
P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

0521520592pre CB562-Nash-v1.cls March 28, 2003 18:17

JAVA FRAMEWORKS AND

COMPONENTS

ACCELERATE YOUR

WEB APPLICATION DEVELOPMENT

MICHAEL NASH
JGlobal Ltd.

Freeport, Bahamas

iii



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

0521520592pre CB562-Nash-v1.cls March 28, 2003 18:17

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE

The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK
40 West 20th Street, New York, NY 10011-4211, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain
Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

C© Michael Nash 2003

This book is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without
the written permission of Cambridge University Press.

First published 2003

Printed in the United States of America

Typefaces Berkeley Oldstyle 10.75/13.5 pt. and Franklin Gothic System LATEX 2ε [TB]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data

Nash, Michael, 1964-

Java frameworks and components : accelerate your Web application development / Michael Nash.

p. cm.

Includes bibliographical references and index.

ISBN 0-521-52059-2 (pb.)

1. Java (Computer program language) 2. Application software – Development. I. Title.

QA76.73.J38N355 2003
005.13′3 – dc21 2002041684

ISBN 0 521 52059 2 paperback

iv



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

0521520592pre CB562-Nash-v1.cls March 28, 2003 18:17

Contents

Acknowledgments xv

Chapter 1
Components and Application Frameworks 1

1.1 Introduction 1
1.2 What Are They? 2

Chapter 2
Components: The Future of Web-Application Development 35

2.1 Why Are Components the Future of Web-Application
Development? 35

2.2 A Brief History of Components 40
2.3 Advantages of Components and Frameworks 42
2.4 Beyond E-Commerce: Components at Work 52
2.5 Conclusion: The Future Is Just Beginning 53

Chapter 3
Application Frameworks: What Do They Provide and What
Are the Benefits? 54

3.1 Advantages of Frameworks 55
3.2 What Is in the Tool Box? (Common Elements in

Web-Application Development) 58

vii



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

0521520592pre CB562-Nash-v1.cls March 28, 2003 18:17

viii Contents

Chapter 4
Choosing an Application Framework 105

4.1 Overview 105
4.2 What to Look for 108
4.3 Fit the Tool to the Job 125
4.4 One of the Choices Is NONE – When Frameworks Are

Not Appropriate 125
4.5 How to Do the Cost–Benefit Analysis 126
4.6 Conclusion 130

Chapter 5
A Catalog of Application Frameworks 131

5.1 Complete Application Frameworks 132
5.2 Presentation Frameworks 165
5.3 Other Application-Specific

Frameworks 189
5.4 Meta-Frameworks 210
5.5 Summary 214

Chapter 6
Comparing Frameworks 215

6.1 Comparing Frameworks 215
6.2 Combining Frameworks 234
6.3 A Comparison Matrix 237
6.4 Summary 243

Chapter 7
Open Source and Components/Frameworks 244

7.1 Overview of Open Source 244
7.2 Frameworks and Open Source 277
7.3 Summary 295



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

0521520592pre CB562-Nash-v1.cls March 28, 2003 18:17

Contents ix

Chapter 8
Development Methodologies and Design Patterns 296

8.1 Frameworks and Methodologies 296
8.2 Example Methodologies 299
8.3 Select Perspective 305
8.4 Testing and Extreme Programming 305
8.5 UML 310
8.6 MVC Architecture 315
8.7 Design Patterns 317
8.8 Development Phases 329
8.9 Designing with Frameworks 332
8.10 Summary 333

Chapter 9
Integrated Development Environments 334

9.1 General Principles of IDEs in Framework/Component
Development 334

9.2 Examples of IDEs and Their Use with Frameworks 340
9.3 Selecting Tools and IDEs 345

Chapter 10
Strategies for Using Frameworks: Best Practices 346

10.1 Initial Adoption 346
10.2 The First Project 348
10.3 Problems and Pitfalls 354
10.4 Future-Proofing 360
10.5 Summary 363

Chapter 11
Conclusions: The Future of Frameworks and Components 364

11.1 Emerging Framework/Component Technologies 364
11.2 Framework Interoperability 375



P1: FCH/FFX P2: FCH/FFX QC: FCH/FFX T1: FCH

0521520592pre CB562-Nash-v1.cls March 28, 2003 18:17

x Contents

11.3 Meta-Frameworks 375
11.4 Summary 376

Appendix: Case Studies 377

Glossary 457

Index 463



P1: IXK

0521520592c01 CB562-Nash-v1.cls March 14, 2003 16:10

CHAPTER 1

Components and
Application Frameworks

1.1 INTRODUCTION

Welcome, I would like to introduce myself, and discuss the explorations that I
would like to take you on in this book. I am a software developer, specifically, an
application developer. I build software that people use to get their jobs done –
practical, everyday software that is being used.

As part of building applications, in some cases I have also had to build some
of the tools I needed including components and an application framework. My
programming language of choice for the last several years has been Java. My
applications have been targeted for Internet/Intranet uses.

In my exploration, I will examine the nature of software development. It is a
complex and demanding process, and developers can use all the tools that are
available to them to make it easier and more efficient. We also explore how and
why developers resist using those very tools, and how you can make the right
decisions in your development projects. It has been a long road, and my hope
is to impart some knowledge of its many potholes to you.

I think that I have spent a fair portion of my career in the field resisting the
“jargonification” of software development. I am convinced that development
can be discussed in plain English, as has been done in this book. It is, however,
important to understand the basic terminology used to describe frameworks
and components, so we will do this first.

1



P1: IXK

0521520592c01 CB562-Nash-v1.cls March 14, 2003 16:10

2 COMPONENTS AND APPLICATION FRAMEWORKS

We start by examining what is meant by “web applications,” “components,”
and “application frameworks.” In a jargon-ridden industry, it is always impor-
tant to be sure that a common meaning exists for terms. I will define components
and frameworks in terms of what they do, so it will be apparent how each is ap-
plied to practical application development in the real world. We also discuss the
users of these tools, further defining them and see where the components and
application frameworks fit into the environment of the standard Java APIs (ap-
plication programming interface), JavaBeans, and Enterprise JavaBeans (EJBs).

Then we look at components in more detail, and talk about the advantages
of component-based development. We also discuss why these advantages make
components such a significant part of the future of Web-application develop-
ment. We examine exactly what the components and frameworks do, and what
you can expect from them.

Then we take a brief look at a number of actual examples of frameworks, com-
paring their similarities and differences, their strengths and weaknesses, and the
design patterns they use. We discuss how open source fits into the framework
scenario, and why frameworks are a natural fit for this development model.

Finally, we take a look at the future of components and frameworks, and the
new technologies they are incorporating. We conclude with a few actual case
studies, putting some frameworks through their paces to create a simple Web
application.

1.2 WHAT ARE THEY?

What is a Web application? What is a component? What is an application
framework? What are they not? These are important questions and deserve
carefully considered answers.

To-may-to, to-mah-to. Like so many things in the software industry, ask nine
developers for a definition of components, and you will get eighteen opinions.
All of them will have some similarities though – and we find the commonality
in them.

1.2.1 Web Applications

This is perhaps the easiest of the three terms we aim to define: almost everyone
agrees that a Web application is a piece of interactive software that runs on the



P1: IXK

0521520592c01 CB562-Nash-v1.cls March 14, 2003 16:10

What Are They? 3

Internet or on a corporate Intranet. A Web application is really a specialized
case of a traditional client/server application – in this case, the client is a Web
browser or some other Internet-enabled device, the “universal client.” So a Web
application, simply put, is an application in which the users access business logic
via their browser.

The server in a Web application is typically an enhanced Web server: for Java
Web applications, this almost always means a server that implements Sun’s Java
Servlet API, usually in conjunction with the JavaServer Pages (JSP) API. At the
top end of the scale, the “server” in fact might be a cluster of systems, each
implementing a sophisticated full J2EE (Java 2 Enterprise Edition) application
server.

Some examples of Web-application servers are as follows:

• Tomcat: an open-source project hosted by the Apache Foundation, Tomcat
is the reference implementation for the Servlet API and a popular server for
development.

• Jetty: another open-source Web server project hosted by Mort Bay Consult-
ing, Jetty is well known for its excellent performance and other features.

• BEA WebLogic: a powerful commercial application server, it implements the
entire J2EE standard, including EJBs.

• iPlanet: a flexible and highly configurable server developed by the Sun/
Netscape alliance, iPlanet is available in versions with and without full J2EE
capabilities.

• IBM’s Websphere: also available both with and without EJB capabilities, the
Websphere server is an enhanced and commercialized extension of the pop-
ular Apache HTTP server.

These are just a few of the more well-known choices. One of the great ad-
vantages of Java Web applications is the the fact that a wide range of companies
support the standards.

The term “Web application” also has a specific technical meaning within the
context of J2EE and its standards: it refers to a means of “packaging” an entire
application, complete with code, configuration, HTML (Hyper Text Mark-up
Language) and JSP pages into a single archive file – a “.war” file, specifically (Web
Application aRchive). This file format is used by almost all current J2EE servers
as one of the possible deployment mechanisms for Web applications. The idea
is that you can simply place the .war file containing such an application into
the appropriate directory, and the server will have everything it needs to fully



P1: IXK

0521520592c01 CB562-Nash-v1.cls March 14, 2003 16:10

4 COMPONENTS AND APPLICATION FRAMEWORKS

configure and deploy the application. For the most part, this is true; however,
sometimes special circumstances require post-deployment configuration. (And
in some cases, “special circumstances” is a term for “mistakes.” It is always best
to strive to comply with the standards for deployment, making the extra steps
at least optional, if not avoiding them altogether.)

Refer to the glossary for detailed definitions of any other terms that are
unfamiliar to you.

1.2.2 Components

A “component,” according to common usage, is a piece or part. The mind’s eye
conjures up some kind of mechanical assembly, perhaps consisting of a number
of parts, connected and related in some way, but comprising a single complete
unit. A software component is similar: it is a collection of parts; in this case
these are the methods and objects, which provide some specific functionality.
Just like its mechanical counterpart, a component can be simple or complex,
and it can work by itself or work only in conjunction with some larger unit.

We can think of components as the software equivalent of Lego (TM), the
popular toy with interlocking blocks that can be used to easily assemble many
different interesting things. As with Lego, there are different kinds of blocks that
have different uses – some are larger, some are smaller, some are more general-
ized, such as the plain rectangular piece, and some are very specific, such as the
block with wheels on it. As with Lego, the most interesting part of these blocks
is not so much the individual pieces, but the small interlocking protrusions that
let them be easily connected. Components that are designed to work together
should have the same kind of generalized way of connecting them – most are
perhaps not quite as easy to connect as in Lego, but the principle exists.

To define a component more formally, we can say that it is a “unit of function-
ality with a contractually specified interface.” Note the “interface” part here –
the specification of a component always provides a concrete definition of the
way we interact with the component. This interface may be divided into two
parts: the functional interface, which we use from our application when we want
the component to perform its functions, and the configuration interface, which
is used to change settings and set properties of the component that modify its
behavior in some way.

A component is specifically designed with reuse in mind. Unlike a specific
once-off application, the component is intended to be configurable for use in
many different completed applications, and should be flexible enough to make



P1: IXK

0521520592c01 CB562-Nash-v1.cls March 14, 2003 16:10

What Are They? 5

this easy, but at the same time it should present a well-defined means to the
developer to make the connections to the rest of the application.

1.2.2.1 Separation of Interface and Implementation
One of the key attributes of a component is its separation of interface and
implementation. The internals of the component can change, but the interface
of the component with the outside world remains constant. This separation
means that the actual implementation of the component is free to be improved,
while the improved component remains compatible with the original.

Some components take this a step further, and have a “pluggable” imple-
mentation. This is where the actual code that does the work is determined
dynamically, perhaps via a configuration setting. An example of this is a user
authentication component that can use either an LDAP (Lightweight Directory
Access Protocol) data source or a relational database to look up users. The LDAP
lookup is one implementation, and the database version is another.

An example of this is explored in detail when we discuss design patterns in
Chapter 8.

1.2.2.2 Inversion of Control – Don’t call us, We’ll call you
A feature of some (but certainly not all) components is that they themselves
do not directly access their environment. Instead, they use a design pattern
sometimes called “inversion of control,” where the container is responsible for
“handing” the component everything it needs to perform its tasks. For exam-
ple, in the case of a component that calculates a customer total and writes to
the database, the container would need to pass a database connection to it, as
opposed to the component trying to access some external service to “request”
a connection. This guarantees the isolation of the component and its indepen-
dence from the external supporting environment – as long as it is handed the
correct inputs, it functions correctly.

This pattern also allows the container or framework to have full control over
the sequence of processing, as it always initiates the actions of the component.
This lays a strong foundation for work-flow processing, and allows the flow
of control to be easily changed without the components themselves requiring
modification. Components written to this pattern use a passive structure – they
act only when requested by the calling object. The calling object must also be
carefully constrained: action is only initiated by the framework/container, and
never by any other objects.

Inversion of control is also a firm foundation for a secure system. It does not
guarantee security, but it is a good start. If control can be exercised from only



P1: IXK

0521520592c01 CB562-Nash-v1.cls March 14, 2003 16:10

6 COMPONENTS AND APPLICATION FRAMEWORKS

one point, it eliminates the opportunity for component operation to be hijacked
at some point in the hierarchy, and makes for only a single point that must be
actually secured.

Not all component models adhere to this theory, and some experts argue
that it is not necessarily the right idea, but it is a frequently seen pattern for
components. Design patterns, as we will see later, are an important topic when
discussing both components and frameworks.

Inversion of control is also important when designing a system to achieve
scalability by distributing its components among multiple servers – it guarantees
that the component does not care where it executes, as long as it is handed all
the inputs and contexts it requires.

1.2.2.3 Component Execution Environment
Components are designed to operate in a specific environment – for exam-
ple, EJB (Enterprise Java Beans) components are expected to be deployed in a
suitable EJB server. The deployment environment often defines the choice of
available components – in other words, if you know you are working in an EJB
environment for deployment, then EJB-based components are of course a good
choice.

Another term for a component’s execution environment is a container. Simply
put, a container takes components through their life cycles, managing their
creation, initialization, operation, and finalization.

It is seldom quite that simple, however, because many components operate
in multiple environments. A few frameworks even offer component collections
that can scale from a simple JSP/Servlet environment on a single server to a
distributed environment.

This is where component standardization comes to a developer’s aid: if com-
ponents are created according to specific standards, then they can be used in
more than one environment. It means that the total pool of components avail-
able in any given environment gets larger, giving the developer more prebuilt
components to choose from.

JavaBeans, for example, are components that operate in many different run-
time environments.

1.2.2.4 Components and Objects
Although most components are composed of objects, there are fundamental dif-
ferences between the two structures. A component can be differentiated from an
object in that its “encapsulation” is guaranteed: there are no exposed implemen-
tation dependencies. An object might only be used within a single application,
but a component has been designed with reuse in mind and cannot assume



P1: IXK

0521520592c01 CB562-Nash-v1.cls March 14, 2003 16:10

What Are They? 7

much about the environment in which it will be used. An object typically de-
fines a much smaller portion of a problem space: an email message, for example.
A component operates at a somewhat higher level, for example, for sending and
receiving email.

A component typically contains a mechanism for configuring its operation in
addition to its basic methods for performing its functions. This provides a means
for a component to be adjusted to a range of different preferences, whereas an
individual object does not usually provide this range of configurability. Some-
times this mechanism is accessed via a graphical configuration tool – as is often
the case with JavaBeans. In this way, the configuration of the component and
its current state can be both serialized and restored later for use in the finished
application.

A component is often composed of a number of objects, which are designed
to work together to provide specific functionality. Some component standards
(such as EJB) also provide a recommended means to package their components
for deployment (e.g., EJBs in a .jar file, containing the objects themselves and
a deployment description file).

1.2.2.5 Component-based Development
Component-based development (sometimes abbreviated “CBD”) is a term that
describes the process of creating applications from existing components. This is
distinct from the process of creating components themselves. Component-based
development involves more than just deployment. It begins with the process
of analysis and design with components in mind, and continues through an
assembly-like development phase, to deployment.



P1: IXK

0521520592c01 CB562-Nash-v1.cls March 14, 2003 16:10

8 COMPONENTS AND APPLICATION FRAMEWORKS

CBD should be differentiated from the process of creating components them-
selves. This is referred to as component development and is a lower level process
than CBD, because it creates the units of functionality, which are later assembled
into one application.

Examining the process will give us a better understanding of components,
and the frameworks within which they operate.

Component-based development begins with analysis and design, just as any
other development process. With component-based development, however, the
roles of component creator and component consumer are more clearly separ-
ated. Often two different companies, or at least two different teams, take on
these two roles. When creating a system with component-based development,
it is assumed that we are not going to start from scratch – we work with the
intent of assembling existing components into an application. Similar in many
ways to the roles in J2EE development/deployment, which we will discuss later,
there is a distinction between the component creator (or supplier), the com-
ponent assembler, and often even the component “manager,” who administers
the operation of the components after assembly and deployment.



P1: IXK

0521520592c01 CB562-Nash-v1.cls March 14, 2003 16:10

What Are They? 9

Part of the design process involves the determination of the set of compo-
nents that we have to choose from. Sometimes this is mandated (a company
has a specific component library or framework established as a standard), in
which case this part of the process is very short indeed. If there is no preor-
dained component library to choose from, however, the same techniques that
we discuss later for selecting an application framework can be applied success-
fully here. Reuse and acquisition, as opposed to development from scratch, are
emphasized at this stage.

Once the component library is selected, matching the existing components
to the problem at hand is the next step of the design sequence. Traditional
software engineering practices do not fit this design process very well, and
new approaches and design patterns are appropriate. Later, we discuss in de-
tail design methodologies that are applicable to both component-based and
framework-based developments.

The actual “development” phase of a component-based project should pri-
marily be a process of configuration and assembly, with perhaps some coding
for the custom business logic of the application at hand. The goal is to maximize
reuse and long-term maintainability, and one of the factors that affects this is
the amount of custom code that must be created.

Finally, there is the testing and deployment phase, where the finished as-
sembly of components is verified and the component deployment environment
is set up. Often, this involves deploying the appropriate support environment
for the component library that was chosen: for example, a J2EE server and a
related framework. One of the advantages of using the same set of components
for subsequent development is that the environment is already in place – only
the new components need to be deployed.

So, component-based development primarily consists of the aggregation and
interconnection of components, as well as the configuration of the components
themselves. It provides a powerful paradigm for rapid development of reliable,
high-quality applications.

1.2.2.5.1 Types of Components
• Client-side components: Client-side often describes visual components in-

tended to function on the client – in a Web application, they usually func-
tion in the user’s browser. Client-side components are often user-interface
elements – in other words, components with a visual representation, such
as data entry fields, calendar components, folders, and other such elements.
In the past these have been relatively low-level components, which are often
used for building data entry screens. In the Web-application projects, visual



P1: IXK

0521520592c01 CB562-Nash-v1.cls March 14, 2003 16:10

10 COMPONENTS AND APPLICATION FRAMEWORKS

components can be more complex, often used in conjunction with specific
server-side code to form a complete application component, such as an email
component, portal components, and so forth.

An Applet is a good example of a client-side component. Not all Applets
can be considered components in the strictest sense, because an Applet could
comprise an entire application without any ability for reuse in other appli-
cations. Often though, Applets are ideal client-side components, operating
within the context of a Web application to provide a level of interactivity or
visual display that is difficult to achieve with plain HTML.

• Visual Components: Visual components can overlap with client-side com-
ponents: most client-side components are also visual because the best separa-
tion of responsibilities is often to have the visual rendering of an application
happen on the client system. Many integrated development environments
(IDEs), particularly those that support Applet development, provide visual
components such as data entry fields, drop-down selection boxes, image
frames, and so forth.

Visual components for a Web application, though, are often generated by
means of HTML, XHTML, or JavaScript provided by the server. A text box on
an HTML form is a visual component, even though it is created as required
by the browser in response to HTML from the server-side application.

Visual components tend to be fairly “low-level,” less complex elements
than general client-side components.

• Server-side components: Server-side, or nonvisual, components are differen-
tiated from client components usually by the lack of a specific user interface.
They may be combined with a user interface (UI) to provide a more complete
building block for the application, but this need not be the case.

Some examples of server-side components are components that provide
FTP services, database reporting, XML transformation, and practically any
other application service.

1.2.2.6 JavaBeans
The JavaBean specification is an example of a component standard, and has
given rise to many component libraries of different types that conform to this
standard of access to component functionality. Originally thought of as visual
components, JavaBeans can be much more.

First introduced in 1996 during the first JavaOne conference, the Bean API
(Application Programming Interface) was initially quite specific: it called for
a JavaBean to be a reusable software component that was capable of being



P1: IXK

0521520592c01 CB562-Nash-v1.cls March 14, 2003 16:10

What Are They? 11

manipulated visually in a development/builder tool. JavaBeans have come a
long way since then, and have expanded even further in the latest release of the
Java development kit (JDK) version 1.4.

A bean is defined as an active component that can be manipulated from within
an application builder that possesses certain properties and conforms to certain
design patterns. This includes being associated with a BeanInfo object that
provides definitions of the bean and its properties, methods, and events. Beans
were a departure from other component technologies in that they provided the
means for the actual component, not a visual representation, to be manipulated
from within a development tool. This is possible for the most part because
of the serialization capabilities inherent in beans – they can be “serialized” to
and from persistent storage as required, allowing the current state of a bean
and its configuration to be stored at any point in time. When a bean is read
back from its serialized state, the core reflection and introspection capabilities
of Java allow the bean container to examine the bean to determine its classes,
interfaces, methods, and method parameters. The container can then use this
information to invoke methods, as required, on the bean itself. This is where
method signatures come into play: by following specific patterns when coding
the bean, the developer can ensure that its methods conform to the expected
signatures and can be invoked at run time by a container that had no previous
direct knowledge of the bean.

One of the better known method signatures used in JavaBeans is the set/get
pattern for setting and retrieving properties of the bean: a method called
“setName” with one parameter is assumed to be the one that is used for set-
ting the property called “name.” Correspondingly, the “getName” method is
assumed to be the means to retrieve the name later. These patterns are recog-
nized by the core reflection and introspection API, and should be adhered to
for best portability of the finished bean.

JavaBeans also utilize a special descriptive class called “BeanInfo.” This class
can be entirely or partly generated, or can be implemented manually by the
bean developer. It describes the bean itself, and is used as the standard “view”
of the bean by builder/developer tools so that they can manipulate the bean.
This separates the interface and the component implementation, a key element
in component design.

An example of a component “container,” or execution environment is the
simple “bean box” utility provided by Sun as an illustration of JavaBean opera-
tion. It provides the necessary services to the JavaBean to configure and run the
bean, although not much more, because it is designed as a simple utility and
demonstration. Other component containers, such as the Phoenix subproject of



P1: IXK

0521520592c01 CB562-Nash-v1.cls March 14, 2003 16:10

12 COMPONENTS AND APPLICATION FRAMEWORKS

the Apache Avalon project, provide much more sophisticated services to their
components, such as logging, scheduling, connection pooling, and so forth.

JavaBeans are used extensively within application frameworks. For example,
the Struts framework makes use of the bean pattern to allow the developer to
associate a bean with every form, and to easily perform validations and data
transfers between the bean and the page. Even where JavaBeans are not used
directly, the get/set and other patterns that are associated with beans are still
accepted as a standard. Coding in accordance with such standards not only
ensures that the code is consistently readable, but also helps to enforce proper
object-oriented encapsulation. Variables are kept private, and get/set methods
are used to access them, hiding the internal operation of the bean from the code
that uses it. This allows the internal operation to change without affecting the
use of the bean, allowing improvements to be made without any reintegration
with the rest of the system.

1.2.3 Application Frameworks

1.2.3.1 What Do They Do?
What are application frameworks? Why are they important to you? What do
they provide that can help you get your job done?

A framework’s primary purpose is to aid and ease your application develop-
ment process. It should allow you to develop the application quickly and easily
and should result in a superior finished application.

It is important that you see the real benefit to determine whether mounting
the learning curve of a framework is worthwhile.

Frameworks, in brief, provide you with a powerful tool box. The tools in
this box help in many different areas of application development. They provide
essential design patterns and structure to your application development project,
and also provide the backbone and container for the components you create for
your application to operate within. In Chapter 2 we will explore the kinds of
services and tools you will commonly find in frameworks.

Frameworks are valuable at all stages of development, from design to de-
ployment and beyond, perhaps more so in ongoing maintenance. They usually
apply to almost all stages of the life cycle of an application.

1.2.3.2 Application Framework Characteristics
In the process of creating Web applications, a number of basic tasks are en-
countered repeatedly. As in most cases of programming, where the code that is



P1: IXK

0521520592c01 CB562-Nash-v1.cls March 14, 2003 16:10

What Are They? 13

needed more than once is broken into methods or procedures, these repeated
tasks can be generalized and the code reused across multiple projects. This
process of generalization and reuse leads to the creation of most frameworks.

Initially generalization sounds pretty easy when you say it fast: you ob-
serve what is being done over and over, and break it into a reusable element.
It is not quite that simple. The resulting elements that are broken out must
form a cohesive, understandable whole. It is this design process that makes
the framework itself so useful later – the basic principles of how everything
is supposed to hang together have already been worked out, allowing the de-
veloper using the framework to concentrate on the specifics of the application
at hand.

In its simplest form, the framework has been in existence for a long while: any
body of code, such as a library, that reduces development time on future projects
by being reusable, constitutes a framework of sorts. Libraries have previously
tended to be specific to one area of the development process, though for ex-
ample, a graphics library, a floating-point library, and so forth. Web-application
development frameworks are more applicable to the entire development process
of the finished application, and are often made up of a number of different func-
tional areas, each serving one aspect of the Web-application building process.

Many progressive companies invest in frameworks specifically – either by de-
veloping one of their own, or by purchasing or otherwise adopting an existing
framework. From their point of view, it is an investment for the future. Such an
investment reduces their development time overall, and improves the quality of
the finished product. Their developers are able to focus on the unique business
requirements of their projects, rather than on infrastructure design and devel-
opment. Maintainability is also substantially improved, so the money saved in
adopting frameworks increases over time.

A framework also provides a well-defined extension mechanism, allowing
new capabilities and services to be added without loss of structure due to per-
sonal coding styles of individual developers and design decisions. A framework
must be inherently extensible, and new services should have the ability to be
easily added as required. A well-defined extension mechanism prevents the
framework from disintegrating into many different styles.

A framework must be as simple as possible, but no simpler. In other words,
unnecessary complexity should not get in the way, and yet there must be enough
capability provided that the framework has real and measurable benefit. The
framework’s API should be consistent across modules within the framework to
make it easier to use each module once you have learned the overall style of the
API.



P1: IXK

0521520592c01 CB562-Nash-v1.cls March 14, 2003 16:10

14 COMPONENTS AND APPLICATION FRAMEWORKS

A good framework should also have complete documentation – something
that unfortunately is fairly rare today. “Complete” documentation means that
all functions and parts of the framework are documented. It does not necessarily
mean volumes of reference and learning material, as extensive documentation
does not necessarily mean better documentation. On the contrary, the right
documentation is much more essential than having a large tome in which you
cannot find what you need. Diagrams and possibly UML serve to provide a good
guide to large and complex projects, such as frameworks, and should be used
as required.

A framework should be widely applicable – that is, it should have the ability
to be used in many different kinds of development scenarios, and its func-
tionality called from many different places, including EJBs, Servlets, regular
Java classes, and others. This requires giving careful thought to design, because
some techniques (such as thread-safety) must be taken into account. Although
a framework hides much complexity from its user, it should still allow all of
its functionality to be accessed. This means multiple “levels” of access, so that
lower level features (such as database access or file system interaction) as well
as higher level functionality (such as UI independence or logic components)
can be used directly.

A framework should approach the problem domain from a generic point of
view – the more involved a framework is in providing business logic, the less
widely applicable it is. Many applications require logging, access to a user in-
terface, configuration, and other common services. Fewer applications require,
for example, mortgage rate calculations. If a framework does provide more
business-logic level services, they should at least be optional or replaceable,
otherwise its applicability might be sharply limited. A framework should also
provide its functionality in modular fashion. This avoids the unfortunate fact
that the more a framework does often means the less it is reusable. Every project
does not need every service – some applications require database access, others
do not. Developers will probably resist using a framework that provides substan-
tial database-access features if their application does not need it – even if many
other features of the framework would be valuable. If the database-access func-
tionality is optional, however, then there is no need to carry any excess baggage.

There is a trade-off at work when building reusable components. On the
positive side, time is saved by reusing the component. This must take into
account the number of times it can be reused – for example, in how many
projects do you think you will be able to reuse this component? Also, the time
to develop the component as a once-off can be subtracted from the total time
for each of those projects. On the negative side, the additional time it takes


