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1  Anoverview of computational
electromagnetics for RF and
microwave applications

Even if we do discover a complete unified theory, it would not mean that we would be able to
predict events in general. . . even if we do find a complete set of basic laws, there will still be in
the years ahead the intellectually challenging task of developing better approximation methods,
so that we can make useful predictions of the probable outcomes in complicated and realistic
situations.

From [1, pp. 168—169] (the present author’s emphasis)

Computations: no-one believes them, except the person who made them.
Measurements: everyone believes them, except the person who made them. . .
Attributed to the late Professor B. Munk, Ohio State University

1.1 Introduction

Electromagnetics, the study of electrical and magnetic fields and their interaction, has
been one of the core technologies of the twentieth century, and shows every sign of contin-
uing this into the twenty-first. Whilst there are many useful ways of subdividing the field,
power frequency versus radio frequency, or alternatively quasi-static versus full-wave, is
one of the most insightful here. This book focusses exclusively on radio-frequency, full-
wave electromagnetic modelling, as typically encountered in communication systems.

The core of modern electromagnetic engineering is of course Maxwell’s equations.
Written in modern form,' they are:

d
Vx E=——B 1.1
X a7 (1.1)
d
VxH=J+§D (1.2)
V.-D=p (1.3)
V-B=0 (1.4)
with the associated constitutive equations
B=uH (1.5)
D =c¢E (1.6)

! Maxwell did not actually write his equations in this form; vector analysis was a late nineteenth-century
development.
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2 An overview of computational electromagnetics

The actual solution of the Maxwell equations is complex, and for realistic problems,
approximations are usually required — as indicated by the introductory quote from
Hawking, although he had in mind an altogether more ambitious theory (of everything!).
The numerical approximation of Maxwell’s equations, the subject of this book, is known
as computational electromagnetics (CEM).

CEM techniques have been available for close on five decades now. These techniques
have gestated, grown and matured to the point where they form an invaluable part of
current RF and microwave engineering practice [2]. However, the widespread adoption of
computational methods to complement the traditional tools of analysis and measurement
has attracted criticism, summarized with more than a grain of truth by the second quote
at the beginning of the chapter. Ironically, the availability of powerful, commercial codes
may well have made the situation worse, not better, since more and more frequently, codes
are being applied by users unfamiliar with the basic formulations underlying the codes,
and not infrequently to problems for which the codes were not designed. One of the
major aims of this book is to make RF computational electromagnetics comprehensible
and accessible to a far wider group of RF engineers than has been the case in the past.

CEM is a multi-disciplinary field. Its core disciplines are electromagnetic theory and
numerical methods, but for useful implementations, geometric modelling and visualiza-
tion, computer science and algorithms all have important roles to play. In this book, the
focus falls on the core disciplines.

The applications of CEM are legion, and include antennas, biological EM effects,
medical diagnosis and treatment, electronic packing and high-speed circuitry, supercon-
ductivity, microwave devices, monolithic microwave integrated circuits, law enforce-
ment, environmental issues, materials, avionics, communications, energy generation
and conservation, low observable vehicles (stealth), radars and imaging, surveillance
and intelligence gathering. In this book, we focus primarily on applications in antennas,
wireless communications, radar, and (passive) microwave devices, although an example
will be given of a biological EM effect study.

An historical aside — a brief history of electromagnetics

Interest in static electricity and magnetism, of course, dates back to ancient times.
The Ancient Greeks circa 400 BC noted that rubbing amber attracted bits of straw,
and the Chinese reportedly found lodestones (natural magnets) circa 2600 BC,
first using them for burial purposes, and later for navigation. The modern study
of electromagnetic phenomena dates to the late eighteenth century, with the great
progress in experimental methods by Alessandro Volta (1745-1827), Hans Christian
Oersted (1777-1851) and Michael Faraday (1791-1867) on the one hand, and the
more mathematical modelling approach of Charles Augustin de Coloumb (1736—
1806) and André-Marie Ampere (1775-1836) on the other. Amongst these, the
following milestones stand out: the development of the battery by Volta provided a
continuous source of electricity for the first time; Coloumb’s careful measurements of
the electric force resulted in the famous inverse square law; Oersted’s 1820 discovery
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1.2 Full-wave CEM techniques 3

showed that (direct) current deflected a magnet; Ampere developed mathematical
laws describing this and the force between current carrying wires; and finally, Fara-
day’s crucial contribution in 1831 showed that a changing magnetic field sets up an
alternating current (i.e. an electric field), and for the first time connected two forces
of nature which until then had been thought quite independent.

James Clark Maxwell (1831-1879), the most brilliant physicist of the nineteenth
century,” combined the work of his predecessors in elegant theoretical fashion
and postulated that changing electric fields should generate magnetic fields; he
then showed that this implied wave motion. Hermann Ludwig-Ferdinand Helmholtz
(1821-1894) was one of the first to recognize the significance of Maxwell’s predic-
tions in this regard; in 1888, his student Heinrich Rudolph Hertz (1857—1894) showed
experimentally that electromagnetic fields indeed propagate, and at the speed of light.
Oliver Heaviside (1850—-1925) also made contributions in this regard, although his
work is not widely recognized nowadays [3]. In what we would now describe as the
first commercial spin-off of this work, Guglielmo Marconi (1874—1937) was the first
to profit financially from the emerging field of wireless.

Electromagnetics was also to have a profound influence on the outstanding physi-
cist of the twentieth century, Albert Einstein (1879-1955). Perhaps less well known
than some of his results — certainly amongst the general public — Einstein showed
that the magnetic field is the relativistic correction of the electric field, confirming
the unified field theoretic nature of Maxwell’s electromagnetic theory.

The above is the conventional Western history of electromagnetics. Contributions
to the theory of light, intimately connected to electromagnetics, were made by many
over an extremely long period of time, including contributions from Arabic scholars.
An exceptionally erudite historical perspective may be found in [4].

¢ Maxwell not only unified electricity and magnetism in 1864, he also developed the kinetic theory of
gases, before his life was cut tragically short by illness.

1.2 Full-wave CEM techniques

Full-wave CEM methods approximate the Maxwell equations numerically, without
any initial physical approximations being made. These are also sometimes called low-
frequency methods, to distinguish them from asymptotic high-frequency methods, but
this can be confusing for several reasons.? The full-wave techniques which will be stud-
ied in this book are the finite difference time domain (FDTD) method; the method of
moments (MoM); and the finite element method (FEM). Whilst there are other methods
available, these are the most widely used, and all have been implemented in powerful

2 Firstly, the high-frequency radio band is specifically the spectrum from 3-30 MHz; secondly, the meaning of
low and high are entirely relative, and the same methods may be, and are, useful from power frequencies up
to the visible spectrum and beyond; and finally, “high-frequency” as a general term in electronic engineering
is widely used to distinguish from “power frequency,” with the latter usually using quasi-static approaches.
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4 An overview of computational electromagnetics

computer codes. These techniques are frequently classified further by whether they are
based on integral or differential equations, and by whether they operate in the time or
frequency domain. We will discuss this in the context of each method subsequently.

Sometimes, the expressions “static” or “quasi-static” will be used. The former applies
obviously to the situation where one is dealing with either steady-state charges (and
the associated electric fields) or currents (and the associated magnetic fields). The latter
applies to situations where the time rate of change is low enough that the fields still satisfy
the static equations to a very good approximation — or put differently, the (9/9¢) B term
in Eq. (1.1) is negligible (in which case one obtains electroquasistatics) or similarly
for the (3/d¢)D term in Eq. (1.2) (which yields magnetoquasistatics). A very detailed
discussion of these approximations and their use may be found in [5]. However, we will
not pursue this far in this book, which deals almost entirely with full-wave methods.

There is another class of numerical method for solving the Maxwell equations, gen-
erally called the asymptotic techniques. These methods require fundamental approxi-
mations in the Maxwell equations, the validity of which increases asymptotically with
frequency. Examples are physical optics (PO), geometrical optics (GO) and the uniform
theory of diffraction (UTD). This is a field of study in its own right. For suitable prob-
lems, these methods are very powerful, but the underlying approximations of the physics
limits their use for general problems. Furthermore, unlike the full-wave methods, where
Moore’s law and the resulting increase in computer speed and memory continually extend
the limits of applicability, the asymptotic methods have fundamental limits. Hence, in
this book, only full-wave methods are considered. However, a hybridization with an
asymptotic technique will be discussed as an example of an advanced application.

The full-wave techniques are potentially very accurate. Central to all these methods
is the idea of discretizing some unknown electromagnetic property, typically the surface
current for the MoM, and the E field for the FEM and FDTD method. (For the latter,
the H field is also discretized.) This process of discretization is also known as mesh-
ing. It entails subdividing the geometry into a (large) number of small elements. These
may be one-dimensional segments, two-dimensional surface “patches” (often triangles),
three-dimensional tetrahedral elements or a regular three-dimensional “staggered” grid,
depending on the problem at hand and the method used. Within each element, a simple
functional dependence is assumed for the spatial variation of the unknown — for instance,
a linear approximation — but the amplitude (and possibly phase) of the unknown is deter-
mined by application of the method to the patchwork of elements which approximates the
original geometry. This functional dependence is also known as the basis (or expansion)
function.’

Generally, the accuracy of the methods is related to the discretization (i.e. mesh
size). The finer is the mesh, the better is the accuracy of the methods.* The largest
mesh size (alternatively, the finest geometrical resolution) is limited by the available

3 With the FDTD method as usually introduced, the fields are sampled at points; it is however possible to
define basis functions for the FDTD, a topic we discuss briefly in Chapter 12.

4 This is not invariably true: limitations imposed by approximations in the formulations may place some lower
bound on element size. A classic example is a thin-wire MoM formulation, where using too many segments
may violate the underlying thin-wire assumptions. This is discussed in detail in Section 4.3.
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1.2 Full-wave CEM techniques

Table 1.1 Strengths and weaknesses of CEM methods as widely implemented for open region problems

Equation Radiation PEC Homogeneous Inhomogeneous
Formulation type Domain condition only penetrable penetrable
MoM Integral Frequency Yes — — —~
FEM Differential Frequency No —~ — —
FDTD Differential  Time No ~ — —

Key: — good; —~ not optimal.

computational resources. In other fields such as structural mechanics, the mesh fineness
is usually determined by the requirement to resolve the structural geometry adequately;
in radio-frequency electromagnetics, the requirement on the mesh is usually to sample
the phase adequately. For many years, the CEM community has worked with a rule of
thumb of ten segments per wavelength. This was originally derived for wire antenna
problems, where the mesh is one-dimensional; for surfaces, this guideline becomes 100
segments per square wavelength (and a similar extension for volumetric meshes to 1000
per cubic wavelength). Much work on better elements has been done to reduce this
requirement — it will readily be appreciated that as the dimensionality of the problem
goes up, so this becomes progressively more crucial. It should also be noted that when
very accurate field data are required — for example, when computing antenna input
impedance — a finer mesh may be required, at least locally around the feed point of the
antenna. Furthermore, this guideline ignores the problem of dispersion in differential
equation based solvers, which effectively requires denser meshes for electromagnetically
larger problems.

Although the full-wave methods share the basic idea of discretization, and indeed
have been viewed within a very general framework as simply different implementations
of one overarching theoretical formulation, in practice, the methods have quite different
challenges for theoreticians, code developers and users, as well as different optimal areas
of application, and as such, they will be considered separately in this overview chapter.
In Chapter 12, some of the underlying mathematical connections between the methods
will emerge.

In the rest of this overview chapter, the MoM, FEM and FDTD method will be
reviewed qualitatively, emphasizing basic principles such as the underlying formulation
(integral/differential equation based, frequency or time domain) and areas of applica-
tion (perfectly or highly conducting materials versus homogeneous or inhomogeneous
penetrable structures; microwave devices versus radiation or scattering analysis). This
review is especially designed for readers who have a particular problem to solve, but are
not sure which is the best method to use. Details of each method will be found in the
subsequent chapters of the book. Key references only are given; a far more extensive list
of references will be found at the end of each chapter.

By way of introduction, some of the most important characteristics of the MoM, FEM
and FDTD method are presented in Tables 1.1 and 1.2. Table 1.1 provides a comparison
of the methods for open region (radiation and scattering) problems. It is important to
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6 An overview of computational electromagnetics

Table 1.2 Strengths and weaknesses of CEM methods for guided wave problems

Equation PEC Homogeneous Inhomogeneous
Formulation type Domain Wideband only penetrable penetrable
MoM Integral Frequency ~ — — ~
FEM Differential Frequency ~ - — -
FDTD Differential Time — — - -

Key: — good; ~ satisfactory, but not necessarily the best; —~ not optimal.

note that what is presented in this table are the key characteristics of the method as widely
implemented and understood in the CEM community. As will be seen in the description
of each method in the following sections, a number of simplifications have been made
in this table: the MoM, for instance, can be seen in a more general sense as including
the FEM, although this is not normal usage; and to give another example, the FEM can
also operate in the time domain, but there are no commercial implementations of this at
present. For the MoM, homogeneous penetrable materials (dielectrics, for instance) can
either be modelled using equivalent surface currents or, if the problem consists of layered
materials, using a Sommerfeld formulation. This has not been noted in the table, since
it depends on the details of the problem. Table 1.2 provides a similar comparison of the
methods for guided wave problems.> Again, the details of the precise implementation
have not been commented on.

This can be further illustrated by studying one of the most significant differences
between the methods (as usually deployed), namely meshing requirements. In Figs. 1.1,
1.2 and 1.3, the meshes required by typical MoM, FDTD and FEM codes to handle a
problem involving scattering from a homogeneous sphere are compared. MoM codes
often use triangular meshes to approximate surfaces, an approach which provides accu-
rate modelling of general geometries. The reduction in dimension afforded by the MoM
(here, from a 3D volume to a 2D surface) is clear — the price of this is that every element
on the surface now interacts with every other. FDTD codes use a regular “brick,” or
cuboidal, mesh. This approach is core to the speed of the method, but clearly requires a
fine mesh (as here) to model curved geometries with reasonable fidelity. The interaction
between elements in an FDTD mesh is local, and the volume need not be materially
homogeneous. FEM codes generally use unstructured tetrahedral meshes; similar to tri-
angular surface meshes, tetrahedral meshes offer accurate modelling of fine geometrical
details. Again, similiar to the FDTD, the interaction between elements is local, and the
volume can be inhomogeneous. (Unlike the FDTD, the irregular, or unstructured, mesh
means that geometrically local elements may not be local in the matrix describing the
problem®.) The FEM model as shown in Fig. 1.3 also includes an outer spherical shell,

5 1t is tempting to use the term “closed problems™ here, but a number of important guiding structures, such
as microstrip, are partially open. It is assumed in this table that FEM and FDTD codes have an appropriate
method of terminating this region. Since the energy decays rapidly away from the guiding structure, and this
radiation is a secondary effect in most applications, the open boundary is usually less problematic here than
in the case of the radiation and scattering problems.

6 The FDTD is actually a matrix-free method.
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1.2 Full-wave CEM techniques 7

A

Figure 1.1 A triangular surface mesh of a sphere, as used by typical MoM code.

A

Figure 1.2 A cuboidal volumetric mesh of a sphere, as used by typical FDTD code.

which would usually be free space, providing a “buffer” between the scatterer and what-
ever mesh closure scheme is applied on the outer boundary to approximate an infinitely
large mesh (also known as the “radiation condition”); the FDTD also needs this, but
it is not shown in Fig. 1.2. The MoM formulation, which incorporates the radiation
condition at formulation level, does not need this. However, and importantly, the MoM
surface formulation can only be applied to homogeneous scatterers; when dealing with
an inhomogeneous scatterer, the MoM also requires a volumetric mesh such as that in
Figs. 1.2 or 1.3.
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8 An overview of computational electromagnetics
A
Figure 1.3 A tetrahedral volumetric mesh of a sphere and spherical shell, as used by typical FEM
code.
1.3 The method of moments (MoM)

The MoM is probably the most widely used numerical technique in RF CEM, and has a
long history in the field; some of this is presented in Chapter 4. For antenna engineering,
the MoM has been the most widely used CEM method.” In the method of moments,
the radiating/scattering structure is replaced by equivalent currents. These are normally
surface currents. (Volumetric currents can be used for inhomogeneous dielectric bodies.
This is however very expensive computationally.) This surface current is discretized into
wire segments and/or surface patches. A matrix equation is then derived, representing the
effect of every segment/patch on every other segment/patch. This interaction is computed
using the Green function for the problem. (Green functions will be discussed later in
this book — indeed, an entire chapter, Chapter 7, is devoted to one such function.) Most
MoM codes use the free-space Green function. The relevant boundary condition is then
applied to all the interactions, yielding a set of linear equations. The solution of this linear
system yields the (approximate) current on each segment/patch. The resulting matrix
which must be factored (or used in an iterative solution scheme) is fully populated, with
complex valued entries. Typical matrix dimensions range from some hundreds for small
antenna problems to several thousand — the upper limit is imposed by computational
limitations, either limited memory and/or excessive runtime.

Traditionally, the MoM has been applied in the frequency domain, i.e. single frequency,
or monochromatic, sinusoidal excitation, with an e/“' convention assumed. The working

7 The name “method of moments” is peculiar to the CEM community. Perhaps the most descriptive alternative
name is the “method of weighted residuals.” The term “boundary element method” is frequently used
synonymously with MoM, and for surface formulations this is correct, but there are some moment method
formulations which use volume, not boundary, elements. We discuss this further in Chapter 4.
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1.3 The method of moments 9

variables (unknowns) are thus complex valued, with a magnitude and phase, as for any
phasor analysis. Time domain integral equation (TDIE) formulations have been used on
occasions, but stability and other issues have proven difficult, and TDIE codes are rare.

The use of the MoM for antenna analysis was given a major boost by the US govern-
ment’s de facto decision during the late 1980s to release the numerical electromagnetic
code — method of moments (widely known as NEC-2) into the public domain. NEC-
2 is a powerful, general-purpose antenna modelling program, but with no graphical
abilities whatsoever and very limited meshing abilities. NEC-2 is discussed in Chap-
ter 5. A later version, NEC-4, added some specialized functionality. At present, there
are some excellent commercial codes which offer all the functionality of NEC-2, but
with proper graphical user tools and frequently greatly enhanced abilities; examples
are FEKO (which will be used quite extensively in this book), SuperNEC, Ensemble
and IE3D. (Only SuperNEC is a direct descendant of NEC, the others are independent
implementations.) There are also some semi-commercial packages such as GEMACS
which are limited to US Department of Defense contractors, and hence not generally
available for commercial use world-wide.

The strong points of the MoM (as usually applied) are the following:

e Efficient treatment of perfectly or highly conducting surfaces. Only the surface is
meshed; no “air region” around the antenna need be meshed. For wire antennas, the
treatment is even more efficient, since only a one-dimensional discretization of the
wire is undertaken.

e The MoM automatically incorporates the “radiation condition” — i.e. the correct
behavior of the field far from the source (proportional to 1/r in free space). This is
very important when dealing with radiation or scattering problems.

e The working variable is the current density, from which many important antenna
parameters (impedance, gain, radiation patterns, etc.) may be derived, some directly
and some via straightforward numerical integration.

e Via the Sommerfeld potentials, efficient formulations may be derived for stratified
(layered) media. Important examples are printed antennas, components and feed
networks (e.g. microstrip technology) and antenna-above-real-earth calculations.

e The availability of NEC-2 in the public domain — this powerful code has served as the
basis for much MoM-based antenna design, and due to the open source nature, has
lent itself to all manner of numerical experimentation and improvement.

The weak points of the MoM may be summarized as follows:

e The MoM does not handle electromagnetically penetrable materials as well as differ-
ential equation formulations. This is especially true if the material is inhomogeneous.
(If the materials are homogeneous, a reasonably efficient fictitious, equivalent sur-
face current formulation may be used, but inhomogeneous materials require fictitious
equivalent volumetric currents, and become very expensive computationally.)

e The MoM does not scale gracefully with frequency — for typical applications requiring
a surface mesh, the scaling is O((kd)®) where kd is the electromagnetic size of the
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10 An overview of computational electromagnetics

structure.® (This assumes a cubic structure, for simplicity.) Note that this is implies an
O(f®) scaling — doubling the frequency can result in a runtime 64 times as long! We
will see that this is a major problem with all the full-wave computational methods,
although the details do vary slightly from method to method. For an MoM volumetric
mesh, required by an inhomogeneous structure, the scaling is O((kd)’); this is so large
that such methods are usually very limited in application.

e Some MoM formulations, in particular those based on the magnetic field integral
equation (MFIE), require the surface to be closed. This is frequently impractical.

In conclusion, the MoM is the preferred method for frequency domain radiation
and scattering problems involving perfectly or highly conducting wires and/or surfaces.
If the problem involves inhomogeneous dielectric materials, it is unlikely to be the
best formulation, but if hybridized with the FEM a very efficient formulation can
result.

1.4 The finite difference time domain (FDTD) method

The finite difference time domain (FDTD) method is of a similar vintage to the MoM
and FEM in electromagnetics, dating back to the 1960s. Like the FEM, it is partial
differential equation based, and one does nof need a Green function. Unlike the FEM,
the FDTD method does not use variational functionals or weighted residuals — it directly
approximates the differential operators in the Maxwell curl equations, on a grid staggered
in time and space. E and H fields are computed on a regular grid, with a marching-on-
in-time discretization of time, with field components being offset by As/2 relative to
each other and the E and H fields evaluated Az/2 apart in time, where As and Af are
the spatial and temporal discretizations respectively. This permits a scheme which uses
first-order numerical differentiation to provide second-order accuracy. It is also the only
widely used CEM scheme to operate in the time domain. (Time domain MoM and FEM
formulations have been used, but usually for a rather specialized application. Frequency
domain finite difference formulations are also available, but again have never become
very popular for general problems.)

Some history of the FDTD method may be found in Chapter 2. For various reasons,
the method languished in relative obscurity throughout most of the 1960s and 1970s, but
sprang to prominence in the 1980s. There were both technological driving factors behind
this — on the one hand, increasing interest in the modelling of inhomogeneous materials,
in particular for the assessment of human exposure to RF fields, and on the other, the
development of low-observable “stealth” technology — and enabling technology in the
shape of the enormous growth in computer power — in particular, memory, for which
the FDTD method has a voracious appetite in three dimensions. The development by
Berenger of the perfectly matched layer in 1994 solved the previously problematic issue

8 The notation O(x)? means of the (asymptotic) order of and indicates to the highest power (p) present in the
variable (x); note that it says nothing of the constants. This can be important, since CEM analysis is quite
often undertaken in the “pre-asymptotic” region, where lower powers in x may dominate especially runtime.
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