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1 The quantum theory of light

Classically, light is an electromagnetic phenomenon, described by Maxwell’s equations.

However, under certain conditions, such as low intensity or in the presence of certain

nonlinear optical materials, light starts to behave differently, and we have to construct a

‘quantum theory of light’. We can exploit this quantum behaviour of light for quantum

information processing, which is the subject of this book. In this chapter, we develop

the quantum theory of the free electromagnetic quantum field. This means that we do

not yet consider the interaction between light and matter; we postpone that to Chapter 7.

We start from first principles, using the canonical quantization procedure in the Coulomb

gauge: we derive the field equations of motion from the classical Lagrangian density for

the vector potential, and promote the field and its canonical momentum to operators and

impose the canonical commutation relations. This will lead to the well-known creation and

annihilation operators, and ultimately to the concept of the photon.After quantization of the

free electromagnetic field we consider transformations of the mode functions of the field.

We will demonstrate the intimate relation between these linear mode transformations and

the effect of beam splitters, phase shifters, and polarization rotations, and show how they

naturally give rise to the concept of squeezing. Finally, we introduce coherent and squeezed

states.

The first two sections of this chapter are quite formal, and a number of subtleties arise

when we quantize the electromagnetic field, such as the continuum of modes, the gauge

freedom, and the definition of the creation and annihilation operators with respect to the

classical modes. Readers who have not encountered field quantization procedures before

may find these sections somewhat daunting, but most of the subtleties encountered here

have very little bearing on the later chapters. We mainly include the full derivation from

first principles to give the field of optical quantum information processing a proper physical

foundation, and derive the annihilation and creation operators of the discrete optical modes

from the continuum of modes that is the electromagnetic field.

1.1 The classical electromagnetic field

Classical electrodynamics is the theory of the behaviour of electric and magnetic fields in

the presence of charge and current distributions. It was shown by James Clerk Maxwell

(1831–1879) that the equations of motion for electric and magnetic fields, the Maxwell

equations, allow for electromagnetic waves. In vacuum, these waves propagate with a

velocity c = 299 792 458 ms21, and Maxwell therefore identified these waves in a certain
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4 The quantum theory of light

frequency range with light. In this section, we define the electric and magnetic fields in

terms of the scalar and vector potentials, and construct the field Lagrangian density in

the presence of charge and current distributions. Variation of the Lagrangian density with

respect to the potentials then leads to Maxwell’s equations. Subsequently, we consider

the Maxwell equations for the vacuum, and derive the wave equation and its plane-wave

solutions. The source-free Lagrangian density is then used to define the canonical momenta

to the potentials, which in turn allow us to give the Hamiltonian density for the free field.

These are the ingredients we need for the canonical quantization procedure in Section 1.2.

The electric and magnetic fields E(r, t) and B(r, t) are related to a scalar and a vector

potential �(r, t) and A(r, t):

E(r, t) = 2'�(r, t) 2 "A(r, t)

"t
and B(r, t) = '×A(r, t) . (1.1)

The most elegant way to construct a classical field theory is via the Lagrangian density. We

can use the potentials as the dynamical variables of our classical field theory, which means

that we can write the Lagrangian density L as a function of the potentials and their time

derivatives

L = L (�, Û�; A, ÛA) . (1.2)

The equations of motion for the potentials � and A are then given by the Euler–Lagrange

equations
d

dt

·L

· Û�
2 ·L

·�
= 0 (1.3)

and
d

dt

·L

· ÛAj

2 ·L

·Aj
= 0 . (1.4)

Here · denotes the functional derivative, since the potentials are themselves functions of

space and time, and each component of A, denoted by Aj , obeys a separate Euler–Lagrange

equation.

In the presence of a charge density Ã(r, t) and a current density J(r, t) the general

Lagrangian density of classical electrodynamics can be written as

L = J(r, t) · A(r, t) 2 Ã(r, t)�(r, t) + ·0

2
E2(r, t) 2 1

2¿0
B2(r, t) , (1.5)

where E2 c |E|2 and B2 c |B|2 depend on � and A according to Eq. (1.1). When the

Lagrangian density is varied with respect to � we obtain the Euler–Lagrange equation in

Eq. (1.3), which can be written as Gauss’ law

2·0' · E(r, t) + Ã(r, t) = 0 . (1.6)

When we vary the Lagrangian density with respect to the components of A, we find the

Euler–Lagrange equations in Eq. (1.4). These can be reformulated as the Maxwell–Ampère

law

J(r, t) + ·0
"E

"t
(r, t) 2 1

¿0
'×B(r, t) = 0 . (1.7)
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5 1.1 The classical electromagnetic field

The relations in Eq. (1.1) and Eqs. (1.6) and (1.7) are equivalent to Maxwell’s equations,

as can be seen by taking the curl of E in Eq. (1.1):

'×E = 2"B

"t
. (1.8)

The last Maxwell equation, ' · B = 0, is implicit in B = '×A since the divergence of any

curl vanishes.

It is well known that we have a gauge freedom in defining the potentials � and A that

constitute the fields E and B. Since we are interested in radiation, it is convenient to adopt

the Coulomb, or radiation, gauge

' · A = 0 and � = 0 . (1.9)

In addition to the gauge choice, in this chapter we consider only the vacuum solutions of

the electromagnetic fields:

Ã = 0 and J = 0 . (1.10)

When we now write Eq. (1.7) in terms of the potentials, we obtain the homogeneous wave

equation for A

'2
A 2 ·0¿0

"2
A

"t2
= 0 . (1.11)

The classical solutions to this equation can be written as

A(r, t) =
�

»

�

dk
:

·0

A»(k)"»(k)eik·r2iËk t

�

(2Ã)32Ëk

+ c.c., (1.12)

where A»(k) denotes the amplitude of the mode with wave vector k and polarization », and

c.c. denotes the complex conjugate. The vector "» gives the direction of the polarization,

which we will discuss in Section 1.3. The dispersion relation for the free field is given by

|k|2 2 ·0¿0 Ë2
k

c k2 2 Ë2
k

c2
= 0 , (1.13)

where c is the phase velocity of the wave with frequency Ëk . Any well-behaved potential

A(r, t) that can be expressed as a superposition of Fourier components is a solution to the

wave equation. This is exemplified by the fact that we can see different shapes, colours,

etc., rather than just uniform plane waves.

Finally, the Lagrangian density can be used to find the Hamiltonian density of the field.

To this end, we define the canonical momenta of � and A as

�� c ·L

· Û�
and �A c ·L

· ÛA
. (1.14)
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6 The quantum theory of light

We can now take the Legendre transform of the Lagrangian density with respect to the

dynamical variables Û� and ÛA to obtain the Hamiltonian density of the free electromagnetic

field

H(�, ��; A, �A) = ��
Û� + �A · ÛA 2 L . (1.15)

In the Coulomb gauge, the canonical momenta are

�� = 0 and �A = ·0
ÛA . (1.16)

This leads to the Hamiltonian density for the free field

H = �A · ÛA 2 L |Ã=J=0 = ·0

2
E2 + 1

2¿0
B2 . (1.17)

We now have all the necessary ingredients to proceed with the quantization of the

electromagnetic field.

Exercise 1.1: Derive the homogeneous wave equation in Eq. (1.11) and show that the

solutions are given by Eq. (1.12).

1.2 Quantization of the electromagnetic field

We are now ready to quantize the classical electromagnetic field. First, we have to decide

which of the fields A, E (or B) we wish to quantize. In later chapters, we discuss the coupling

between light and matter, and it is most convenient to express that coupling in terms of the

vector potential A. We therefore apply the quantization procedure to A, rather than to E.

In the quantization procedure we have to ensure that the quantum fields obey Maxwell’s

equations in the classical limit, and this leads to the introduction of a modified Dirac delta

function.After the formal quantization, we explore the properties of the mode functions and

the mode operators that result from the quantization procedure, and establish a fundamental

relationship between them. We then construct eigenstates of the Hamiltonian, and define

the discrete, physical modes. This leads to the concept of the photon. The final part of

this section is devoted to the construction of the quantum mechanical field observables

associated with single modes.

1.2.1 Field quantization

We denote the difference between classical and quantum mechanical observables by writing

the latter with a hat. In the quantum theory of light, A and �A then become operators

satisfying the equal-time commutation relations. In index notation these are written as

�

ÆAj(r, t), ÆAk(r�, t)
�

=
�

Æ�j
A
(r, t), Æ�k

A
(r�, t)

�

= 0 . (1.18)
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7 1.2 Quantization of the electromagnetic field

The field consists of four variables: three from A and one from �. We again work in the

Coulomb gauge, where � = 0 and ' · A = 0 ensures that we end up with only two

dynamical variables.

Standard canonical quantization prescribes that, in addition to Eq. (1.18), we impose the

following commutation relation:

�

ÆAi(r, t), Æ�j
A
(r�, t)

�

= i�·ij ·
3(r 2 r

�) , (1.19)

where we must remember the difference between upper and lower indices, Aj = 2Aj ,

because electrodynamics is, at heart, a relativistic theory. Unfortunately, given that in the

Coulomb gauge �k
A

? Ek , this commutation relation is not compatible with Gauss’ law in

vacuum: ' · E = 0. If we take the divergence with respect to the variable r
� on both sides

of Eq. (1.19), the left-hand side will be zero, but the divergence of the delta function does

not vanish. We therefore have to modify the delta function such that its divergence does

vanish. For the ordinary Dirac delta function we use the following definition:

·ij·
3(r 2 r

�) c
�

dk

(2Ã)3
·ij eik·(r2r

�) . (1.20)

We have included the Kronecker delta ·ij , because after the redefinition of the delta function

the internal degree of freedom j and the external degree of freedom r may no longer be

independent (in fact, they will not be). Taking the divergence of Eq. (1.20) with respect to

r yields

�

i

" i ·ij ·
3(r 2 r

�) = i

�

dk

(2Ã)3
kje

ik·(r2r
�) . (1.21)

Therefore, we have to subtract something like this from the redefined delta function. We

write

�ij(r 2 r
�) =

�

dk

(2Ã)3
·ij eik·(r2r

�) 2 i

�

dk

(2Ã)3
³ikje

ik·(r2r
�) , (1.22)

and we want to find ³i such that " i�ij(r 2 r
�) = 0:

�

i

" i�ij(r 2 r
�) =

�

i

" i

�

dk

(2Ã)3
eik·(r2r

�) �

·ij 2 ikj³i

�

=
�

i

�

dk

(2Ã)3
eik·(r2r

�) �

iki·ij 2 (ikj)(iki)³i

�

= 0 . (1.23)

We therefore have that

�

i

�

iki·ij + kikj³i

�

= 0 , or ³i = 2i
ki

|k|2 , (1.24)
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8 The quantum theory of light

and the ‘transverse’ delta function �ij(r 2 r
�) becomes

�ij(r 2 r
�) =

�

dk

(2Ã)3
eik·(r2r

�)
�

·ij 2 kikj

|k|2
�

. (1.25)

Using this modified delta function, we can complete the quantization procedure by imposing

the equal-time canonical commutation relation

�

ÆAi(r, t), Æ�j
A
(r�, t)

�

= i� �ij(r 2 r
�) . (1.26)

That this leads to the correct covariant Hamiltonian and momentum is shown, for example,

in Bjorken and Drell (1965). We can now write the three space components of the quantum

field as

ÆAj(r, t) =
2

�

»=1

�

dk

�

�

·0

�

�»j(k)Æa»(k)u(k; r, t) + �7
»j(k)Æa†

»(k)u7(k; r, t)
�

, (1.27)

where the u(k; r, t) are mode functions that are themselves solutions to the wave equation in

Eq. (1.11), and » again indicates the polarization of the electromagnetic field. The classical

amplitudes A»(k) are replaced by the operators Æa»(k), and ÆA is now a quantum field. Note

that ÆA is now an operator, and unlike its classical counterpart does not directly represent a

particular vector potential. Specific quantum mechanical vector potentials are represented

by quantum states.

The equal-time commutation relation in Eq. (1.26) determines the commutation relation

for Æa»(k) and Æa†
»(k), given the mode functions u(k; r, t) and u7(k, r, t). From Eq. (1.12) we

can read off the plane-wave solutions with continuum normalization:

u(k; r, t) = eik·r2iËk t

�

(2Ã)32Ëk

, (1.28)

where k is the wave vector of a wave with frequency Ëk . Plane waves are of constant

intensity throughout space and time, and are therefore unphysical. However, they are

mathematically very convenient. When the mode functions are the plane waves defined

in Eq. (1.28), we find explicitly that

�

Æa»(k), Æa†

»�(k
�)
�

= ·»»�·3(k 2 k
�) , (1.29)

and
�

Æa»(k), Æa»�(k�)
�

=
�

Æa†
»(k), Æa†

»�(k
�)
�

= 0 . (1.30)

The operator Æa»(k) and its Hermitian conjugate are the ‘mode operators’ of the quantized

electromagnetic field. In the next section we will see that any operators that obey these

commutation relations are good mode operators.

We are now done with the quantization of the classical electromagnetic field, and the

remainder of this section is devoted to the exploration of the direct consequences of this

procedure.

Exercise 1.2: Derive the commutation relations in Eqs. (1.29) and (1.30).
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9 1.2 Quantization of the electromagnetic field

1.2.2 Mode functions and mode operators

We will now discuss some of the fundamental properties of the mode functions u(k; r, t) and

u7(k; r, t), and the mode operators Æa»(k) and Æa†
»(k). In order to study the mode functions of

the field (its ‘shape’, if you like), we must first define a scalar product that allows us to talk

about orthogonal mode functions. This is given by the ‘time-independent scalar product’

(Ç, Ë) c i

�

dr Ç7µ
" tË = i

�

dr
�

Ç7(" tË) 2 (" tÇ
7)Ë

�

. (1.31)

From the general structure of the scalar product in Eq. (1.31) we see that

(Ç, Ë)7 = (Ë , Ç) and (Ç7, Ë7) = 2(Ë , Ç) . (1.32)

This scalar product finds its origin in the continuity equation of the field, which determines

the conserved currents (see Bjorken and Drell, 1965). It is therefore time-independent. The

completeness relation of the mode functions u(k; r, t) is then derived as follows: consider

a function f (r, t) that is a superposition of different mode functions

f =
�

dk
�

³(k)u(k) + ³(k)u7(k)
�

, (1.33)

where we have suppressed the dependence on r and t in f (r, t) and u(k; r, t) for notational

brevity. Using the orthogonality of the mode functions defined by the scalar product, we

can write the coefficients ³(k) and ³(k) as

³(k) = (u(k), f ) and ³(k) = 2(u7(k), f ) . (1.34)

This leads to an expression for f

f =
�

dk
�

(u(k), f ) u(k) 2 (u7(k), f ) u7(k)
�

. (1.35)

For a second superposition of mode functions g the scalar product (g, f ) can be written as

(g, f ) =
�

dk
�

(g, u(k))(u(k), f ) 2 (g, u7(k))(u7(k), f )
�

. (1.36)

This constitutes the ‘completeness relation’ for the mode functions u(k; r, t), and it holds

only if the mode functions are, in fact, complete.

Using the definition of the time-independent scalar product, we can show that plane-wave

solutions are orthonormal:

(uk , uk�) c i

�

dr
e2ik·r+iËk t

�

(2Ã)32Ëk

µ
" t

eik�·r2iË
k� t

�

(2Ã)32Ëk�

=
�

dr

(2Ã)3

(Ëk + Ëk�)e2i(k2k
�)·r+i(Ëk2Ë

k� )t

2
:

ËkËk�

= ·3(k 2 k
�) . (1.37)
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10 The quantum theory of light

We also find by direct evaluation that (uk , u7
k�) = 0. This can be understood physically as

the orthogonality of waves moving forward in time, and waves moving backwards in time

and in opposite directions. The plane waves therefore form a complete orthonormal set of

mode functions.

We can define a new set of mode functions v(» ; r, t), which are a linear combination of

plane waves

v(» ; r, t) =
�

dk V (» , k)u(k; r, t) =
�

dk V (» , k)
eik·r2iËk t

�

(2Ã)32Ëk

. (1.38)

Two symbols are needed for wave vectors here, namely k and » . We emphasize that we will

normally reserve k for describing wave vectors. When V (» , k) is unitary, the new mode

functions v(» ; r, t) are also orthonormal. When we express ÆA in terms of the new mode

functions, we should also change the operators Æa»(k) to Æb»�(»), since the mode operators

depend on k and will generally change due to the transformation V (» , k). The field operator

then becomes

ÆAj(r, t) =
2

�

»�=1

�

d»

�

�

·0

�

�»�j(») Æb»�(»)v(» ; r, t) + �7
»�j(») Æb†

»�(»)v7(» ; r, t)
�

. (1.39)

Note that here we have also included a possible change in the polarizarion degree of freedom

»�, which can be incorporated straightforwardly in the time-independent scalar product.

Exercise 1.3: Prove the orthonormality of v(» ; r, t) if V is unitary.

We next explore the precise relationship between mode functions and mode operators.The

mode operators Æa»(k) and Æa†
»(k) are related to the mode functions u(k; r, t) and u7(k; r, t)

via the time-independent scalar product

Æa»�(k) c
�

·0

�

�

u(k)"»� , ÆA
�

= i

�

·0

�

�

dr u7(k; r, t)
µ
" t"

7
»�(k) · ÆA(r, t) . (1.40)

We can then extract the operator Æb»�(»), associated with the mode function v(» ; r, t), using

the procedure

Æb»�(») c
�

·0

�

�

v(»)"»� , ÆA
�

= i

�

·0

�

�

dr v
7(» ; r, t)

µ
" t"

7
»�(») · ÆA(r, t) . (1.41)

This is a definition of the operator Æb»�(»), and is completely determined by the mode function

v(») and polarization vector "»�(»). Now suppose that we have an expression for ÆA(r, t) in

terms of mode functions u(k), mode operators Æa»(k), and polarization vectors "»(k) given

in Eq. (1.27). The mode operator Æb»�(») then becomes

Æb»�(») =
�

»

�

dk

�

"
7
»�(») · "»(k) (v, u) Æa»(k) + "

7
»�(») · "

7
»(k)

�

v, u7� Æa†
»(k)

�

, (1.42)

www.cambridge.org/9780521519144
www.cambridge.org


Cambridge University Press & Assessment
978-0-521-51914-4 — Introduction to Optical Quantum Information Processing
Pieter Kok , Brendon W. Lovett
Excerpt
More Information

www.cambridge.org© in this web service Cambridge University Press & Assessment

11 1.2 Quantization of the electromagnetic field

where we express the mode operator Æb in terms of mode operators Æa and Æa†. The spatial

integration in the scalar products (v, u) and (v, u7) must be evaluated before the integration

over k in order to make the scalar product of the two polarization vectors "»�(») · "»(k)

definite. This demonstrates that the mode operators have a notion of orthogonality that is

directly inherited from the orthogonality of the mode functions. Up to addition of a complex

constant, Eq. (1.42) is the most general linear transformation of the mode operators, and

is called the ‘Bogoliubov transformation’. In principle it can mix the mode operators with

their adjoints when the scalar product (v, u7) is non-zero.

Exercise 1.4: Using Eq. (1.42), show that

�

Æb»(»), Æb†

»�(»
�)
�

= ·»»� ·3(» 2 »
�) , (1.43)

and
�

Æb»(»), Æb»�(» �)
�

=
�

Æb†
»(»), Æb†

»�(»
�)
�

= 0 (1.44)

These are the expected commutation relations for the mode operators.

1.2.3 Photons as excitations of the electromagnetic field

The revolutionary aspect of the quantum mechanical description of the electromagnetic

field is the notion that the field can deliver its energy only in discrete amounts. This leads

to the concept of the ‘photon’. In order to derive this from the quantum theory, we first

consider the Hamiltonian and momentum operators for the quantum field. We then con-

struct energy eigenstates, and regularize them to obtain well-behaved physical states of the

electromagnetic field.

From the quantum mechanical version of Eq. (1.17) we can formally derive the

Hamiltonian operator H of the free field as

H =
�

»

�

dk
�Ëk

2

�

Æa†
»(k)Æa»(k) + Æa»(k)Æa†

»(k)

�

c
�

»

�

dk H»(k) , (1.45)

where H»(k) will be called the ‘single-mode Hamiltonian operator’. Similarly, the ‘field

momentum operator’ is

ÆP =
�

»

�

dk
�k

2

�

Æa†
»(k)Æa»(k) + Æa»(k)Æa†

»(k)

�

. (1.46)

This operator is similar to H, but Ëk is replaced by k. Therefore, the properties we derive

for the Hamiltonian can easily be translated into properties for the momentum. The field

momentum can be formally derived from Maxwell’s stress tensor, but this is beyond the

scope of this book.
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