
CHAPTER 1

Components and
Application Frameworks

1.1 INTRODUCTION

Welcome, I would like to introduce myself, and discuss the explorations that I
would like to take you on in this book. I am a software developer, specifically, an
application developer. I build software that people use to get their jobs done –
practical, everyday software that is being used.

As part of building applications, in some cases I have also had to build some
of the tools I needed including components and an application framework. My
programming language of choice for the last several years has been Java. My
applications have been targeted for Internet/Intranet uses.

In my exploration, I will examine the nature of software development. It is a
complex and demanding process, and developers can use all the tools that are
available to them to make it easier and more efficient. We also explore how and
why developers resist using those very tools, and how you can make the right
decisions in your development projects. It has been a long road, and my hope
is to impart some knowledge of its many potholes to you.

I think that I have spent a fair portion of my career in the field resisting the
“jargonification” of software development. I am convinced that development
can be discussed in plain English, as has been done in this book. It is, however,
important to understand the basic terminology used to describe frameworks
and components, so we will do this first.

1

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521520592 - Java Frameworks and Components: Accelerate Your Web Application Development
Michael Nash
Excerpt
More information

http://www.cambridge.org/0521520592
http://www.cambridge.org
http://www.cambridge.org


2 COMPONENTS AND APPLICATION FRAMEWORKS

We start by examining what is meant by “web applications,” “components,”
and “application frameworks.” In a jargon-ridden industry, it is always impor-
tant to be sure that a common meaning exists for terms. I will define components
and frameworks in terms of what they do, so it will be apparent how each is ap-
plied to practical application development in the real world. We also discuss the
users of these tools, further defining them and see where the components and
application frameworks fit into the environment of the standard Java APIs (ap-
plication programming interface), JavaBeans, and Enterprise JavaBeans (EJBs).

Then we look at components in more detail, and talk about the advantages
of component-based development. We also discuss why these advantages make
components such a significant part of the future of Web-application develop-
ment. We examine exactly what the components and frameworks do, and what
you can expect from them.

Then we take a brief look at a number of actual examples of frameworks, com-
paring their similarities and differences, their strengths and weaknesses, and the
design patterns they use. We discuss how open source fits into the framework
scenario, and why frameworks are a natural fit for this development model.

Finally, we take a look at the future of components and frameworks, and the
new technologies they are incorporating. We conclude with a few actual case
studies, putting some frameworks through their paces to create a simple Web
application.

1.2 WHAT ARE THEY?

What is a Web application? What is a component? What is an application
framework? What are they not? These are important questions and deserve
carefully considered answers.

To-may-to, to-mah-to. Like so many things in the software industry, ask nine
developers for a definition of components, and you will get eighteen opinions.
All of them will have some similarities though – and we find the commonality
in them.

1.2.1 Web Applications

This is perhaps the easiest of the three terms we aim to define: almost everyone
agrees that a Web application is a piece of interactive software that runs on the

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521520592 - Java Frameworks and Components: Accelerate Your Web Application Development
Michael Nash
Excerpt
More information

http://www.cambridge.org/0521520592
http://www.cambridge.org
http://www.cambridge.org


What Are They? 3

Internet or on a corporate Intranet. A Web application is really a specialized
case of a traditional client/server application – in this case, the client is a Web
browser or some other Internet-enabled device, the “universal client.” So a Web
application, simply put, is an application in which the users access business logic
via their browser.

The server in a Web application is typically an enhanced Web server: for Java
Web applications, this almost always means a server that implements Sun’s Java
Servlet API, usually in conjunction with the JavaServer Pages (JSP) API. At the
top end of the scale, the “server” in fact might be a cluster of systems, each
implementing a sophisticated full J2EE (Java 2 Enterprise Edition) application
server.

Some examples of Web-application servers are as follows:

• Tomcat: an open-source project hosted by the Apache Foundation, Tomcat
is the reference implementation for the Servlet API and a popular server for
development.

• Jetty: another open-source Web server project hosted by Mort Bay Consult-
ing, Jetty is well known for its excellent performance and other features.

• BEA WebLogic: a powerful commercial application server, it implements the
entire J2EE standard, including EJBs.

• iPlanet: a flexible and highly configurable server developed by the Sun/
Netscape alliance, iPlanet is available in versions with and without full J2EE
capabilities.

• IBM’s Websphere: also available both with and without EJB capabilities, the
Websphere server is an enhanced and commercialized extension of the pop-
ular Apache HTTP server.

These are just a few of the more well-known choices. One of the great ad-
vantages of Java Web applications is the the fact that a wide range of companies
support the standards.

The term “Web application” also has a specific technical meaning within the
context of J2EE and its standards: it refers to a means of “packaging” an entire
application, complete with code, configuration, HTML (Hyper Text Mark-up
Language) and JSP pages into a single archive file – a “.war” file, specifically (Web
Application aRchive). This file format is used by almost all current J2EE servers
as one of the possible deployment mechanisms for Web applications. The idea
is that you can simply place the .war file containing such an application into
the appropriate directory, and the server will have everything it needs to fully

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521520592 - Java Frameworks and Components: Accelerate Your Web Application Development
Michael Nash
Excerpt
More information

http://www.cambridge.org/0521520592
http://www.cambridge.org
http://www.cambridge.org


4 COMPONENTS AND APPLICATION FRAMEWORKS

configure and deploy the application. For the most part, this is true; however,
sometimes special circumstances require post-deployment configuration. (And
in some cases, “special circumstances” is a term for “mistakes.” It is always best
to strive to comply with the standards for deployment, making the extra steps
at least optional, if not avoiding them altogether.)

Refer to the glossary for detailed definitions of any other terms that are
unfamiliar to you.

1.2.2 Components

A “component,” according to common usage, is a piece or part. The mind’s eye
conjures up some kind of mechanical assembly, perhaps consisting of a number
of parts, connected and related in some way, but comprising a single complete
unit. A software component is similar: it is a collection of parts; in this case
these are the methods and objects, which provide some specific functionality.
Just like its mechanical counterpart, a component can be simple or complex,
and it can work by itself or work only in conjunction with some larger unit.

We can think of components as the software equivalent of Lego (TM), the
popular toy with interlocking blocks that can be used to easily assemble many
different interesting things. As with Lego, there are different kinds of blocks that
have different uses – some are larger, some are smaller, some are more general-
ized, such as the plain rectangular piece, and some are very specific, such as the
block with wheels on it. As with Lego, the most interesting part of these blocks
is not so much the individual pieces, but the small interlocking protrusions that
let them be easily connected. Components that are designed to work together
should have the same kind of generalized way of connecting them – most are
perhaps not quite as easy to connect as in Lego, but the principle exists.

To define a component more formally, we can say that it is a “unit of function-
ality with a contractually specified interface.” Note the “interface” part here –
the specification of a component always provides a concrete definition of the
way we interact with the component. This interface may be divided into two
parts: the functional interface, which we use from our application when we want
the component to perform its functions, and the configuration interface, which
is used to change settings and set properties of the component that modify its
behavior in some way.

A component is specifically designed with reuse in mind. Unlike a specific
once-off application, the component is intended to be configurable for use in
many different completed applications, and should be flexible enough to make

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521520592 - Java Frameworks and Components: Accelerate Your Web Application Development
Michael Nash
Excerpt
More information

http://www.cambridge.org/0521520592
http://www.cambridge.org
http://www.cambridge.org


What Are They? 5

this easy, but at the same time it should present a well-defined means to the
developer to make the connections to the rest of the application.

1.2.2.1 Separation of Interface and Implementation
One of the key attributes of a component is its separation of interface and
implementation. The internals of the component can change, but the interface
of the component with the outside world remains constant. This separation
means that the actual implementation of the component is free to be improved,
while the improved component remains compatible with the original.

Some components take this a step further, and have a “pluggable” imple-
mentation. This is where the actual code that does the work is determined
dynamically, perhaps via a configuration setting. An example of this is a user
authentication component that can use either an LDAP (Lightweight Directory
Access Protocol) data source or a relational database to look up users. The LDAP
lookup is one implementation, and the database version is another.

An example of this is explored in detail when we discuss design patterns in
Chapter 8.

1.2.2.2 Inversion of Control – Don’t call us, We’ll call you
A feature of some (but certainly not all) components is that they themselves
do not directly access their environment. Instead, they use a design pattern
sometimes called “inversion of control,” where the container is responsible for
“handing” the component everything it needs to perform its tasks. For exam-
ple, in the case of a component that calculates a customer total and writes to
the database, the container would need to pass a database connection to it, as
opposed to the component trying to access some external service to “request”
a connection. This guarantees the isolation of the component and its indepen-
dence from the external supporting environment – as long as it is handed the
correct inputs, it functions correctly.

This pattern also allows the container or framework to have full control over
the sequence of processing, as it always initiates the actions of the component.
This lays a strong foundation for work-flow processing, and allows the flow
of control to be easily changed without the components themselves requiring
modification. Components written to this pattern use a passive structure – they
act only when requested by the calling object. The calling object must also be
carefully constrained: action is only initiated by the framework/container, and
never by any other objects.

Inversion of control is also a firm foundation for a secure system. It does not
guarantee security, but it is a good start. If control can be exercised from only

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521520592 - Java Frameworks and Components: Accelerate Your Web Application Development
Michael Nash
Excerpt
More information

http://www.cambridge.org/0521520592
http://www.cambridge.org
http://www.cambridge.org


6 COMPONENTS AND APPLICATION FRAMEWORKS

one point, it eliminates the opportunity for component operation to be hijacked
at some point in the hierarchy, and makes for only a single point that must be
actually secured.

Not all component models adhere to this theory, and some experts argue
that it is not necessarily the right idea, but it is a frequently seen pattern for
components. Design patterns, as we will see later, are an important topic when
discussing both components and frameworks.

Inversion of control is also important when designing a system to achieve
scalability by distributing its components among multiple servers – it guarantees
that the component does not care where it executes, as long as it is handed all
the inputs and contexts it requires.

1.2.2.3 Component Execution Environment
Components are designed to operate in a specific environment – for exam-
ple, EJB (Enterprise Java Beans) components are expected to be deployed in a
suitable EJB server. The deployment environment often defines the choice of
available components – in other words, if you know you are working in an EJB
environment for deployment, then EJB-based components are of course a good
choice.

Another term for a component’s execution environment is a container. Simply
put, a container takes components through their life cycles, managing their
creation, initialization, operation, and finalization.

It is seldom quite that simple, however, because many components operate
in multiple environments. A few frameworks even offer component collections
that can scale from a simple JSP/Servlet environment on a single server to a
distributed environment.

This is where component standardization comes to a developer’s aid: if com-
ponents are created according to specific standards, then they can be used in
more than one environment. It means that the total pool of components avail-
able in any given environment gets larger, giving the developer more prebuilt
components to choose from.

JavaBeans, for example, are components that operate in many different run-
time environments.

1.2.2.4 Components and Objects
Although most components are composed of objects, there are fundamental dif-
ferences between the two structures. A component can be differentiated from an
object in that its “encapsulation” is guaranteed: there are no exposed implemen-
tation dependencies. An object might only be used within a single application,
but a component has been designed with reuse in mind and cannot assume

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521520592 - Java Frameworks and Components: Accelerate Your Web Application Development
Michael Nash
Excerpt
More information

http://www.cambridge.org/0521520592
http://www.cambridge.org
http://www.cambridge.org


What Are They? 7

much about the environment in which it will be used. An object typically de-
fines a much smaller portion of a problem space: an email message, for example.
A component operates at a somewhat higher level, for example, for sending and
receiving email.

A component typically contains a mechanism for configuring its operation in
addition to its basic methods for performing its functions. This provides a means
for a component to be adjusted to a range of different preferences, whereas an
individual object does not usually provide this range of configurability. Some-
times this mechanism is accessed via a graphical configuration tool – as is often
the case with JavaBeans. In this way, the configuration of the component and
its current state can be both serialized and restored later for use in the finished
application.

A component is often composed of a number of objects, which are designed
to work together to provide specific functionality. Some component standards
(such as EJB) also provide a recommended means to package their components
for deployment (e.g., EJBs in a .jar file, containing the objects themselves and
a deployment description file).

1.2.2.5 Component-based Development
Component-based development (sometimes abbreviated “CBD”) is a term that
describes the process of creating applications from existing components. This is
distinct from the process of creating components themselves. Component-based
development involves more than just deployment. It begins with the process
of analysis and design with components in mind, and continues through an
assembly-like development phase, to deployment.

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521520592 - Java Frameworks and Components: Accelerate Your Web Application Development
Michael Nash
Excerpt
More information

http://www.cambridge.org/0521520592
http://www.cambridge.org
http://www.cambridge.org


8 COMPONENTS AND APPLICATION FRAMEWORKS

CBD should be differentiated from the process of creating components them-
selves. This is referred to as component development and is a lower level process
than CBD, because it creates the units of functionality, which are later assembled
into one application.

Examining the process will give us a better understanding of components,
and the frameworks within which they operate.

Component-based development begins with analysis and design, just as any
other development process. With component-based development, however, the
roles of component creator and component consumer are more clearly separ-
ated. Often two different companies, or at least two different teams, take on
these two roles. When creating a system with component-based development,
it is assumed that we are not going to start from scratch – we work with the
intent of assembling existing components into an application. Similar in many
ways to the roles in J2EE development/deployment, which we will discuss later,
there is a distinction between the component creator (or supplier), the com-
ponent assembler, and often even the component “manager,” who administers
the operation of the components after assembly and deployment.

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521520592 - Java Frameworks and Components: Accelerate Your Web Application Development
Michael Nash
Excerpt
More information

http://www.cambridge.org/0521520592
http://www.cambridge.org
http://www.cambridge.org


What Are They? 9

Part of the design process involves the determination of the set of compo-
nents that we have to choose from. Sometimes this is mandated (a company
has a specific component library or framework established as a standard), in
which case this part of the process is very short indeed. If there is no preor-
dained component library to choose from, however, the same techniques that
we discuss later for selecting an application framework can be applied success-
fully here. Reuse and acquisition, as opposed to development from scratch, are
emphasized at this stage.

Once the component library is selected, matching the existing components
to the problem at hand is the next step of the design sequence. Traditional
software engineering practices do not fit this design process very well, and
new approaches and design patterns are appropriate. Later, we discuss in de-
tail design methodologies that are applicable to both component-based and
framework-based developments.

The actual “development” phase of a component-based project should pri-
marily be a process of configuration and assembly, with perhaps some coding
for the custom business logic of the application at hand. The goal is to maximize
reuse and long-term maintainability, and one of the factors that affects this is
the amount of custom code that must be created.

Finally, there is the testing and deployment phase, where the finished as-
sembly of components is verified and the component deployment environment
is set up. Often, this involves deploying the appropriate support environment
for the component library that was chosen: for example, a J2EE server and a
related framework. One of the advantages of using the same set of components
for subsequent development is that the environment is already in place – only
the new components need to be deployed.

So, component-based development primarily consists of the aggregation and
interconnection of components, as well as the configuration of the components
themselves. It provides a powerful paradigm for rapid development of reliable,
high-quality applications.

1.2.2.5.1 Types of Components
• Client-side components: Client-side often describes visual components in-

tended to function on the client – in a Web application, they usually func-
tion in the user’s browser. Client-side components are often user-interface
elements – in other words, components with a visual representation, such
as data entry fields, calendar components, folders, and other such elements.
In the past these have been relatively low-level components, which are often
used for building data entry screens. In the Web-application projects, visual

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521520592 - Java Frameworks and Components: Accelerate Your Web Application Development
Michael Nash
Excerpt
More information

http://www.cambridge.org/0521520592
http://www.cambridge.org
http://www.cambridge.org


10 COMPONENTS AND APPLICATION FRAMEWORKS

components can be more complex, often used in conjunction with specific
server-side code to form a complete application component, such as an email
component, portal components, and so forth.

An Applet is a good example of a client-side component. Not all Applets
can be considered components in the strictest sense, because an Applet could
comprise an entire application without any ability for reuse in other appli-
cations. Often though, Applets are ideal client-side components, operating
within the context of a Web application to provide a level of interactivity or
visual display that is difficult to achieve with plain HTML.

• Visual Components: Visual components can overlap with client-side com-
ponents: most client-side components are also visual because the best separa-
tion of responsibilities is often to have the visual rendering of an application
happen on the client system. Many integrated development environments
(IDEs), particularly those that support Applet development, provide visual
components such as data entry fields, drop-down selection boxes, image
frames, and so forth.

Visual components for a Web application, though, are often generated by
means of HTML, XHTML, or JavaScript provided by the server. A text box on
an HTML form is a visual component, even though it is created as required
by the browser in response to HTML from the server-side application.

Visual components tend to be fairly “low-level,” less complex elements
than general client-side components.

• Server-side components: Server-side, or nonvisual, components are differen-
tiated from client components usually by the lack of a specific user interface.
They may be combined with a user interface (UI) to provide a more complete
building block for the application, but this need not be the case.

Some examples of server-side components are components that provide
FTP services, database reporting, XML transformation, and practically any
other application service.

1.2.2.6 JavaBeans
The JavaBean specification is an example of a component standard, and has
given rise to many component libraries of different types that conform to this
standard of access to component functionality. Originally thought of as visual
components, JavaBeans can be much more.

First introduced in 1996 during the first JavaOne conference, the Bean API
(Application Programming Interface) was initially quite specific: it called for
a JavaBean to be a reusable software component that was capable of being

www.cambridge.org© Cambridge University Press

Cambridge University Press
0521520592 - Java Frameworks and Components: Accelerate Your Web Application Development
Michael Nash
Excerpt
More information

http://www.cambridge.org/0521520592
http://www.cambridge.org
http://www.cambridge.org

