement to span more than one line of text. The first solution
requires you to use intermediate variables, which only results in program clutter. Multiline
statements can be broken at convenient arithmetic operators, and this approach is generally
preferred. In C++, there is no continuation character; statements can span multiple text lines
and end only when the semicolon is encountered. In Matlab, the continuation character
sequence comprises three periods ‘...’ placed at the end of each text line (before the car-
riage return or comment character). In Fortran, a statement is continued to the next line
when an ampersand & is the last character on the line.

Variables. A variable is a named sequence of memory locations to which values can be
assigned. As such, every variable has an address in memory, which most languages conceal
from the programmer so as to present the programmer with a storage model independent
of the architecture of the computer running the program. Program variables correspond
roughly to mathematical variables that can be integer, real, or, complex-valued. Program
variables can be more general than this, being able in some languages to have values equal
to a user-defined data type or object which, in turn, contains sequences of other variables.
Variables in all languages have names: a sequence of alphanumeric characters that cannot
begin with a number. Thus, a, A, a2, and a9bare feasible variable names (i.e., the interpreter
or compiler will not complain about these), whereas 3d is not. Since programs are meant to
be read by humans as well as interpreters and compilers, such names may not lead to program
clarity even if they are carefully defined and documented. The compiler and interpreter do
not care whether humans can read a program easily or not, but you should: Use variable
names that express what the variables represent. For example, use force as a name rather
than f; use i, j, and k for indices rather than ii or i1.

In most languages, variables have type: the kind of quantity stored in them. Frequently
occurring data types are integer and floating point, for example. Integer variables would be
chosen if the variable were only used as an array index; floating point if the variable might
have a fractional part.

In addition to having a name, type, and address, each variable has a value of the proper
type. The value should be assigned before the variable is used elsewhere. Compilers should
indicate an error if a variable is used before it has been assigned a value. Some lan-
guages allow variables to have aliases, which are usually referred to as “pointers” or “refer-
ences.” Most higher-level languages also allow programmers to create “user-defined” data
types.

Assignment Operator. The symbol = in a statement means assignment of the expression into
the variable provided on the left. This symbol does not mean algebraic equality; it means
that once expression is computed, its value is stored in the variable. Thus, statements
that make programming sense, like a=a+1, make no mathematical sense because ‘=’ means
different things in the two contexts. Fortran 90 and other languages allow the user to extend
the meaning of the assignment symbol (=) to other operations. Such advanced features are
referred to as “operator overloading.”

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

1.4 Program Composition 13

Expressions. Just as in mathematics, expressions in programming languages can have a
complicated structure. Most encountered in engineering programs amount to a mathematical
expression involving variables, numbers, and functions of variables, numbers, or both. For
example, the following are all valid statements:

A = B

x = sin (2*z)

force = G * mass1 * mass2 / (r*r)

Thus, mathematical expressions obey the usual mathematical conventions but with one
added complexity: vertical position cannot be used help express what the calculation is;
program expressions have only one dimension. For example, the notation a

b c clearly ex-
presses to you how to perform the calculation. However, the one-dimensional equivalent
obtained by smashing this expression onto one line becomes ambiguous: Does a/bc mean
divide a by b then multiply by c or divide a by the product of b and c? This ambiguity is
relieved in program expressions in two ways. The first, the human-oriented way, demands
the use of parentheses – grouping constructs – to clarify what is being meant, as in (a/b)c.
The language-oriented way makes use of precedence rules: What an expression means is
inferred from a set of rules that specify what operations take effect first. In our example,
because division is stronger than multiplication, a/bc means (a/b)c. Most people find that
frequent reliance on precedence rules leads to programs that take a long time to decipher;
the compiler/interpreter is “happy” either way.

Expressions make use of the common arithmetic and relational operators. They may also
involve function evaluations; the sin function was called in the second expression given in
the previous example. Programming expressions can be as complicated as the arithmetic or
Boolean algebra ones they emulate.

1.4.3 Flow Control
If a program consisted of a series of statements, statements would be executed one after the
other in the order they were written. Such is the structure of all prose, where the equivalent
of a statement is the sentence. Programming languages differ markedly from prose in that
statements can be meaningfully executed over and over with details of each execution differ-
ing each time (the value of some variable might be changed) or some statements skipped with
statement ordering dependent on which statements were executed previously or upon exter-
nal events (the user clicked the mouse). With this extra variability, programming languages
can be more difficult for the human to trace program execution than the effort it takes to
read a novel. In written languages, sentences can be incredibly complex, much more so than
program statements; in programming, the sequencing of statements – program flow – can
be more complex.

The basic flow control constructs present in virtually all programming languages are
loops – repetitive execution of a series of statements – and conditionals – diversions around
statements.

Loops. Historically, the loop has been a major tool in designing the flow control of a proce-
dure, and one would often code a loop segment without giving it a second thought. Today,
massively parallel computers are being widely used, and one must learn to avoid coding ex-
plicit loops in order to take advantage of the power of such machines. Later we will review
which intrinsic tools are included in F90 for use on parallel (and serial) computers to offer
improved efficiency over explicit loops.

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

14 Program Design

The loop allows the programmer to repeat a series of statements, and parameter – the
loop variable – takes on a different value for each repetition. The loop variable can be an
integer or a floating-point number. Loops can be used to control iterative algorithms such as
the Newton–Raphson algorithm for finding solutions to nonlinear equations, to accumulate
results for a sequential calculation, or merely to repeat a program phrase such as awaiting
for the next typed input. Loops are controlled by a logical expression, which when
evaluated to true allows the loop to execute another iteration and when false terminates
the loop and commences program execution with the statement immediately following those
statements enclosed within the loop.

There are three basic kinds of looping constructs, the choice of which is determined by the
kind of iterative behavior most appropriate to the computation. The indexed loop occurs
most frequently in programs. Here, one loop variable varies across a range of values. In
pseudocode, the index’s value begins at b and increments each time through the loop by i;
the loop ends when the index exceeds e. For example,

do j = b, e, i

or through the default increment of unity:

do j = b, e

As an example of an indexed loop, let us explore summing the series of numbers stored
in the array A. If we know the number of elements in the array when we write the program,
the sum can be calculated explicitly without using a loop as follows:

sum = A1+ A2+ A3+ A4

However, we have already said that our statements must be on a single line, and so we need
a way to represent the subscript attached to each number. We develop the convention that
a subscript is placed inside parentheses like

sum = A(1) + A(2) + A(3) + A(4)

Such programs are very inflexible, and this hard-wired programming style is discouraged. For
example, suppose in another problem the array contains 1,000 elements. With an indexed
loop, a more flexible, easier to read program can be obtained. Here, the index assumes
a succession of values, its value tested against the termination value before the enclosed
statements are executed with the loop terminating once this test fails to be true. The following
generic indexed loop also sums array elements but in a much more flexible, concise way.

sum = 0

for i = 1, n

sum = sum + A(i)

end for

Here, the variable n does not need to be known when the program is written; this value can
wait until the program executes and can be established by the user or after data are read.

In F90 the extensive support for matrix expressions allows implicit loops. For example,
consider the calculation of

∑N
i=1 xi yi . The language provides at least three ways of performing

this calculation. If it is assumed the vectors x and y are column vectors,

1. sum xy = 0

N = size (x)

do i = 1,N

sum xy = sum xy + x(i)*y(i)

end do

P1: FCH/SPH P2: FCH/SPH QC: FCH/TKJ T1: FCH

CB496-01 CB496-Akin September 13, 2002 15:51

1.4 Program Composition 15

2. sum xy = sum (x*y)

3. sum xy = dot product (x,y)

The first method is based on the basic loop construct and yields the slowest-running
program of the three versions. In fact, avoiding the do statement by using implicit loops will
almost always lead to faster running programs. The second and third statements employ
intrinsic functions, operators designed for arrays, or both. In many circumstances, calculation
efficiency and clarity of expression must be balanced. In practice, it is usually necessary to
set aside memory to hold subscripted arrays, such as x and y above, before they can be
referenced or used.

Conditionals. Conditionals test the veracity of logical expressions and execute blocks of
statements accordingly (see Table 1.2). The most basic operation occurs if we want to
execute a series of statements when a logical expression, say test, evaluates to true. We
call that a simple if conditional; the beginning and end of the statements to be executed
when test evaluates to true are enclosed by special delimiters, which differ according to
language. When only one statement is needed, C++ and Fortran allow that one statement
to end the line that begins with the if conditional. If you want one group of statements to
be executed when test is true and another set to be executed when false, you use the
if-else construct. When you want to test a series of logical expressions that are not necessarily
complementary, the nested-if construct allows for essentially arbitrarily complex structure
to be defined. In such cases, the logical tests can interlock, thereby creating programs that
are quite difficult to read. Here is where program comments become essential. For example,
suppose you want to sum only the positive numbers less than or equal to 10 in a given
sequence. Let us assume the entire sequence is stored in array A. In informal pseudocode,
we might write

loop across A

if A(i) > 0 and A(i) < = 10 add to sum

end of loop

More formally, this program fragment as a complete pseudocode would be

Table 1.2: Syntax of Pseudocode Conditionals

Conditional Pseudocode

if if (test) statement
if if (test) then

statements

end if
if-else if (test) then

statements A

else
statements B

end if
nested if if (test1) then

statements A

if (test2) then
statements B

end if % end of test2
end if

