Index

diffusion (cont.)
from rainsplash 318
from random walk 311
halo 306
thermal 32
topographic 320
diffusivity 310
landscape 309
particle 312
thermal 32
dilatant strengthening 336
drag coefficient 314
drag force 314
effect on saltation trajectory 463
in entrainment 455
in ice 247
on plates 37
drainage basin 350
drainage density 351, 370
Dupuit case 360
dynamic topography 49
Earth
hypsometry 21
mass 19
radius 18
speed in orbit 20
eddy viscosity 385, 386
effective stress 333
ELA see equilibrium line altitude
elastic displacements 577
Ellison splash board 320
English Channel 549, 550
eolian bedforms 477
exhumation 41
exfoliation joints see
excess shear stress 369, 433, 496
excess rainfall 368
evapotranspiration 353, 365
eskers 260, 262
erosion
transport-limited 162
weathering-limited 162
eskers 260, 262
evaporisation 353, 365
excess rainfall 368
excess shear stress 369, 433, 496
exfoliation joints see fractures:
fourier's law 30, 32, 360, 583
fracture 351
fractures 166–182
fire spall 169
rock mass strength 182
sheeting joints 180
tectonic 179
thermal 257
frost cracking 173
temperature window 174
frost heave 280, 322
fissure structures 282
Froude number 418, 537, 536
frost
Gaussian function 589, 591
gelfraction 223
glacial abrasion 247
geometric index of
phototropism 372
geotherm 273
Gibbs free energy 183
Gilbert, G. K. 8
convs hillslopes 307
erosion and weathering 162, 207
Gilbert delta 515, 516
knickpoint migration 433, 442
Lake Bonneville 42, 44, 538
ice
ablation area 215
ablation 246, 247
accumulation area 215
basal shear stress 235
deposition 257
erosion rates 247, 263, 264
flow law parameter 223, 224
hydrologic system 229, 251, 261
ice flow trajectories 219
landscape modification 251
mass balance 215, 216
overdeepenings 214
polar 215
quarrying 248
sliding 225
surface speed 223
surgice 216
temperate 215
temperature profile 216
tidewater 237
velocity profile 223
Glen's flow law 223
Goldich Stability Series 192
Green-Amazon model 357
Greenland Ice Sheet 243
groundwater 358–363
Hadley cells 108–110
Half Moon Bay 524
half-life 129
Hallet, B. 235
heat capacity
water 277
hemipelagic sediment 517
Himalayan orogen 80
Himalayas 40, 42, 43
rivers crossing 137, 427, 441, 443
Horton overland flow 367
Horton, R. E. 351
hydraulic conductivity 355, 356
hydraulic geometry 395
hydraulic radius 359
hydrograph 352, 358
hydrodrometers 115
hydrostatic equilibrium 18, 19, 22
hyetograph 358
hyperviscous 518
hypoviscous 517
hypsometric curve 21, 35, 536
ice
glacier 214
ice lens 281
massive ice 280
sea 215
ice sheet
Fennoscandanian 44
Laurentide 43
see also Antarctice Ice Sheet,
Greenland Ice Sheet
ice sheet profile 235
ice streams 243
ice wedge polygons 286
impact gardening 321
incongruent dissolution 188
infiltration 355
infiltration capacity 364, 365
integral 594
Intergovernmental Panel on Climate Change (IPCC) 12
inverse square law 101
isotropy 23
effect of erosion 41
rebound 43, 44, 256
versus flexure 88
Ivenson, N.
glacial quarrying 248
jökulhlaup 540
katabatic wind 112
Keeiling curve 12, 13
kilometer, definition 18
kinetic energy
lanslide 338
raindrop 314
knickpoint 439
migration 434
Lachenbruch, Art
Alaska pipeline 283
contraction cracks 286
warming of surface from
permafrost 350
Lake Agassiz 546
Lake Bonneville 43, 44
Lake Ojibway 546
landslopes 330–340
dam failure 553
finite slope force balance 331
long runout 338
lapse rate 108
law of the wall 386
linear viscous fluid see rheology
lithosphere 28
littoral system 568
sediment budget 570
loess 490
Chinese loess plateau 43
North American distribution 493
Loma Prieta earthquake 563
long runout landslides 341
longshore current 511
longshore drift 512
luminescence 124
Manning's equation 389
marine isoage stages 127
marine platform 79–83
marine terrace see terrace
Mawson, Sir Douglas 113
mea free path 132
mean value theorem 594
melt-water pulse 506
micro-meteorites 321
mineral surfaces 193
BET surface area 193
roughness 194
MIS see marine isotope stages
Missoula floods 541, 544
monsoons 42, 110–112
Monterey Bay 560, 579
moraines 257
Newton's second law 112
Newtonian fluid 220
Nikurads' roughness
see roughness height
Nile River 407, 515
Noah's flood 549
normal stress 220
normalize 584
ocean swell 321
ocean, mean depth see sea floor
optically stimulated
luminescence 123
orders of drainage basins 350
orographic effects see
precipitation, orographic
OSL see optically stimulated
luminescence
outburst floods 540
overland flow 366
oxidation 188
oxygen isotopes 10, 126
paleoflood analysis 537
parabola 586
patterned ground 285–286
PDF see probability density
function
periglacial 271
permafrost 272
active layer 273, 275
depth of 273
distribution 272, 273
thermal structure 272
permanent wilting point 366
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>permeability</td>
<td>355</td>
<td></td>
</tr>
<tr>
<td>rock mass strength</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>Selby classification</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>rock strength</td>
<td>205</td>
<td></td>
</tr>
<tr>
<td>chemical alteration of 205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rodents</td>
<td>326</td>
<td></td>
</tr>
<tr>
<td>roughness height</td>
<td>386, 387</td>
<td></td>
</tr>
<tr>
<td>Rouse number</td>
<td>583</td>
<td></td>
</tr>
<tr>
<td>runoff coefficient</td>
<td>358</td>
<td></td>
</tr>
<tr>
<td>runoff mechanisms</td>
<td>363</td>
<td></td>
</tr>
<tr>
<td>salt cracking</td>
<td>176</td>
<td></td>
</tr>
<tr>
<td>San Andreas Fault</td>
<td>560</td>
<td></td>
</tr>
<tr>
<td>San Francisco Bay</td>
<td>558</td>
<td></td>
</tr>
<tr>
<td>Santa Cruz mountains</td>
<td>558, 560</td>
<td></td>
</tr>
<tr>
<td>sapping</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>saturated overland flow</td>
<td>364</td>
<td></td>
</tr>
<tr>
<td>saturation index</td>
<td>185</td>
<td></td>
</tr>
<tr>
<td>Schmidt hammer</td>
<td>172</td>
<td></td>
</tr>
<tr>
<td>sea floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sea floor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sea level</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>sea level history</td>
<td>104</td>
<td></td>
</tr>
<tr>
<td>sediment transport</td>
<td>466, 472</td>
<td></td>
</tr>
<tr>
<td>soil residence time</td>
<td>330</td>
<td></td>
</tr>
<tr>
<td>thermal disturbance</td>
<td>169</td>
<td></td>
</tr>
<tr>
<td>total head</td>
<td>360</td>
<td></td>
</tr>
<tr>
<td>trajectory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rain splash</td>
<td>317</td>
<td></td>
</tr>
<tr>
<td>salination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>suspension</td>
<td>468</td>
<td></td>
</tr>
<tr>
<td>transport</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>biogenic</td>
<td>325</td>
<td></td>
</tr>
<tr>
<td>mobile regolith</td>
<td>309</td>
<td></td>
</tr>
<tr>
<td>tree-throw</td>
<td>328</td>
<td></td>
</tr>
<tr>
<td>trigonometric functions</td>
<td>589</td>
<td></td>
</tr>
<tr>
<td>Tsingy pinnacles</td>
<td>306</td>
<td></td>
</tr>
<tr>
<td>tsunami</td>
<td>23, 77, 518</td>
<td></td>
</tr>
<tr>
<td>turbulence</td>
<td>382, 384, 385, 419, 453</td>
<td></td>
</tr>
<tr>
<td>atmosphere</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>bursts and sweeps</td>
<td>459, 460</td>
<td></td>
</tr>
<tr>
<td>eddy diffusivity</td>
<td>470</td>
<td></td>
</tr>
<tr>
<td>uniformitarianism</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>universal gas constant</td>
<td>583</td>
<td></td>
</tr>
<tr>
<td>upfreezing</td>
<td>283</td>
<td></td>
</tr>
<tr>
<td>U-shaped valley</td>
<td>251, 252</td>
<td></td>
</tr>
<tr>
<td>vadose</td>
<td>354</td>
<td></td>
</tr>
<tr>
<td>variable source area</td>
<td>364</td>
<td></td>
</tr>
<tr>
<td>Variegated Glacier</td>
<td>236</td>
<td></td>
</tr>
<tr>
<td>varves</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>viscosity</td>
<td>38, 47, 222, 384</td>
<td></td>
</tr>
<tr>
<td>effective, in ice</td>
<td>223</td>
<td></td>
</tr>
<tr>
<td>in hydraulic conductivity</td>
<td>355</td>
<td></td>
</tr>
<tr>
<td>kinematic</td>
<td>385, 418</td>
<td></td>
</tr>
<tr>
<td>mantle</td>
<td>43, 47, 48</td>
<td></td>
</tr>
<tr>
<td>von Karman's constant</td>
<td>385</td>
<td></td>
</tr>
<tr>
<td>water</td>
<td></td>
<td></td>
</tr>
<tr>
<td>phase diagram</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>water balance</td>
<td>352</td>
<td></td>
</tr>
<tr>
<td>water table</td>
<td>353, 360</td>
<td></td>
</tr>
<tr>
<td>wave-cut angle</td>
<td>82, 508</td>
<td></td>
</tr>
<tr>
<td>waves</td>
<td>508</td>
<td></td>
</tr>
<tr>
<td>energy density</td>
<td>509</td>
<td></td>
</tr>
<tr>
<td>power</td>
<td>510</td>
<td></td>
</tr>
<tr>
<td>refraction</td>
<td>511</td>
<td></td>
</tr>
<tr>
<td>transformation</td>
<td>510</td>
<td></td>
</tr>
<tr>
<td>weathering</td>
<td>161</td>
<td></td>
</tr>
<tr>
<td>crystal lifetimes</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>intrinsic rates</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>mass loss</td>
<td>202</td>
<td></td>
</tr>
<tr>
<td>spheroidal</td>
<td>207</td>
<td></td>
</tr>
<tr>
<td>strain</td>
<td>163</td>
<td></td>
</tr>
<tr>
<td>wetted perimeter</td>
<td>389</td>
<td></td>
</tr>
<tr>
<td>Wien's law</td>
<td>102, 583</td>
<td></td>
</tr>
<tr>
<td>Young's modulus</td>
<td>221</td>
<td></td>
</tr>
<tr>
<td>z_0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>