The Neurobiology of Australian Marsupials

Australian marsupials represent a parallel adaptive radiation to that seen among placental mammals. This great natural experiment has produced a striking array of mammals with structural and behavioural features echoing those seen among primates, rodents, carnivores, edentates and ungulates elsewhere in the world. Many of these adaptations involve profound evolutionary changes in the nervous system, and occurred in isolation from those unfolding among placental mammals. Ashwell provides the first comprehensive review of the scientific literature on the structure and function of the nervous system of Australian marsupials. The book also includes the first comprehensive delineated atlases of brain structure in a representative diprotodont marsupial (the tammar wallaby) and a representative polyprotodont marsupial (the stripe-faced dunnart). For those interested in brain development, the book also provides the first comprehensive delineated atlas of brain development in a diprotodont marsupial (the tammar wallaby) during the critical first four weeks of pouch life.

Ken W. S. Ashwell is Professor of Anatomy at the University of New South Wales, Australia, and has nearly 30 years' experience in teaching medical anatomy, neuroscience, comparative anatomy and anthropology. He has published extensively on the comparative neuroscience of living and recently extinct Australasian mammals and birds, with a particular focus on monotreme and marsupial neuroanatomy.
The Neurobiology of Australian Marsupials

Brain Evolution in the Other Mammalian Radiation

Editor and Principal Author

Ken W. S. Ashwell

School of Medical Sciences,
The University of New South Wales,
Australia
Dedicated to
Richard F. Mark
(1934–2003)
&
John R. Haight
(1938–)
Earlier in the evening I had been lying on a sunny bank and reflecting on the strange character of the Animals of this country as compared to the rest of the World. A Disbeliever in everything beyond his own reason, might exclaim, 'Surely two distinct Creators must have been at work; their object however has been the same and certainly in each case the end is complete.'

Charles Darwin, quoted in Frame (2009), p 57.

Marsupials represent the great alternative case of mammalian adaptive radiation, and when the same result happens in two such separate phylogenetic lines, we can begin to identify the determining factors in brain evolution.

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of contributors</td>
<td>ix</td>
</tr>
<tr>
<td>Preface</td>
<td>xi</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>xiii</td>
</tr>
<tr>
<td>Part I Introduction and overview</td>
<td></td>
</tr>
<tr>
<td>1 Classification, evolution and behavioural ecology of Australian marsupials</td>
<td>3</td>
</tr>
<tr>
<td>2 Overview of marsupial brain organisation and evolution</td>
<td>18</td>
</tr>
<tr>
<td>3 Development and sexual dimorphism</td>
<td>40</td>
</tr>
<tr>
<td>Part II Regional neurobiology</td>
<td></td>
</tr>
<tr>
<td>4 Ventral hindbrain and midbrain</td>
<td>61</td>
</tr>
<tr>
<td>5 Cerebellum, vestibular and precerebellar nuclei</td>
<td>82</td>
</tr>
<tr>
<td>6 Diencephalon and associated structures: prethalamus, thalamus, hypothalamus, pituitary gland, epithalamus and pretectal area</td>
<td>95</td>
</tr>
<tr>
<td>7 Deep telencephalic structures: striatum, pallidum, amygdala, septum and subfornical organ</td>
<td>119</td>
</tr>
<tr>
<td>8 Cerebral cortex and claustrum/endopiriform complex</td>
<td>129</td>
</tr>
<tr>
<td>Part III Systems neurobiology</td>
<td></td>
</tr>
<tr>
<td>9 Visual system</td>
<td>155</td>
</tr>
<tr>
<td>10 Somatosensory system</td>
<td>167</td>
</tr>
</tbody>
</table>
Contents

11 Auditory system 184
12 Olfactory system 192
13 Motor system and spinal cord 202

Part IV Australian marsupials as models of brain development 219
14 Australian marsupials as models of brain development 219
15 Marsupials as models for development, ageing and disease: a neurobiological and comparative context 225

Part V Atlases
16 Atlas of the brain of the stripe-faced dunnart (Sminthopsis macroura) 241
Plates D1–D32
17 Stereotaxic atlas of the brain of the tammar wallaby (Macropus eugenii) 242
Plates W1–W51
18 Atlas of the brain of the developing tammar wallaby (Macropus eugenii) 245
Plates WP0-1–WP25-11

List of structures and abbreviations 249
Index to figures and atlas plates 263
Glossary 289
References 299
Index to text 335
Contributors

Editor and principal author

Ken W. S. Ashwell,
Dept of Anatomy, School of Medical Sciences,
The University of New South Wales, NSW 2052, Australia.

Chapter contributors (in alphabetical order)

Lindsay M. Aitkin,
Bionic Ear Institute, 384–388 Albert Street, East Melbourne,
VIC 3002, Australia.

Catherine Arrese,
School of Animal Biology, University of Western Australia,
Nedland, WA 6009, Australia.

Lynda D. Beazley,
School of Animal Biology, University of Western Australia,
Nedland, WA 6009, Australia.

David M. Hunt,
UCL Institute of Ophthalmology, 11–43 Bath Street,
London, EC1V 9EL, UK.
and
School of Animal Biology, University of Western Australia,
35 Stirling Highway, Crawley, Perth, WA 6009, Australia.

Catherine A. Leamey,
Department of Physiology and Bosch Institute for Medical
Research, University of Sydney, NSW 2006, Australia.

Jürgen K. Mai,
Department of Neuroanatomy, Heinrich Heine University
of Düsseldorf, Düsseldorf, D40001, Germany.

Lauren R. Marotte,
Visual Sciences Group, Research School of Biology,
Australian National University, ACT 0200, Australia.

Bronwyn M. McAllan,
School of Medical Sciences, Discipline of Physiology
and Bosch Institute, Anderson Stuart Building (F13), The
University of Sydney, NSW 2006, Australia.
List of contributors

Samantha J. Richardson,
School of Medical Sciences, Building 201, RMIT University,
PO Box 71, Bundoora, VIC 3083, Australia.

Robert K. Shepherd,
Bionic Ear Institute, 384–388 Albert Street, East Melbourne,
VIC 3002, Australia.

Phil M. E. Waite,
Department of Anatomy, School of Medical Sciences, The
University of New South Wales, NSW 2052, Australia.
Preface

Marsupials in general, and Australian marsupials in particular, have much to offer in broadening our understanding of brain function. Both Charles Darwin and J. I. Johnson recognised that the native Australian mammals represent a ‘second creation’ or, to couch this in more modern terms, a parallel adaptive radiation. Australian marsupials have made a unique journey through the Tertiary, evolving nervous systems to deal with the special features of the changing Australian environment. For much (but not all) of that time, Australian marsupials were (apparently) completely isolated from placental mammals and many of the megafaunal species of the Pleistocene and recent times evolved large and complex brains. This raises many questions. Have marsupials used the same neural solutions to meet the demands of their environment as their distant placental cousins, or have they explored novel adaptations? How does the dramatically different developmental timetable of the marsupial lifestyle influence brain development and adult structure? Does the marsupial brain mediate sexual behaviour in the same way as the placental brain? These are some of the abiding questions of marsupial neurobiology.

The reader should note that, for the purposes of this work, the term Australian is used to include all those parts of Greater Australia to the east and south of the Wallace line (i.e. including New Guinea and its associated islands, mainland Australia and Tasmania). This corresponds to the continental land mass of Greater Australia (Sahul) as it was at the height of the last glaciation of the Pleistocene, when sea levels were at their lowest and Australian marsupials could move relatively freely between the Australian mainland and surrounding islands.

The textual component of this book has been organised into four broad parts. The first part (Chapters 1 to 3) deals with general aspects of marsupial classification, evolution, brain organisation and brain development. The second (Chapters 4 to 8) deals with the parts of the marsupial brain from a regional approach. The third (Chapters 9 to 13) includes chapters on important systems, while the fourth part (Chapters 14 and 15) is concerned with marsupials as research models. The book also includes three atlases. The first of these (Chapter 16) is a non-stereotaxic atlas of a representative polyprotodont marsupial (*Sminthopsis macroura*), since this species breeds well in captivity and may provide a useful model for studies of brain ageing. The second (Chapter 17) is a stereotaxic atlas of the brain of a representative diprotodont marsupial (the tammar wallaby, *Macropus*...
Since the tammar is also used widely for developmental studies, the third atlas (Chapter 18) is a developmental series of five ages of the tammar pouch young. The atlases are provided in the hope that they will stimulate interest in Australian marsupial neurobiology and facilitate their study.

In these times of fierce competition for government grant money, marsupials are often seen as convenient models for solving human health problems and scientists interested in marsupial biology must often pitch their applications for research money with this in mind. There is no doubt that the special reproductive features and life cycles of Australian marsupials make them excellent models for studying problems relevant to human development and ageing, and, with this in mind, the book includes chapters on those aspects of marsupial neurobiology. On the other hand, I am certain that the neurobiology of Australian marsupials is worthy of study in its own right and will continue to fascinate scientists.

I have prepared this work with two broad audiences in mind. The first group would be students and researchers in zoology who are fully acquainted with the physiology, reproductive biology, evolution and palaeontology of marsupials, but who are interested in knowing more about the nervous systems of marsupials. The second would be neuroscientists who usually study placental mammals, but want to know more about what makes marsupials different. I have endeavoured to place the neurobiology of Australian marsupials in the context of their evolution, general and reproductive physiology. Naturally, as a neuroanatomist my perspectives on these may occasionally suffer from naivety and overgeneralisation, and I beg the forgiveness of my zoologist colleagues should this be the case. I welcome any feedback from colleagues to improve future editions.

While I was preparing this book, a colleague asked me if I could have found a more obscure topic to write a book about. The natural answer to this is: ‘Yes, monotreme neurobiology!’ Unfortunately, marsupials (and monotremes) still suffer from prejudice and misinformation. In some quarters they continue to be seen as ‘not quite right,’ ‘primitive’, ‘evolutionary dead-end’ mammals, whose only scientific value is to inform our thinking on how the ‘advanced’ mammals evolved. The quotations at the front of this book highlight another approach. As Darwin noted concerning the northern hemisphere and Gondwanan radiations, ‘certainly in each case the end is complete.’ The Gondwanan mammalian radiation is in no sense incomplete, inferior or deficient, simply intriguingly different.

To paraphrase David Attenborough’s lines in the television documentary Life on Earth, I see Australian mammals as alternative solutions to the problem of staying alive. As such, study of the unique and convergent features of their nervous system anatomy and physiology has much to teach us about neurological solutions to organism survival. It is my enduring hope that this work will make some contribution to dispelling misconceptions about marsupials and stimulate further research into the nervous systems of these fascinating and beautiful creatures.

This field of study owes much to the work of many outstanding scientists in Australia and internationally. I am fortunate that some of these talented people have contributed to this work, but there are many who are no longer active in science for various reasons. Many of these scientific pioneers have been given due recognition in the body of this book, and I have made every effort to acknowledge their contribution in the text. In my opinion two names in recent times stand out for their foresight, scientific leadership and imagination. These are: Richard F. Mark and John R. Haight, to whom this book is dedicated. Australian science is much richer for their work.
Acknowledgements

Much of the atlas work within this book was done with the financial support of the Alexander von Humboldt Foundation, which has generously supported my collaborative work with Professor Jürgen Mai over more than a decade. I am very grateful to the Foundation for its vision and commitment to support the study of Australian marsupials. This continues a long tradition of involvement by German science in the study of marsupials and monotremes that dates back to Ziehen's pioneering work in the late nineteenth century.

Many esteemed colleagues, friends and family have helped make this work possible. Several talented histology technicians made the sections and immunohistochemical preparations illustrated in this book. In particular, I am very grateful to Mr Gavin McKenzie of the University of New South Wales and Frau Marieta Kazimirek, Frau Sabina Lensing-Höhn and Frau Ulla Lammersen of Heinrich Heine University, Düsseldorf.

I am indebted to Dr Sandy Ingleby for access to the marsupial collection of the Australian Museum, Sydney, and to Dr Wayne Longmore for use of the material at the Museum of Victoria.

I am particularly grateful to Professor Novotny of the Department of Anatomy in the Heinrich Heine University, Düsseldorf for permission to use the slide photomicrographic system to photograph the sections of dunnart brain and wallaby pouch young. I am also grateful to Professors George Paxinos and Charles Watson for permission to use their abbreviation system for the atlases of adult dunnart and wallaby brain and pouch-young wallabies, albeit with some modifications. George also kindly allowed me to use the SPOT photomicrographic system and Olympus Provis microscope in his laboratory for photography of the adult wallaby brain sections. Bronwyn McAllan and Charles Watson provided comments on the diencephalon and cerebellum chapters, respectively.

Finally, I would like to thank my wife, Jennifer, who patiently tolerated her husband camping in the lounge room with a laptop and piles of books and papers while this book was being written.