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Preface

Random walk – the stochastic process formed by successive summation of
independent, identically distributed random variables – is one of the most basic
and well-studied topics in probability theory. For random walks on the integer
lattice Z

d , the main reference is the classic book by Spitzer (1976). This text
considers only a subset of such walks, namely those corresponding to incre-
ment distributions with zero mean and finite variance. In this case, one can
summarize the main result very quickly: the central limit theorem implies that
under appropriate rescaling the limiting distribution is normal, and the func-
tional central limit theorem implies that the distribution of the corresponding
path-valued process (after standard rescaling of time and space) approaches
that of Brownian motion.

Researchers who work with perturbations of random walks, or with particle
systems and other models that use random walks as a basic ingredient, often
need more precise information on random walk behavior than that provided by
the central limit theorems. In particular, it is important to understand the size
of the error resulting from the approximation of random walk by Brownian
motion. For this reason, there is need for more detailed analysis. This book
is an introduction to the random walk theory with an emphasis on the error
estimates. Although “mean zero, finite variance” assumption is both necessary
and sufficient for normal convergence, one typically needs to make stronger
assumptions on the increments of the walk in order to obtain good bounds on
the error terms.

This project was embarked upon with an idea of writing a book on the simple,
nearest neighbor random walk. Symmetric, finite range random walks gradually
became the central model of the text. This class of walks, while being rich
enough to require analysis by general techniques, can be studied without much
additional difficulty. In addition, for some of the results, in particular, the local
central limit theorem and the Green’s function estimates, we have extended the

ix

www.cambridge.org© in this web service Cambridge University Press

Cambridge University Press
978-0-521-51918-2 - Random Walk: A Modern Introduction
Gregory F. Lawler and Vlada Limic
Frontmatter
More information

http://www.cambridge.org/9780521519182
http://www.cambridge.org
http://www.cambridge.org


x Preface

discussion to include other mean zero, finite variance walks, while indicating
the way in which moment conditions influence the form of the error.

The first chapter is introductory and sets up the notation. In particular, there
are three main classes of irreducible walk in the integer lattice Z

d — Pd (sym-
metric, finite range), P ′

d (aperiodic, mean zero, finite second moment), and
P∗

d (aperiodic with no other assumptions). Symmetric random walks on other
integer lattices such as the triangular lattice can also be considered by taking a
linear transformation of the lattice onto Z

d .
The local central limit theorem (LCLT) is the topic for Chapter 2. Its proof,

like the proof of the usual central limit theorem, is done by using Fourier analysis
to express the probability of interest in terms of an integral, and then estimat-
ing the integral. The error estimates depend strongly on the number of finite
moments of the corresponding increment distribution. Some important corollar-
ies are proved in Section 2.4; in particular, the fact that aperiodic random walks
starting at different points can be coupled so that with probability 1−O(n−1/2)

they agree for all times greater than n is true for any aperiodic walk, without
any finite moment assumptions. The chapter ends by a more classical, combi-
natorial derivation of LCLT for simple random walk using Stirling’s formula,
while again keeping track of error terms.

Brownian motion is introduced in Chapter 3. Although we would expect
a typical reader to be familiar already with Brownian motion, we give the
construction via the dyadic splitting method. The estimates for the modulus of
continuity are also given. We then describe the Skorokhod method of coupling
a random walk and a Brownian motion on the same probability space, and give
error estimates. The dyadic construction of Brownian motion is also important
for the dyadic coupling algorithm of Chapter 7.

Green’s function and its analog in the recurrent setting, the potential kernel,
are studied in Chapter 4. One of the main tools in the potential theory of random
walk is the analysis of martingales derived from these functions. Sharp asymp-
totics at infinity for Green’s function are needed to take full advantage of the
martingale technique. We use the sharp LCLT estimates of Chapter 2 to obtain
the Green’s function estimates. We also discuss the number of finite moments
needed for various error asymptotics.

Chapter 5 may seem somewhat out of place. It concerns a well-known
estimate for one-dimensional walks called the gambler’s ruin estimate. Our
motivation for providing a complete self-contained argument is twofold. First,
in order to apply this result to all one-dimensional projections of a higher
dimensional walk simultaneously, it is important to show that this estimate
holds for non-lattice walks uniformly in few parameters of the distribution
(variance, probability of making an order 1 positive step). In addition, the
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Preface xi

argument introduces the reader to a fairly general technique for obtaining the
overshoot estimates. The final two sections of this chapter concern variations of
one-dimensional walk that arise naturally in the arguments for estimating prob-
abilities of hitting (or avoiding) some special sets, for example, the half-line.

In Chapter 6, the classical potential theory of the random walk is covered in
the spirit of Spitzer (1976) and Lawler (1996) (and a number of other sources).
The difference equations of our discrete space setting (that in turn become matrix
equations on finite sets) are analogous to the standard linear partial differential
equations of (continuous) potential theory. The closed form of the solutions
is important, but we emphasize here the estimates on hitting probabilities that
one can obtain using them. The martingales derived from Green’s function are
very important in this analysis, and again special care is given to error terms.
For notational ease, the discussion is restricted here to symmetric walks. In
fact, most of the results of this chapter hold for nonsymmetric walks, but in this
case one must distinguish between the “original” walk and the “reversed” walk,
i.e. between an operator and its adjoint. An implicit exercise for a dedicated
student would be to redo this entire chapter for nonsymmetric walks, changing
the statements of the propositions as necessary. It would be more work to relax
the finite range assumption, and the moment conditions would become a crucial
component of the analysis in this general setting. Perhaps this will be a topic
of some future book.

Chapter 7 discusses a tight coupling of a random walk (that has a finite
exponential moment) and a Brownian motion, called the dyadic coupling or
KMT or Hungarian coupling, originated in Kómlos et al. (1975a, b). The idea
of the coupling is very natural (once explained), but hard work is needed to
prove the strong error estimate. The sharp LCLT estimates from Chapter 2 are
one of the key points for this analysis.

In bounded rectangles with sides parallel to the coordinate directions, the
rate of convergence of simple random walk to Brownian motion is very fast.
Moreover, in this case, exact expressions are available in terms of finite Fourier
sums. Several of these calculations are done in Chapter 8.

Chapter 9 is different from the rest of this book. It covers an area that includes
both classical combinatorial ideas and topics of current research. As has been
gradually discovered by a number of researchers in various disciplines (combi-
natorics, probability, statistical physics) several objects inherent to a graph or
network are closely related: the number of spanning trees, the determinant of
the Laplacian, various measures on loops on the trees, Gaussian free field, and
loop-erased walks. We give an introduction to this theory, using an approach
that is focused on the (unrooted) random walk loop measure, and that uses
Wilson’s algorithm (1996) for generating spanning trees.
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xii Preface

The original outline of this book put much more emphasis on the path-
intersection probabilities and the loop-erased walks. The final version offers
only a general introduction to some of the main ideas, in the last two chapters.
On the one hand, these topics were already discussed in more detail in Lawler
(1996), and on the other, discussing the more recent developments in the area
would require familiarity with Schramm–Loewner evolution, and explaining
this would take us too far from the main topic.

Most of the content of this text (the first eight chapters in particular) are
well-known classical results. It would be very difficult, if not impossible, to
give a detailed and complete list of references. In many cases, the results were
obtained in several places at different occasions, as auxiliary (technical) lemmas
needed for understanding some other model of interest, and were therefore not
particularly noticed by the community.Attempting to give even a reasonably fair
account of the development of this subject would have inhibited the conclusion
of this project. The bibliography is therefore restricted to a few references that
were used in the writing of this book. We refer the reader to Spitzer (1976)
for an extensive bibliography on random walk, and to Lawler (1996) for some
additional references.

This book is intended for researchers and graduate students alike, and a
considerable number of exercises is included for their benefit. The appendix
consists of various results from probability theory that are used in the first
eleven chapters but are, however, not really linked to random walk behavior.
It is assumed that the reader is familiar with the basics of measure-theoretic
probability theory.

♣ The book contains quite a few remarks that are separated from the rest
of the text by this typeface. They are intended to be helpful heuristics for the
reader, but are not used in the actual arguments.

A number of people have made useful comments on various drafts of this
book including students at Cornell University and the University of Chicago. We
thank Christian Beneš, Juliana Freire, Michael Kozdron, José Truillijo Ferreras,
Robert Masson, Robin Pemantle, Mohammad Abbas Rezaei, Nicolas de Saxcé,
Joel Spencer, Rongfeng Sun, John Thacker, Brigitta Vermesi, and Xinghua
Zheng. The research of Greg Lawler is supported by the National Science
Foundation.
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