Index

ABC
 alternate formulations for FDTD, 125
 complementary operator, 125
 FDTD, 82
 FDTD 1D, 83
 FEM time domain, 480
 impact on 3D FDTD, 110
 Mur first- and second-order, 84
 PML, see PML
 radiation vs absorbing BC, 82
 absorbing boundary condition(s), see ABC
 accuracy of CEM techniques, 4
 effect of finite discretization, 18
 effect of finite machine precision, 19
 effect of finite problem size, 19
 effect of numerical approximation, 19
 active impedance, 303, 309
 adaptive integral method, 24
 advective equation, 83
 analytical solutions
 on "exactness" thereof, 224
 asymptotics, 4
 importance of methods, 25

 barycentric coordinates, see simplex coordinates
 basis functions (MoM)
 entire domain, 291
 for EQS thin-wire problem, 133
 NEC, see NEC, basis functions
 piecewise linear, 147
 piecewise sinusoidal, 140
 various types, 134
 boundary element method, 8
 relationship to MoM, 130, 152
 branch points and cuts, 280

 Calderon preconditioners, 218
 capacitive iris, 436
 CFIE, 203
 coding hints
 higher-order vector elements, 2D, 393
 collocation, 134, 150, 151
 combined field integral equation, see CFIE
 commercial codes
 Ansys, 15
 Ensemble, 9
 FDTD, 12, 117
 FEKO, see FEKO
 FEM, 15
 FEMLAB, 15
 GEMACS, 9
 general points about using, 118
 HFSS, see HFSS
 IE3D, 9
 increasing use of, 27
 MoM, 9
 MWS, see MWS
 SuperNEC, 9, 167
 websites, 493–495
 XFDTD, 12, 117
 complex plane
 integration on, 278
 computational complexity, see operation count
 computational cost, see operation count
 computers
 performance, 26
 convergence, estimating rate of, 23
 Courant limit, 11, 36
 2D, 79
 for FDTD BOR formulation, 125
 in 1D, 49, 69
 in 2D, 70
 in 3D, 70
 limitations of, 50
 physical interpretation of, 49
 running close to, 68
 von Neumann derivation of, 69–70
 von Neumann’s method, 49
 debugging
 coping with complexity, 295–296
 FDTD ABCs, 89
 FDTD plane-wave source, 87
 FDTD update equations, 86
deterministic problems
FEM, 14, 429
DFT, 60, 61
differential forms, 373
differentiating matrices and vectors, 348
dipole
general modelling hints, 171
discrete Fourier transform, see DFT
dispersion, 5
accurate FDTD modelling of material properties, 124
dispersive materials, 12
dispersive systems, 12
effect on cumulative phase error, 97
example of numerical, 89
in 2D and 3D FDTD simulations, 115
in FDTD simulations, 64–68
in FEM meshes, 480
magic time step, 67
dispersion equation
derivation of, 66
Dyadic Green function, see Green function, dyadic
dipole, see FEM, vector elements
dispersive systems, see FEM, vector elements
EFIE, 202, 258
derivation for MPIE, 206–207
Fredholm equation of first kind, 202
interior resonance, 158, 258
eigenanalysis
FEM, 14
MoM, 14
eigenproblem
solution using LAPACK, 384
solution using MATLAB, 384
electric field integral equation, see EFIE
electromagnetics
history of, 2
expansion functions, see basis functions
extrapolation, 23, 354
fast Fourier transform, see FFT
fast methods
adaptive integral method, 249
general, 201, 259
k-space, 259
misconceptions about iterative methods, 259
fast multipole method, 24, 201, 259
multilevel fast multipole algorithm, 255
three-dimensional formulation, 254–258
two-dimensional prototype, 251–253
FDTD
accuracy, 46
alternating direction implicit algorithm, 125
application to human exposure assessment, 456
application to resonant cavities, 114
avoiding half-steps, 44
body of revolution formulation, 124
commercial codes, see commercial codes, FDTD
comparison with FEM and MoM, 5
computational molecule, 41
consistency of method, 47
Courant limit, see Courant limit
FDTD as special case of time domain FEM, 464
half-space step, 40
half-time step, 40
history, 36
in one dimension, 32–71
in three dimensions, 109–117
in two and three dimensions, 74–126
in two dimensions, 74–97
late time instabilities, 50
linearly growing modes, 70
near field to far field transformation, 124
overview, 10–13
semi-implicit approximation, 43, 103
spurious modes, absence of, 370
stencil, 41
strong and weak points, 12–13
sub-cell models, see sub-cell models (FDTD)
wideband sources, see wideband sources (FDTD)
Yee algorithm, 36
Yee algorithm, 2D, 77
Yee algorithm, 3D, 109
FEKO, 9
adaptive frequency sampling, 185, 187
application to antenna above reflector, 234
application to dipole, 169
application to helix antenna, 186
application to log-p, 178
application to microstrip patch, 301
application to patch coupling, 303
application to printed dipole, 294
application to RCS of PEC sphere, 220
application to Wu–King loaded dipole, 193
application to Yagi–Uda, 173
CADFEKO, 167
conditional execution, 179
convergence, 169
different source models, 171
FEKO Lite, 168
ground plane, 186
history, 168
input file (.fek), 167
iteration loops, 179
label, 193
loading, 193
MLFMM implementation, 256
modelling spherical surface, 221
planar substrate, 303
PREFEKO file (.pre), 167
radius vs. diameter, 177
FEKO (cont.)
scaling, 177
scripting language, 167
source models, 171
transmission line modelling, 182
use of MoM/PO hybrid, 236
use of RWG element, 204
use of symmetry, 220, 235, 305
use of volumetric currents, 226
user-defined variables, 177
wire to plate connection, 186

FEM
(dis)similarity with MoM, 359
application of extrapolation, 354
application to capacitive iris, 436–441
application to Magic-T hybrid, 432–436
application to microstrip, 352–355
application to waveguide discontinuities, 429–441
assembly-by-elements, see FEM, matrix assembly
bandwidth of matrix, 335
book-keeping, 383–384
boundary conditions, 337–339
boundary conditions, at material interfaces, 357
boundary conditions, Cauchy, 338
boundary conditions, Dirichlet, 320, 338, 357
boundary conditions, flux continuity, 358
boundary conditions, Neumann, 320, 338, 357
boundary conditions, practical handling, 339, 350
boundary conditions, specification of, 343, 367
boundary conditions, summary of, 357

Capacitance, computation of, 354
commercial codes, see commercial codes, FEM
comparison with FDTD and MoM, 5, 340
collection matrix, 325, 347, 383
core convergence of solution, 1st order, 329
core convergence of solution, 2nd order, 335
courant's contribution, 317
curl matrix, 323
curvilinear elements, 480
data structures, 349
data structures, 2D, 382
data structures, 3D, 411
degenerate modes, 389
degrees of freedom, definition of, 322
delaunay triangulation, 383
dirichlet matrix, 323
dedge numbering, 411
dedge numbering, 2D, 382
element connection, 346–349, 350
element shape, 344
elements, 317
error estimation and adaptive meshing, 473–478, 480
face numbering, 411
FDTD as special case of time domain FEM, 464
first-order elements, one-dimensional, 321
formulation in one dimension, 318–331
formulation in three dimensions, 407–414
formulation in two dimensions, dynamic, 367–394
formulation in two dimensions, static (Laplace), 343–359
free nodes, 327, 335
free potentials, 348
functional for eigenvalue problem, 367
Galerkin (method of weighted residuals)
formulation, 359–364
global quantities, 321
high-frequency variational functional, 367
higher-order elements, one-dimensional, 331–335
higher-order vector elements, 2D, 391
history, 317–318
indefinite coefficient matrix, 327
Lagrange multipliers, 401
local coordinates, 323
local quantities, 321
mass lumping, 465
mass matrix, 323, 358
matrix assembly, 325, 333, 349
matrix entries, explicit formula for, 323–325, 332–333
matrix entries, explicit formula for tetrahedra, 408–410
matrix entries, explicit formula for triangles, 379–381
meshing, 2D, 383
method of weighted residuals formulation, 318
metric (matrix), 323
minimum of functional, 348–349
natural boundary condition, 338
Newmark-β method, 460–461
Newmark-β method, derivation of, 486–488
Newmark-β method, stability of, 461
Newmark-β method, unconditional stability of, 462, 479
node numbering, 2D, 382
null space of curl operator, 367–370
overview, 13–16
post-processing, 385–386
practical implementation in 3D, 402
prescribed nodes, 335
prescribed potentials, 348
quadrate, 392
rationale for complete elements, 436
reordering, 335
rectangular elements, 344
results of eigenanalysis, 386
scalar 1D wave equation, FEM results for, 329, 335
scalar 1D wave equation, Galerkin solution of, 360
scalar 1D wave equation, solution of, 321
second-order elements, one-dimensional, 331
shape function, 344
simplicial elements, 317, 365
slow rate of convergence, 354
sparse solvers, see sparse solvers
sparsity, 335
spurious modes, 367–370, 385, 401
spurious modes, predicting number of, 385
stiffness matrix, 323
strong and weak points, 15–16
strong form, 428
time domain, 457–468, 479
time domain ABC, 480
time domain formulation, 458–460
triangular elements, 344
variational boundary value problem viewpoint, 427–429
variational functional for Poisson equation, 355–357
variational functional, rendering stationary, 327
vector elements, see vector elements
vector wave equation, kernel, 369
vector wave equation, null-space, 369
vector wave equation, solution of, 367
waveguide formulation, 430–432
waveguide formulation using Huygens’ principle, 445
waveguide formulation, extracting S-parameters, 432
waveguide, dispersion analysis, 394–400
waveguide, inhomogeneously loaded, 398
weak form, 318, 321, 428
FEM/ABC, 441–444
FEM/MoM hybrid
application to human exposure assessment, 455–457
applications, general, 454–455
inward-looking, 479
outward-looking, 456, 479
theory, 451–454
FFT, 61
description of algorithm, 250
fast methods, 201, 248–251
MATLAB implementation, 60
finite difference time domain, see FDTD
finite differences, 34–36
backward differencing, 34
central differencing, 34
explicit methods, 36
forward differencing, 34
implicit methods, 36
overview, 32
finite element method, see FEM
finite integration technique, 12, 117
equivalence with FDTD, 118
Fourier transform, 39
and spectral domain analysis, 266
estimating, 60
Fredholm integral equation, see EFIE and MFIE
frequency scaling, see operation count
frequency selective surface, 20, 125
full-wave, 3–6
extending limits, 24
functional analysis
positive definite operators, 364
self-adjoint operators, 364
and FEM, 481
function, 203
functional, 203
Hilbert and Sobolev spaces, 152
inner product, 151
linear operator notation, 150, 203
operator, 203
symmetric product, 152
gain
dB vs. actual value, 185
Galerkin
and FEM, 318, 359
and MoM, 151
generalised network parameters, 135
generalized multipole technique, 17
geometrical optics, 4
Green function, 8, 132, 264
dyadic, 264–266
free-space, 202
static spectral domain, for microstrip, 266–269
Group Special Mobile, see GSM
GSM
base station, 455
Hankel function
evaluation in FORTRAN, 223
evaluation in MATLAB, 223
helix antenna
axial mode, 185
normal mode, 186
Helmholtz decomposition, 218
Helmholtz splitting, 218
HFSS, 15, 378
application to Magic-T hybrid, 434
using, 434
high-performance computing
Amdahl’s law, 244
efficiency (parallel processing), 242
parallel processing, 201, 238–247, 259
speed-up (parallel processing), 241
transputer, 243
homogeneous coordinates, see simplex coordinates
hybrid
approximate, 230
exact, 230
FEKO implementation of MoM/PO, 234
general definition, 230
MoM/PO, 201, 232, 258
MoM/PO, mechanics of, 232–234
Sommerfeld formulation, 230
hybrid FEM/MoM, see FEM/MoM hybrid
in place operation, 45
incident field
for thin-wire MoM, 142
inner product, see functional analysis, inner product
integral equation, 132
forcing function, 132
kernel, 132
interior resonance, see EFIE, interior resonance and
MFIE, interior resonance
junction treatments
NEC, 147
junction treatments
piecewise linear basis functions, 147
piecewise sinusoidal basis functions, 149
LAPACK, 296
Laplace equation
FEM solution of, 343
Lax equivalency theorem, 47
linear operator, see functional analysis, linear
operator
log-periodic antenna, 178
Magic-T hybrid, 432
magnetic field integral equation, see MFIE
MATLAB
efficient FDTD programming, 85
frequently made errors, 86
problems with indices, 77
matrix equation solution, see solution of linear
equations
matrix inversion, see solution of linear equations
Maxwell, 3
Maxwell's equations, 1
predictive power, 17
memory requirements
2D FDTD, 96
3D FDTD, 109
surface MoM, 229
thin-wire MoM, 228
volumetric MoM, 229
impact of sparse storage schemes for FEM, 473
MoM Sommerfeld, 314
mesh refinement, 26
meshing
FDTD stairstep approximation, 82, 94
method of lines, 17
method of moments, see MoM
method of weighted residuals, 8n7, 150
equivalence with MoM, 130
for FEM, 318, 359
MFIE, 202, 258
Fredholm equation of second kind, 202
interior resonance, 258
microstrip, 264
transmission line, 264
microstrip patch
FEKO simulation of, 301
history, 300
materials, 300
mutual coupling, 303
MWS simulation of, 122
overview, 300
microwave dielectric heating, 14, 481
Microwave Studio, see MWS
Mie scattering, see scattering from PEC sphere
mixed potential integral equation, see MPIE
modelling process
accuracy, 17
formulation simplications, 18
manufacturing deviations, 18
mathematical model limitations, 18
tolerances, 18
MoM
commercial codes, see commercial codes, MoM
comparison of source models, 171
comparison with FEM and FDTD, 5
convergence, 489–490
delta-gap source model, 142
electrodynamic example, 137
electrostatic example, 131
formulation using RWG element, 206–218
history, 130
history of name, 152
hybrid with FEM, see FEM/MoM hybrid
in one dimension, 130–162
loop star basis functions, 218
low-frequency stability, 218
magnetic frill source models, 142
overview, 8–10
stratified media, see MPIE, for stratified media
strong and weak points, 9–10
surface modelling, see surface modelling (MoM)
thin-wire codes, see thin-wire codes
volume modelling, see volume modelling (MoM)
Moore's law, 4, 37
MPIE, 202, 266, 277
for stratified media, 276–277
MoM formulation for printed dipole, 291–295
results for printed dipole, 294
multi-physics, 16
mutual coupling, see microstrip patch, mutual
 coupling 303
MWS, 12, 117
 advanced modelling features, 125
 application to microstrip patch antenna, 121
 application to rat race hybrid, 128
 application to waveguide filter, 120
 application to waveguide “through”, 119
 improving results using adaptive meshing,
 120
 open boundary simulation, 123
 parametric modelling, 124
 perfect boundary approximation, 122
NEC, 9
 FL and PT cards, 182
 application to dipole, 169
 application to log-p, 178
 application to Yagi-Uda, 173
 basis functions, 145
 column spacing in input file, 167
 comma demarcated input file, 167
 control cards, 172
 geometry file (.nec), 166
 overview, 144
 radius vs. diameter, 177
 structural cards, 172
 tag, 193
 transmission line modelling, 182
 Wiregrid for Windows, 167
 wiremesh ground plane, 192
 wires penetrating real ground, 297
NEC2, see NEC
NEC4, see NEC
non-linear problems
 application of FDTD, 124
Numerical Electromagnetics Code, see NEC
Nyquist, 11
 effect on time step, 59
Occam, 167
 open-source software, 27
operation count
 2D FDTD, 96
 3D FDTD, 109
 FDTD, 13
 FEM, 15
 MoM, 9
 MoM Sommerfeld, 314
prohibitive cost of large MoM problems, 237
 reducing FDTD, 45
 surface MoM, 228
 thin-wire MoM, 228
 volumetric MoM, 229
parallel processing, see high-performance
 computing, parallel processing
parametric modelling, 124
 partially filled cells, see sub-cell models (FDTD)
PDE
 classification of, 33
 elliptic, 33
 hyperbolic, 33
 parabolic, 33
 perfectly matched layer, see PML
 periodic boundary conditions, 314
 periodic structures
 FDTD modelling of, 125
 phased arrays
 feeding of, 313
 overview, 308
 scan blindness, 308–314
physical optics, 4
PML, 10, 37, 83
 corner regions, 102
 drawbacks, 106
 evaluation of, 105
 implementation issues, 104
 implementation of 2D split field, 102
 polynomial grading, 105
 results, 106
 split field, 98, 101–102
 split field (in 2D), 99
 split field (in 3D), 99
 stretched coordinates, 98, 108
 summary of properties, 102
 uniaxial, 98, 107
Pocklington
 historical background, 161
 integral equation, 130, 139, 201
 integral equation and NEC, 145
 point-matching, see collocation
Poisson equation
 FEM solution of, 355
 potentials
 basics, 269–270
 Hertz, 270
 Lorenz gauge, 270
 principal value, 202
 printed antennas, see microstrip antenna
 printed dipole
 equivalence to wire dipole, 313
 MPIE solution of, 291
quadrature
 Gauss–Legendre, 465
 Gauss–Lobatto, 465
 quadrature tables
 11 point tetrahedron rule, 422
 6 point triangle rule, 392
 use of, 422
Index

quantum mechanics
bracket notation, 151
quasi-static, 4
magnetoquasistatics, 12

radiation condition, 9, 118
absence of in FEM and FDTD, 14
Rao–Wilton–Glisson element, see RWG element
rat-race hybrid, 128
RCS, 219
bistatic, 222
monostatic, 222
of PEC sphere, 219
rectangular waveguide, FEM solution of, 378
residual, 150
residue
evaluation of, 285
Riemann sheets, 280
RWG element, 203–206
connection with edge-based finite element, 204, 452
RWG element, MoM formulation using, see MoM,
formulation using RWG element
SAR, 458f, 459f
ICNIRP guidelines for, 456
scan blindness, see phased arrays, scan blindness scattering
incident/scattered field decomposition, 75, 79, 137
overview of process, 75
source inclusion, 79
total field, 75
scattering from a dielectric sphere, 226
scattering from PEC sphere, 218–224
analytical (Mie) solution, 222
blue sky explanation of Lord Rayleigh, 218
history of Mie solution, 222
simplex coordinates
one dimension, 323, 365
overview, 364
properties of, 366
three dimensions, 366
two dimensions, 365
useful formulae, 491–492

singularities
cancellation schemes, 217
subtraction schemes, 217
in EFIE and MFIE, 202
in MPIE, 293
slow wave, 308
solution of linear equations, 135
conjugate gradient algorithm, 237
direct solvers, 237
iterative solvers, 237, 471

Sommerfeld potentials
alternate treatments, 297
computational efficiency of, 315
definition of, 270–273
derivation of single-layer microstrip, 273–276
evaluation of, 278–289
evaluation of tail, 297
extension to aperture coupling, 297
half-space problems, 297, 315
history of, 265
illustrative results, 289
limitations of implementations, 315
locating the pole, 287–288
MoM solution using, 289–295
multiple layers, 297
numerical integration in spectral domain, 279–287
transmission matrix, 297
wires penetrating interfaces, 297
sparse matrices, 468–473
sparse solvers, 468–473
compressed column storage, 471
compressed row storage, 470
direct, 469
iterative, 469
profile-in skyline storage, 470
results, 471–473
specific absorption rate, see SAR
spectral domain, 264, 271–287
transform, 266, 271
spurious modes, see FEM, spurious modes
stability
effect of load on FDTD, 50
of FDTD method, 47
stratified medium
definition, 264
sub-cell models (FDTD)
curved boundaries, 118
MWS implementation, 122
overview, 118
thin cracks, 118
thin sheets, 118
thin wires, 118, 124
surface equivalence principle, 258
surface equivalence theorem, 225
Love’s form, 225
surface modelling (MoM)
conducting structures, 201
homogeneous material regions, 201, 224
surface waves, 275, 277–278, 308
condition for dominant TM only, 277
position of poles, 277
symmetric product, see functional analysis,
symmetric product
symmetry, use of, 229

© in this web service Cambridge University Press

www.cambridge.org
TE
 FDTD formulation for scattering, 75
guided wave mode, 37, 378
scattering, 75
scattering from PEC cylinder, 91
telegraphist's equations, 38, 319
TEM
 guided wave modes, 37
testing functions, see weighting functions
testing points, 135
thin-wire approximation
electrodynamics, 140
electroquasistatics, 132
impact of, 137
limitations on accuracy, 144, 169
thin-wire codes
MININEC, 168
Wire (WIRE89), 168
thin-wire modelling (MoM)
 source models, see source models
 arbitrarily orientated wires, 161, 162
TM
 guided wave mode, 37, 378
scattering, 75
transmission line, 37, 319
transmission line matrix method, 16
transverse electric, see TE
transverse magnetic, see TM
triangle area
 signed, 345
uniform theory of diffraction, 4
validation and verification, 19
 analytical solutions, 20
 approximate solutions, 20
 code comparisons, 20
 frequency selective surface example, 20
 measurements, 20
 of 1D FDTD problem, 47
 summary of for FEKO and NEC2, 199
vector elements, 344, 371–378
 complete, 416
 contributions to, 371
 criticism of, 401
CT/LN, 373, 415
hierarchical higher-order, definition of, 416–419
hierarchical higher-order, impact on code, 421–427
hierarchical higher-order, properties of, 419–421
higher-order, 15, 415
higher-order elements, alternate methods for
 constructing, 444
 interpolatory higher-order, 416, 445
LT/LN, 417
LT/QN, 416, 418, 436
matching hierarchical elements to a field, 427
mixed-order, 416
QT/QN, 417
volume modelling (MoM), 201
 application to human exposure assessment, 456
wave equation
 in one dimension, 320
waveguide discontinuities
 FEM solution of, 429
 weighting functions, 150
wide-band antennas
 compared to non-dispersive, 198
 definition of, 185
wideband sources (FDTD), 52
 DC content of and FDTD simulations, 53
 Gaussian derivative pulse, 54, 88
 Gaussian pulse, 52
 polynomial pulse, 54
Wiregrid for Windows, see NEC, Wiregrid for Windows
Wu–King condition, 146
Wu–King loaded dipole, 193
Yagi–Uda antenna, 172
Yee algorithm, see FDTD, Yee algorithm