Translational Neuroscience:
Applications in Psychiatry, Neurology, and Neurodevelopmental Disorders
Translational Neuroscience:

Applications in Psychiatry, Neurology, and Neurodevelopmental Disorders

Edited by

James E. Barrett
Professor and Chair of Pharmacology and Physiology and Director of the Drug Discovery and Development Program at Drexel University, Philadelphia, PA, USA

Joseph T. Coyle
Eben S. Draper Chair of Psychiatry and Neuroscience at McLean Hospital, Harvard Medical School, Belmont, MA, USA

Michael Williams
Adjunct Professor of Pharmacology and Physiology, Faculty of the Drug Discovery and Development Program at Drexel University College of Medicine, Philadelphia, PA, USA

© Cambridge University Press 2023
978-0-521-51976-2 - Translational Neuroscience: Applications in Psychiatry, Neurology, and Neurodevelopmental Disorders
Edited by James E. Barrett, Joseph T. Coyle and Michael Williams
Frontmatter
More information

© in this web service Cambridge University Press
Cambridge University Press
978-0-521-51976-2 - Translational Neuroscience: Applications in Psychiatry, Neurology, and Neurodevelopmental Disorders
Edited by James E. Barrett, Joseph T. Coyle and Michael Williams
Frontmatter
More information
Translational neuroscience: applications in psychiatry, neurology, and neurodevelopmental disorders

Edited by James E. Barrett, Joseph T. Coyle and Michael Williams

Library of Congress Cataloging-in-Publication data

p. ; cm.
Includes bibliographical references and index.
1. Barrett, James E. II. Coyle, Joseph T. III. Williams, Michael
3. Mental Disorders. 4. Neurosciences—methods. 5. Translational Research—methods. WL 140]
616.8—dc23

2011043658

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Every effort has been made in preparing this book to provide accurate and up-to-date information which is in accord with accepted standards and practice at the time of publication. Although case histories are drawn from actual cases, every effort has been made to disguise the identities of the individuals involved. Nevertheless, the authors, editors and publishers can make no warranties that the information contained herein is totally free from error, not least because clinical standards are constantly changing through research and regulation. The authors, editors and publishers therefore disclaim all liability for direct or consequential damages resulting from the use of material contained in this book. Readers are strongly advised to pay careful attention to information provided by the manufacturer of any drugs or equipment that they plan to use.
Contents

List of contributors vi
Preface ix
Acknowledgments xi

1 The discovery and development of drugs to treat psychiatric disorders: Historical perspective 1
 Michael Williams and James E. Barrett

2 Translational approaches to the treatment of anxiety disorders 14
 Charles F. Gillespie, Tamara Weiss, and Kerry J. Ressler

3 Mood disorders 27
 Jorge A. Quiroz, Guang Chen, Wayne C. Drevets, Ioline D. Henter, and Husseini K. Manji

4 Schizophrenia 80
 Darrick T. Balu and Donald C. Goff

5 Addictive disorders 107
 Charles P. O’Brien

6 Section summary and perspectives: Translational medicine in psychiatry 118
 Joseph T. Coyle

7 Historical perspectives on the discovery and development of drugs to treat neurological disorders 129
 Michael Williams and Joseph T. Coyle

8 Alzheimer’s disease 149
 Donald L. Price, Alena V. Savonenko, Tong Li, and Philip C. Wong

9 Pain therapeutics 168
 Anthony W. Bannon

10 Multiple sclerosis 178
 Alfred W. Sandrock, Jr and Richard A. Rudick

11 Parkinson’s disease 197
 Jiang-Fan Chen

12 Amyotrophic lateral sclerosis 214
 Nicholas J. Maragakis

13 Epilepsy 228
 Maciej Gasior and Frank Wiegand

14 Section summary and perspectives: Translational medicine in neurology 253
 James E. Barrett and Joseph T. Coyle

15 Historical perspectives on the use of therapeutic agents to treat neurodevelopmental disorders 261
 Kimberly A. Stigler, Craig A. Erickson, David J. Posey, and Christopher J. McDougle

16 Autism spectrum disorders 273
 Timothy P.L. Roberts, Michael Gandal, Steven J. Siegel, Paulo Vianney-Rodrigues, and John P. Walsh

17 Attention deficit hyperactivity disorder 303
 Craig W. Berridge, David M. Devilbiss, Robert C. Spencer, Brooke E. Schmeichel, and Amy F.T. Arnsten

18 Epigenetic mechanisms in central nervous system disorders 321
 Swati Gupta, Ryley Parrish, and Farah D. Lubin

19 Section summary and perspectives: Neurodevelopmental disorders and regulation of epigenetic changes 334
 James E. Barrett and Joseph T. Coyle

20 Promises and challenges of translational research in neuropsychiatry 339
 David L. Braff

Index 359

The color plate section can be found between pp. 148 and 149.
Contributors

Amy F.T. Arnsten
Department of Neurobiology, Yale University School of Medicine, New Haven, CT

Darrick T. Balu
Harvard Medical School, Belmont, MA

Anthony W. Bannon
Abbott Laboratories, Abbott Park, IL

James E. Barrett
Drexel University College of Medicine, Philadelphia, PA

Craig W. Berridge
Department of Psychology, University of Wisconsin, Madison, WI

David L. Braff
University of California San Diego School of Medicine, Department of Psychiatry, La Jolla, CA

Jiang-Fan Chen
Department of Neurology and Pharmacology, Boston University School of Medicine, Boston, MA

Guang Chen
Johnson & Johnson Pharmaceutical Research and Development, San Diego, CA

Joseph T. Coyle
Harvard Medical School, Boston, MA

David M. Devilbiss
Department of Psychology, University of Wisconsin, Madison, WI

Wayne C. Drevets
Laureate Institute for Brain Research and Department of Psychiatry, Oklahoma University College of Medicine, Tulsa, OK

Craig A. Erickson
Department of Psychiatry, Section of Child & Adolescent Psychiatry, Indiana University School of Medicine and the Christian Sarkine Autism Treatment Center, James Whitcomb Riley Hospital for Children, Indianapolis, IN

Michael Gandal
Department of Bioengineering and Department of Psychiatry, University of Pennsylvania, PA

Maciej Gasior
Discovery Medicine, Neuroscience, Bistol-Myers Squibb, Princeton, NJ

Charles F. Gillespie
Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA

Donald C. Goff
Massachusetts General Hospital, Boston, MA

Swati Gupta
The Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL

Ioline D. Henter
National Institute of Mental Health, National Institutes of Health, Bethesda, MD

Tong Li
Johns Hopkins University School of Medicine, Baltimore, MD

Farah D. Lubin
The Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL
<table>
<thead>
<tr>
<th>Name</th>
<th>Institution and Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christopher J. McDougle</td>
<td>Lurie Center for Autism, Harvard University, Boston, MA</td>
</tr>
<tr>
<td>Husseini K. Manji</td>
<td>Johnson & Johnson Pharmaceutical Research and Development, Titusville, NJ</td>
</tr>
<tr>
<td>Nicholas J. Maragakis</td>
<td>Johns Hopkins University, Baltimore, MD</td>
</tr>
<tr>
<td>Charles P. O’Brien</td>
<td>Department of Psychiatry, University of Pennsylvania, Philadelphia, PA</td>
</tr>
<tr>
<td>Ryley Parrish</td>
<td>The Evelyn F. McKnight Brain Institute, Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL</td>
</tr>
<tr>
<td>David J. Posey</td>
<td>Department of Psychiatry, Section of Child & Adolescent Psychiatry, Indiana University School of Medicine and the Christian Sarkine Autism Treatment Center, James Whitcomb Riley Hospital for Children, Indianapolis, IN</td>
</tr>
<tr>
<td>Donald L. Price</td>
<td>Division of Neuropathology Alzheimer’s Disease Research Center, Johns Hopkins University School of Medicine, Baltimore, MD</td>
</tr>
<tr>
<td>Jorge A. Quiroz</td>
<td>Pharma Research & Early Development, Neuroscience, Hoffmann-La Roche, Nutley, NJ</td>
</tr>
<tr>
<td>Kerry J. Ressler</td>
<td>Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, Yerkes National Primate Research Center, Atlanta, GA and Howard Hughes Medical Institute</td>
</tr>
<tr>
<td>Timothy P.L. Roberts</td>
<td>Department of Radiology, University of Pennsylvania and Children’s Hospital of Philadelphia, Philadelphia, PA</td>
</tr>
<tr>
<td>Richard A. Rudick</td>
<td>Mellen Center for Multiple Sclerosis Treatment and Research, Neurological Institute, Cleveland Clinic, Cleveland, OH</td>
</tr>
<tr>
<td>Alfred W. Sandrock, Jr</td>
<td>Neurology Research and Development, Biogen Idec, Inc., Cambridge, MA and Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA</td>
</tr>
<tr>
<td>Alena V. Savonenko</td>
<td>Departments of Pathology, Neurology and Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD</td>
</tr>
<tr>
<td>Brooke E. Schmeichel</td>
<td>Department of Psychology, University of Wisconsin, Madison, WI</td>
</tr>
<tr>
<td>Steven J. Siegel</td>
<td>Department of Psychiatry, Translational Research Laboratory, University of Pennsylvania, Philadelphia, PA</td>
</tr>
<tr>
<td>Robert C. Spencer</td>
<td>Department of Psychology, University of Wisconsin, Madison, WI</td>
</tr>
<tr>
<td>Kimberly A. Stigler</td>
<td>Department of Psychiatry, Section of Child & Adolescent Psychiatry, Indiana University School of Medicine and the Christian Sarkine Autism Treatment Center, James Whitcomb Riley Hospital for Children, Indianapolis, IN</td>
</tr>
<tr>
<td>Paulo Vianney-Rodrigues</td>
<td>Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA</td>
</tr>
<tr>
<td>John P. Welsh</td>
<td>Center for Integrative Brain Research, Department of Pediatrics, Seattle Children’s Research Institute, Seattle, WA</td>
</tr>
<tr>
<td>Tamara Weiss</td>
<td>Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA</td>
</tr>
<tr>
<td>Frank Wiegand</td>
<td>Johnson & Johnson Pharmaceutical Services LLC, Raritan, NJ</td>
</tr>
<tr>
<td>Michael Williams</td>
<td>Faculty of the Drug Discovery and Development Program at Drexel University College of Medicine, Philadelphia, PA</td>
</tr>
<tr>
<td>Philip C. Wong</td>
<td>Departments of Pathology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD</td>
</tr>
</tbody>
</table>
Translational medicine has emerged as a dominant theme within the context of the biomedical sciences. It has been somewhat difficult to define translational medicine as a formal discipline because, at the present time, there are no commonly accepted techniques or procedures that specifically delineate the methodological approaches or the conceptual framework within which the discipline is to evolve. In its most elemental form, translational medicine represents an effort to bridge the bidirectional gap between basic preclinical research and clinical studies in order to expedite the development of safe and effective therapeutics – the frequently articulated “bench to bedside” perspective. In a broader sense, translational medicine incorporates areas such as biomarker development, pharmacogenomics, clinical pharmacology, and clinical trial methodology to name just a few disciplines that have either embraced, or offer potential applications that can be applied to, translational research. Although the term translational medicine is relatively recent, the effort to bridge the divide between basic and clinical research is not new, having a clear precedent in the Congressional authorization to establish the National Institutes of Health Clinical Center in 1944. A substantial impetus for the recent emphasis to form a translational science initiative was based on the current paucity of new drugs, despite a considerable explosion of new technologies, insights into the molecular biology of new targets and mechanisms, and the discovery of new genetic pathways involved in various diseases. This lack of new drugs is all the more striking when one considers that research and development expenditures within the pharmaceutical industry have increased substantially over the past several years without a concomitant increase in the approval of new chemical entities and with many compounds failing in the later stages of development. No single factor is responsible for this outcome nor does a single solution or prescription address the many issues that are involved in the lengthy, exceedingly difficult process of drug discovery and development.

Multiple initiatives within the Federal Government that were launched by the creation of the “NIH Roadmap” in 2003, as well as those within academic research centers and the pharmaceutical industry, have emphasized the concept of translational medicine in an effort to address these many issues. These efforts have spawned the creation of approximately 60 Clinical and Translational Science Centers and the formation of the National Center for Advancing Translational Sciences. These efforts have prompted a nearly constant reexamination of drug discovery and development processes. It is too early to assess the impact of these and other initiatives because the drug discovery and development process is exceptionally complex, takes several years, and has numerous regulatory steps that are immutable in terms of timing and duration (e.g., toxicology studies). The transformational potential of these many efforts remains to be determined but, without question, the many concepts surrounding translational medicine have generated considerable activity and an appropriate as well as continuing evaluation of how to more effectively translate fundamental discoveries in basic science into clinical application. In these efforts to establish and apply translational research, it will be crucial not to neglect the need for continued support of basic research. Those activities, being the wellspring of new directions, provide essential insight into pathophysiological mechanisms and are therefore fundamental in translating basic research findings into new therapeutic benefits.

The dearth of novel therapeutics that has so frequently been raised as a critical issue is particularly true in the neurosciences where many of the current drugs used to treat neuropsychiatric and neurological disorders are derivatives of those discovered initially in the 1950s. It has been stated often that animal models of these disorders are poorly predictive of clinical
efficacy, that psychiatric disorders in particular have overlapping phenotypes and show considerable comorbidity, making diagnosis and treatment difficult, and that there are no reliable or distinct biomarkers available. Furthermore, our understanding of the pathophysiology of both psychiatric and neurological disorders remains limited at the present time, thereby thwarting the development of more effective therapeutics. Although all of these factors are more or less true, it is also evident that basic and clinical neuroscience has made considerable progress in recent years in identifying new biological targets, molecular pathways, and potential points of therapeutic intervention that offer promising avenues and hope for patients suffering from these disorders, many of which are at this point intractable. Recently, it has also been recognized that some disorders have not been fully characterized from a phenotypic perspective. For example, treatments for schizophrenia need to address the currently neglected cognitive impairments and negative symptoms in addition to the positive symptoms, which are targeted by existing antipsychotics. As such, an effort to capture these exciting advances and couple them to developments emerging in translational and experimental medicine in a comprehensive text is timely and essential to facilitate progress in neuroscience and in the delivery of new medications to patients.

Translational Neuroscience: Applications in Psychiatry, Neurology, and Neurodevelopmental Disorders was conceived to provide a comprehensive disorder-focused perspective of this evolving discipline for individuals in academia, government, and industry. The text is divided into three major sections, focused separately on (i) psychiatric disorders such as anxiety, depression, and schizophrenia; (ii) neurological disorders such as Alzheimer’s disease, pain, and Parkinson’s disease; and (iii) neurodevelopmental disorders such as autism and fragile X syndrome. The authors of each chapter are experts in their field and represent a blend of individuals from academia and the pharmaceutical industry. It is our hope that the chapters that follow not only summarize the current status of research and clinical science in the respective therapeutic areas but also open new perspectives and spur translational initiatives in each of these critical areas of unmet medical need that will help to advance the scientific framework and approaches to translational neuroscience.

James E. Barrett
Joseph T. Coyle
Michael Williams
Acknowledgments

JEB thanks Maura Barrett for her support and patience throughout the editing of this book. JTC thanks Genevieve Coyle and MW thanks Holly Williams for their support.

The editors thank all the authors for their contributions and commitment to this volume and also thank Pamela Fried for her diligent and professional assistance in the handling of manuscripts.