## Index

### accidents and major exposures
- arsenic, “largest mass poisoning”, 451
- Bhopal explosion, 18
- Chernobyl explosion, 393
- Danube cyanide spill, 14
- Exxon Valdez oil spill, 246
- Minamata, mercury poisoning, 444
- Rhine chemical spill, 14
- TVA ash pond, failure, 430

### acid deposition
- acid-forming pollutants, 155
- aerosols, 155
- buffers, 157
- carbonic acid, 156
- dry and wet, 156
- formed of, 155
- high stack emissions, 156
- history, 156
- ill effects, 159–162
- aluminum, 431
- erosion, haze, 162
- forests, 160
- mercury, 431
- metals, 431
- water and aquatic life, 159
- international
  - Asia, 167
  - China, 167–168
  - Europe, 166
- NAPAP, 158, 159, 160, 164
- pH, 158
- recovery from, 164
- reducing
  - nitrogen oxides, 163
  - sulfur dioxide, 162
- soil
  - base cations, 157
  - ill effects, 431
  - sources, 162
- transboundary, 165

### acid from mining
- adipic acid, 428

### acetate, 504

### acetylcholine, 466

### acid from mining
- adipic acid, 526

### Africa
- 28, 74, 83, 88, 143, 144, 147, 181, 302, 343, 414, 475, 477, 478, 479

### agencies
- US Centers for Disease Control, 25, 70, 85, 91, 289, 290, 422
- US Consumer Product Safety Commission (CPSC), 487
- US Department of Agriculture, 472
- US Department of Energy, 47, 331, 352, 359, 361, 384, 532
- US DOE, see US Department of Energy
- US EPA’s Science Advisory Panel, 165
- US Fish & Wildlife Service, 471
- US Food and Drug Administration, 84, 102, 299, 418, 444, 447, 465
- US Geological Survey, 320
- US National Academy of Sciences, 498
- US National Aeronautics and Space Administration, 8, 219
  - closed-loop system, 515
- US National Oceanic and Atmospheric Administration, 178, 213, 221, 255
- US National Research Council, 102, 114, 269, 279, 289, 443, 447

### Agenda 21
- 21, 305, 334

### AIDS
- 27, 28, 72, 298, 302

### air pollutants
- HAPs
  - examples, 139
  - summary, 119
  - sulfur and nitrogen oxides, 129

© in this web service Cambridge University Press www.cambridge.org
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>air pollutants, criteria</td>
<td>118</td>
</tr>
<tr>
<td>as principal air pollutants, 118</td>
<td></td>
</tr>
<tr>
<td>carbon monoxide, 119–121</td>
<td></td>
</tr>
<tr>
<td>fate, 120</td>
<td></td>
</tr>
<tr>
<td>ill effects, 120</td>
<td></td>
</tr>
<tr>
<td>produced of, 119</td>
<td></td>
</tr>
<tr>
<td>reducing, 120</td>
<td></td>
</tr>
<tr>
<td>sources, 120</td>
<td></td>
</tr>
<tr>
<td>lead, 135</td>
<td></td>
</tr>
<tr>
<td>sources, 135</td>
<td></td>
</tr>
<tr>
<td>nitrogen oxides, 128–130</td>
<td></td>
</tr>
<tr>
<td>aerosols, 128</td>
<td></td>
</tr>
<tr>
<td>fate, 128</td>
<td></td>
</tr>
<tr>
<td>ill effects, 128</td>
<td></td>
</tr>
<tr>
<td>produced of, 129</td>
<td></td>
</tr>
<tr>
<td>reducing, 130, 279, 386</td>
<td></td>
</tr>
<tr>
<td>low-NOx burners, 391</td>
<td></td>
</tr>
<tr>
<td>sources, 128</td>
<td></td>
</tr>
<tr>
<td>ozone, 190–191</td>
<td></td>
</tr>
<tr>
<td>fate, 124</td>
<td></td>
</tr>
<tr>
<td>ill effects, 122–123</td>
<td></td>
</tr>
<tr>
<td>ill effects, continuum, 124</td>
<td></td>
</tr>
<tr>
<td>intractable, 125</td>
<td></td>
</tr>
<tr>
<td>motor vehicles, 124</td>
<td></td>
</tr>
<tr>
<td>peroxyacyl nitrate, 122</td>
<td></td>
</tr>
<tr>
<td>photochemical smog, 122</td>
<td></td>
</tr>
<tr>
<td>produced of, 123</td>
<td></td>
</tr>
<tr>
<td>reducing levels, 379</td>
<td></td>
</tr>
<tr>
<td>sources, 123</td>
<td></td>
</tr>
<tr>
<td>tropospheric, 122</td>
<td></td>
</tr>
<tr>
<td>particulates, 130–134</td>
<td></td>
</tr>
<tr>
<td>description, 130</td>
<td></td>
</tr>
<tr>
<td>epidemiology, 132</td>
<td></td>
</tr>
<tr>
<td>fate, 134</td>
<td></td>
</tr>
<tr>
<td>ill effects, 132</td>
<td></td>
</tr>
<tr>
<td>PAHs, 133</td>
<td></td>
</tr>
<tr>
<td>exposure, 133</td>
<td></td>
</tr>
<tr>
<td>ill effects, 133</td>
<td></td>
</tr>
<tr>
<td>reducing, 133</td>
<td></td>
</tr>
<tr>
<td>sources, 133</td>
<td></td>
</tr>
<tr>
<td>PM10 PM2.5, 131, 132</td>
<td></td>
</tr>
<tr>
<td>reducing, 134</td>
<td></td>
</tr>
<tr>
<td>reduced levels, 512</td>
<td></td>
</tr>
<tr>
<td>sources, 132</td>
<td></td>
</tr>
<tr>
<td>sulfur dioxide, 125–127</td>
<td></td>
</tr>
<tr>
<td>aerosols, 125</td>
<td></td>
</tr>
<tr>
<td>China haze, 127</td>
<td></td>
</tr>
<tr>
<td>fate, 127</td>
<td></td>
</tr>
<tr>
<td>ill effects, 126</td>
<td></td>
</tr>
<tr>
<td>reducing, 127</td>
<td></td>
</tr>
<tr>
<td>fluidized bed, 391</td>
<td></td>
</tr>
<tr>
<td>scrubbers, 391</td>
<td></td>
</tr>
<tr>
<td>sources, 126</td>
<td></td>
</tr>
<tr>
<td>air pollutants, HAPs</td>
<td></td>
</tr>
<tr>
<td>ill effects, 138</td>
<td></td>
</tr>
<tr>
<td>maximum available technology (MACT), 140</td>
<td></td>
</tr>
<tr>
<td>reducing, 140</td>
<td></td>
</tr>
<tr>
<td>air pollutants, hazardous air pollutants (HAPs), 138–140</td>
<td></td>
</tr>
<tr>
<td>air pollutants, principal, see air pollutants, criteria</td>
<td></td>
</tr>
<tr>
<td>air pollutants, summary, 119</td>
<td></td>
</tr>
<tr>
<td>air pollutants, toxics, see air pollutants, HAPs</td>
<td></td>
</tr>
<tr>
<td>air pollutants, VOCs, 136–137</td>
<td></td>
</tr>
<tr>
<td>fate, 137</td>
<td></td>
</tr>
<tr>
<td>ill effects, 136</td>
<td></td>
</tr>
<tr>
<td>reducing, 137</td>
<td></td>
</tr>
<tr>
<td>sources, 136</td>
<td></td>
</tr>
<tr>
<td>VOCs and ozone, 136</td>
<td></td>
</tr>
<tr>
<td>air pollution</td>
<td></td>
</tr>
<tr>
<td>brown Asian haze (ABC), 149</td>
<td></td>
</tr>
<tr>
<td>Calcutta, 149</td>
<td></td>
</tr>
<tr>
<td>Eastern Europe</td>
<td></td>
</tr>
<tr>
<td>reducing, 151</td>
<td></td>
</tr>
<tr>
<td>from desertification, 148</td>
<td></td>
</tr>
<tr>
<td>from space, 142–144</td>
<td></td>
</tr>
<tr>
<td>carbon monoxide, 142</td>
<td></td>
</tr>
<tr>
<td>dust storms, 144</td>
<td></td>
</tr>
<tr>
<td>NASA, 142</td>
<td></td>
</tr>
<tr>
<td>smoke, 143</td>
<td></td>
</tr>
<tr>
<td>less-developed countries, 148</td>
<td></td>
</tr>
<tr>
<td>children, 148</td>
<td></td>
</tr>
<tr>
<td>reducing, 150</td>
<td></td>
</tr>
<tr>
<td>seen from space, 142–144</td>
<td></td>
</tr>
<tr>
<td>Shenzhen</td>
<td></td>
</tr>
<tr>
<td>cause, 150</td>
<td></td>
</tr>
<tr>
<td>air pollution and desertification, 148</td>
<td></td>
</tr>
<tr>
<td>reducing, 148</td>
<td></td>
</tr>
<tr>
<td>air toxics, see air pollutants, HAPs</td>
<td></td>
</tr>
<tr>
<td>Alaska, 232, 402</td>
<td></td>
</tr>
<tr>
<td>Algeria, 397</td>
<td></td>
</tr>
<tr>
<td>allergies, 72, 73, 77, 126, 139, 447, 486, 490, 492, 493, 494</td>
<td></td>
</tr>
<tr>
<td>alveoli, 74</td>
<td></td>
</tr>
<tr>
<td>ambient air pollutants, see air pollutants, criteria</td>
<td></td>
</tr>
<tr>
<td>ammonia, 558</td>
<td></td>
</tr>
<tr>
<td>Anopheles mosquito, 471</td>
<td></td>
</tr>
<tr>
<td>Antarctic, 144, 174, 175, 177, 181, 211, 219, 221, 222, 224, 226, 233, 234, 257, 348, 420, 422 see also stratospheric ozone</td>
<td></td>
</tr>
<tr>
<td>antibiotic drugs</td>
<td></td>
</tr>
<tr>
<td>resistance to, 471</td>
<td></td>
</tr>
<tr>
<td>antifreeze, 102</td>
<td></td>
</tr>
<tr>
<td>Apollo Project</td>
<td></td>
</tr>
<tr>
<td>“energy, jobs”, 406</td>
<td></td>
</tr>
<tr>
<td>Aral Sea, 147</td>
<td></td>
</tr>
<tr>
<td>Arctic, 257, 420, 435, 449</td>
<td></td>
</tr>
<tr>
<td>PCB levels, 15</td>
<td></td>
</tr>
<tr>
<td>POP accumulation, 15</td>
<td></td>
</tr>
<tr>
<td>Argentina, 302, 469</td>
<td></td>
</tr>
<tr>
<td>Aroclor</td>
<td></td>
</tr>
<tr>
<td>see PCBs</td>
<td></td>
</tr>
</tbody>
</table>
Index

Arrhenius, Svante, 170
arsenic, 12, 288, 293, 294, 295, 308, 309, 451, 452, 453 see also water contaminants

as syphilis treatment, 432
inorganic compounds, 452
uses, 452
asbestos, 64, 94, 139, 370, 484, 505
exposure, 12
Asia, 21, 109, 143, 144, 146, 147, 148, 149, 150, 153, 167, 169, 189, 190, 269, 302, 343, 426, 435, 440, 451, 453, 477, 480, 512
arsenic exposure, 432
aspirin, 59, 61, 69, 501
Atlantic Ocean, 21, 143, 144, 152, 178, 207, 272, 278, 370
atmospheric deposition, see also acid deposition ("acid rain")
atrazine, 464
atropine, 59
Australia, 265, 450, 475, 533
Bacillus thuringiensis (Bt), 461
baculoviruses, 461
Bangkok, 150
Bangladesh, 12, 302, 344, 371, 453
arsenic, 293
steel recycling, 370
banks
Asia Development Bank, 21, 512
Inter-American Development Bank, 480
World Bank, 23, 148, 280, 302, 405, 444
base deposition, 157
batteries
energy to manufacture, 341
EU regulations, 342
lead acid, 336
metal reclamation, 342
Ni–cad, 342
rechargeable, 342
reclaiming metals from, 342
waste management hierarchy, 341
Beijing, 81, 145, 146, 151, 345, 387, 500
Belgium, 536
benzene, 78, 94, 527
exposure, 140
ill effects, 139
VOCs, 136
benzopyrene, 76
as PBTF, 415
Bhopal, 1, 18, 19, 32, 39, 42, 444, 525
bioaccumulation, 411
land-based, 16
biodiesel, 383
biofuels
LCA, 55
biomass fuels
algae, 383
biomonitoring, see chemicals in the body
biosolids, see wastewater treatment
Biosphere 2, 7, 515
bio-treatment, see solid waste, municipal: composting
bisphenol A (BPA), 83–85
Black Sea, 278, 279
black-lung disease, 386
“blue baby” syndrome, 293
Bolivia, 499
Bombay, 27
butyltinum toxin, 59, 60
Brazil, 21, 109, 149, 209, 302, 311, 337, 345, 346, 383, 448, 536
Curitiba, 25
brownfield, see hazardous waste sites
Bi, 473
Buenos Aires, 302
cadmium, 70, 139 see also metals
CAFOs, see confined animal feeding operation
calcium carbonate shells, 559
Calcutta, 149, 150
California, 12, 148, 256, 264, 319, 366, 369, 399, 401, 404, 468, 475, 531
motor vehicles, 380
Camodia, 364, 478
Cameroon, 144, 205
Canada, 15, 76, 257, 299, 300, 441, 464, 494
Arctic animals, 416
Canberra, 533
cancer
causes, 80, 83, 94
infection, 80
pollutants, 80
development, 79–80
dose–response, 79
initiation and promotion, 79
organ affected
bladder, 98, 294
liver, 74, 94, 294
lung, 12, 78, 94, 294, 450, 498
scrotum, 94
skin, 225, 293
vagina, 83
carbofuran, 469
carbon monoxide, 60, 119, 120, 135, 142, 143, 376, 379, 392, 487, 509 see also air pollutants, criteria
carbon tetrachloride, 220
carbonic acid, 557
Caribbean, 144, 147, 432
cars, see motor vehicles
**Index**

| cataracts, 225  | hazard assessment, 100  |
| caustic, 502    | hazard identification, 100  |
| CCA alternatives, 452  | hazardous waste sites  |
| CFL light bulbs, 387  | indicator chemicals, 99  |
| chemical  | non-cancer, 100–104  |
| bioavailability, 66  | pesticides  |
| persistence, 35  | cumulative risk, 104  |
| PCBs, dioxins, 65  | risk characterization, 100  |
| reference, 44  | hazard quotient, 104  |
| chemical effects  | safety factor  |
| body organs, 71–74  | children, 465  |
| irritant, 63  | factors of 10, 102–103  |
| local, 73  | what it compensates for, 99  |
| multiple chemicals, 62  | when warranted, 99  |
| additive, 19, 63  | why do, 99  |
| antagonists, antidotes, 19, 63  |  
| synergism, 19, 63, 74  |  
| synergism, 74  |  
| target organs, 65  |  
| chemical exposure, 89  |  
| children, 76  |  
| multiple chemicals, 62  |  
| one chemical, 63  |  
| chemical risk  |  
| impoverished countries, 109  |  
| occupational, 109  |  
| chemical risk assessment, 34–35, 98–108  |  
| animal tests, 105  |  
| cancer, 104–108  |  
| dose–response, 105  |  
| excess tumors, 105  |  
| exposure assessment, 105  |  
| hazard identification, 104  |  
| maximum tolerated dose, 105  |  
| no safe dose, 105  |  
| potency factor, 106  |  
| risk  |  
| assumptions, 107  |  
| risk characterization, 106  |  
| upper-bound risk, 108  |  
| cancer dose–response assessment, 105  |  
| definition, 34  |  
| dose response  |  
| reference dose, 101  |  
| safety factor, 101  |  
| dose–response  |  
| NOAEL, 101  |  
| dose–response assessment, 100, 101, 105  |  
| ecosystem assessment, 108  |  
| exposure assessment, 100  |  
| most highly exposed, 103  |  
| route of, 103  |  
| source, 103  |  
| worse-case, 103  |  
| future of, 113  |  
| hazard, 98  |  

| arsenic, 64, 453  |  
| drinking water, 293  |  
| epidemiologic studies, 295  |  
| exposure  |  
| chronic, 293  |  
| drinking water, 451  |  
| sources of, 453  |  
| exposure levels, 295  |  
| gangrene, 294  |  
| in utero, 295  |  
| key environmental health problem, 451  |  
| local and systemic effects, 73  |  
| mass poisoning, 293  |  
| murders, 452  |  
| reducing risk, 294–295  |  
| asbestos, 12, 73  |  
| atrazine, 114  |  
| benzene, 65  |  
| cadmium, 70  |  
| caffeine, 62  |  
| carbosulfan, 469  |  
| carbon monoxide, 72, 388  |  
| carbon tetrachloride, 62  |  
| DDT, 413, 415  |  
| DES, 83  |  
| dibromochloropropane, 76  |  
| diethylene glycol, 102  |  
| dioxins, 413  |  
| endosulfan, 469  |  
| ethyl alcohol, 62, 72  |  
| formaldehyde, 63, 64, 73  |  

Cambridge University Press
978-0-521-51866-6 - Understanding Environmental Pollution: Third Edition
Marquita K. Hill
Index
More information
chemical toxicity, (cont.)
insecticides, 466–468
carbamates, 467
DDT, 466
organochlorines, 466
organophosphates, 466
iron, 427
lead
IQ and memory, 435
mercury
inhalation, 66
metals, 72, 427–432
methylmercury, 66, 447
wildlife, 444
neomycin, 73
nitrite
methemoglobin, 293
nutrition and toxicity, 432
oxalic acid, 62
parathion, 65
PCBs, 413, 417
fetal brain, 417
pesticides, 73, 466–469
pesticides and children, 77
radon, 12
reactive gases, 73
solanine, 62
teratogens, 75
thalidomide, 76
tin, organo-, 433
tobacco products, 76
toxic element, 427
trichloroethylene, 107
vitamin A, 76
chemicals in the body
absorption, 64–65
ingestion, 64
portal blood, 64
inhalation, 64
lung alveoli, 64
skin, 65
ADME, 64–68
bioaccumulation, 35, 67
biomagnification, 67
methylmercury, 67
biomonitoring, 91
body burden, 91–93
chemicals found, 91
CDC studies, 91
usefulness, 93
distribution and target organs, 65
excretion
how occurs, 67
metabolism, 65
biotransformation, 65
storage, 66
chemistry
acids, 556
analytical, 19
vanishing zero, 42
atomic mass, 540
atomic nucleus
neutrons, 539
protons, 539
atomic number, 540
atoms, 539
Avogadro’s constant, 552
balancing reactions, 552, 554
chemical bonds, 547
covalent, 545
ionic, 546
electron, 540
configuration, 543
electrostatic forces, 547
elements, 539
electronnegative, 543, 546
electropositive, 543
dehydrogen, 540, 545
deuterium, 542
tritium, 542
lithium, 545
noble, 543
free radicals, 550
hydroxyl radical
atmospheric roles, 550
incomplete products of combustion, 555
isotopes
environmental chemistry, 542
lithium, 542
mercury, 441
oxygen, 175
radioisotopes, 175, 393, 543
stable, 543
what they are, 542
metal primer, 426
molecular mass
calculating, 547
neutralization, 557
oxidation
hydrocarbons, 554
oxidation reactions, 552–555
periodic table, 540
pH, 556
reduction reactions, 553
stable octet, 544
stoichiometry, 552
subatomic particles, 539
valence, 544
chemistry, chemicals
acids, 556–558
ocean, 556–558
acids, strong, 557
acids, weak, 557
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>bases, 557</td>
</tr>
<tr>
<td>benzo(a)pyrene, 556</td>
</tr>
<tr>
<td>biochemicals, 549</td>
</tr>
<tr>
<td>corrosive examples, 349</td>
</tr>
<tr>
<td>flammable examples, 349</td>
</tr>
<tr>
<td>formula, 540</td>
</tr>
<tr>
<td>inorganic, 17, 549</td>
</tr>
<tr>
<td>organic, 548–549</td>
</tr>
<tr>
<td>definition, 548</td>
</tr>
<tr>
<td>polyhalogenated examples, 411</td>
</tr>
<tr>
<td>reactive examples, 349</td>
</tr>
<tr>
<td>water hydrogen bonding, 556</td>
</tr>
<tr>
<td>Chernobyl, 393</td>
</tr>
<tr>
<td>Chesapeake Bay, 243, 258</td>
</tr>
<tr>
<td>Chicago, 270, 299</td>
</tr>
<tr>
<td>children</td>
</tr>
<tr>
<td>drinking-water pollution, 302</td>
</tr>
<tr>
<td>hazardous products, 501, 503</td>
</tr>
<tr>
<td>indoor air pollution, 77, 499</td>
</tr>
<tr>
<td>less-developed countries</td>
</tr>
<tr>
<td>air pollution, 148</td>
</tr>
<tr>
<td>nontoxic products, 504</td>
</tr>
<tr>
<td>pesticide exposure, 77</td>
</tr>
<tr>
<td>tolerances, 465</td>
</tr>
<tr>
<td>pesticides</td>
</tr>
<tr>
<td>wood preservative exposure, 451</td>
</tr>
<tr>
<td>smoke exposure, 499</td>
</tr>
<tr>
<td>children and in utero, 75–78, 469</td>
</tr>
<tr>
<td>Chile, 225</td>
</tr>
<tr>
<td>acid deposition, 168</td>
</tr>
<tr>
<td>air pollution, 145–146</td>
</tr>
<tr>
<td>banning plastic bags, 345</td>
</tr>
<tr>
<td>cancer villages, 23, 81, 87</td>
</tr>
<tr>
<td>carbon dioxide emissions, 202</td>
</tr>
<tr>
<td>coal burning, 81, 167, 194, 202, 375, 387, 499</td>
</tr>
<tr>
<td>coal reserves, 386</td>
</tr>
<tr>
<td>consumption, 28</td>
</tr>
<tr>
<td>desertification, 145</td>
</tr>
<tr>
<td>dust and sand storms, 145–146</td>
</tr>
<tr>
<td>dust storms, 145</td>
</tr>
<tr>
<td>economic growth, 24, 41, 387</td>
</tr>
<tr>
<td>energy use</td>
</tr>
<tr>
<td>coal, 387</td>
</tr>
<tr>
<td>economic activity, 535</td>
</tr>
<tr>
<td>inefficiency, 387</td>
</tr>
<tr>
<td>renewables, 387</td>
</tr>
<tr>
<td>energy use per capita, 375</td>
</tr>
<tr>
<td>environmental health, 81</td>
</tr>
<tr>
<td>environmental laws, 40</td>
</tr>
<tr>
<td>environmental organizations, 40</td>
</tr>
<tr>
<td>Environmental Performance Index, 536</td>
</tr>
<tr>
<td>exported products, 28</td>
</tr>
<tr>
<td>export-related pollution, 150</td>
</tr>
<tr>
<td>food production, 127</td>
</tr>
<tr>
<td>green chemistry, 524</td>
</tr>
<tr>
<td>green technology, 319</td>
</tr>
<tr>
<td>human dominance culture, 22</td>
</tr>
<tr>
<td>laws, 40–41</td>
</tr>
<tr>
<td>lead in children’s blood, 436</td>
</tr>
<tr>
<td>mercury</td>
</tr>
<tr>
<td>workplace exposure, 445</td>
</tr>
<tr>
<td>multinational operations, 41</td>
</tr>
<tr>
<td>name and shame, 41</td>
</tr>
<tr>
<td>pesticide use, 478</td>
</tr>
<tr>
<td>pollution</td>
</tr>
<tr>
<td>air, 23</td>
</tr>
<tr>
<td>coastal, 28</td>
</tr>
<tr>
<td>drinking water, 23, 281, 282, 302</td>
</tr>
<tr>
<td>energy use, 387</td>
</tr>
<tr>
<td>indoor air, 499</td>
</tr>
<tr>
<td>metals, 430</td>
</tr>
<tr>
<td>reducing pollution, 281, 500</td>
</tr>
<tr>
<td>rivers, 280</td>
</tr>
<tr>
<td>waste, 312</td>
</tr>
<tr>
<td>waste electronics, 367</td>
</tr>
<tr>
<td>waste, silicon tetrachloride, 398</td>
</tr>
<tr>
<td>water, 81</td>
</tr>
<tr>
<td>unregulated emissions, 281</td>
</tr>
<tr>
<td>pollution and population, 281</td>
</tr>
<tr>
<td>polysilicon production, 396</td>
</tr>
<tr>
<td>power plants</td>
</tr>
<tr>
<td>emission controls, 392</td>
</tr>
<tr>
<td>reducing pollution, 40–41</td>
</tr>
<tr>
<td>greenhouse emissions, 209</td>
</tr>
<tr>
<td>right-to-know, 44</td>
</tr>
<tr>
<td>sand and dust storms, 145–146</td>
</tr>
<tr>
<td>solid waste, 312, 344, 345</td>
</tr>
<tr>
<td>State Environmental Protection Administration, 23, 145, 280</td>
</tr>
<tr>
<td>chloracne, 68, 417</td>
</tr>
<tr>
<td>chloridane, 416</td>
</tr>
<tr>
<td>chlorine, 502</td>
</tr>
<tr>
<td>chloroform exposure, 140</td>
</tr>
<tr>
<td>ill effects, 139</td>
</tr>
<tr>
<td>cholera, 308</td>
</tr>
<tr>
<td>chromated copper arsenate (CCA), 451–452</td>
</tr>
<tr>
<td>Clean Air Act, see laws</td>
</tr>
<tr>
<td>Clean Water Act, see laws</td>
</tr>
<tr>
<td>climate change</td>
</tr>
<tr>
<td>IPCC, 172</td>
</tr>
<tr>
<td>closed-loop systems, 514–515</td>
</tr>
<tr>
<td>Biosphere, not successful, 515</td>
</tr>
<tr>
<td>closed-loop recycling, 515</td>
</tr>
<tr>
<td>cradle to cradle, 356, 514</td>
</tr>
<tr>
<td>See dematerialization</td>
</tr>
<tr>
<td>LCA</td>
</tr>
<tr>
<td>cars, 331</td>
</tr>
</tbody>
</table>
closed-loop systems, (cont.)
DFE, 516
factor 4, factor 10, 515
how nature does it, 514
industrial ecology, 513–516
Kalundborg
  first model, 515
NASA
  Advanced Life Support System, 515
need to dematerialize, 513
recycling
  not enough, 515
wastes and emissions
  as resources, 511
zero waste, zero emissions, 511
closed-loop systems, dematerialization
  computer design, 516
  designing for, 516
durability, 520, 530
environmentally benign manufacturing, 532
environmentally preferable products, 519
extended producer responsibility (EPR), 521
product stewardship, 521–523
drivers, 522
servicizing
  chemicals, 522
durability, 522
EPR, 522
take-back laws, 521
tools
  design for the environment (DFE), 519
LCA, 517
  comparing products, 518
complexity, 517
P2, 516
zero waste
  progress toward, 529
closed-loop systems, detoxification, 523–526
green chemistry, 365, 523
biodegradable, 525
carpet, 529
change chemical used, 524
change production process, 525
goals, 524–526
major future changes, 526–528
reduce chemical waste, 525
using enzymes, 527
using microbes, 526
using wastes, 527
coal
  amounts burned, 430
  ash from burning, 386
  externalities, 385
  increase in usage, 385
life-cycle assessment, 386
reserves of, 386
sulfur
  reducing, 386
coal burning
  ash ponds, 430
  metal emissions, 453
  pollution from reducing, 391
  power plants, 429
  ash amounts, 430
  power plants, retrofitting, 392
  radioactive metal emissions, 453
Cœur d’Alene
  Superfund mining site, 351
coliform, fecal, 289
colonial collapse disorder, 468
Colorado, 71, 83, 144, 200, 276, 399
combustion, 12, 76, 335, 429, 483, 546, 555
gasoline, 11
incomplete products of, 11
command-and-control, 39
  limitations, 41
comparative risk assessment, 35–38
copper
  mining, ancient practices, 431
coral reefs, 6, 188, 208
corporations
  3M, 46, 421
  AMOCO, 42
  Androscoggin Energy, 390
  Bayer, 525
  BMW, 331
  BP-Amoco, 390
  Bruce Mansfield, 392
  Castrol Chemical, 523
  Caterpillar, 320
  Chevron, 388
  Chisso, 444
  Donlar, 525
  Dow Chemical, 19, 415, 525
  Duke Energy, 388
  DuPont, 415, 529
  Epson, 531
  Fetzer Vineyards, 531
  Fiat, 331
  General Electric, 418
  Hewlett-Packard, 369
  Honda, 380
  Hooker Chemical, 350
  Interface, 522, 531
  International Paper, 390, 531
  LL Bean, 333
  Maine Oxy, 402
  Motorola, 523
  Navistar, 523
  Nokia, 320
coal burning
  ash ponds, 430
  metal emissions, 453
  pollution from reducing, 391
  power plants, 429
  ash amounts, 430
  power plants, retrofitting, 392
  radioactive metal emissions, 453
Cœur d’Alene
  Superfund mining site, 351
coliform, fecal, 289
colonial collapse disorder, 468
Colorado, 71, 83, 144, 200, 276, 399
combustion, 12, 76, 335, 429, 483, 546, 555
gasoline, 11
incomplete products of, 11
command-and-control, 39
  limitations, 41
comparative risk assessment, 35–38
copper
  mining, ancient practices, 431
coral reefs, 6, 188, 208
corporations
  3M, 46, 421
  AMOCO, 42
  Androscoggin Energy, 390
  Bayer, 525
  BMW, 331
  BP-Amoco, 390
  Bruce Mansfield, 392
  Castrol Chemical, 523
  Caterpillar, 320
  Chevron, 388
  Chisso, 444
  Donlar, 525
  Dow Chemical, 19, 415, 525
  Duke Energy, 388
  DuPont, 415, 529
  Epson, 531
  Fetzer Vineyards, 531
  Fiat, 331
  General Electric, 418
  Hewlett-Packard, 369
  Honda, 380
  Hooker Chemical, 350
  Interface, 522, 531
  International Paper, 390, 531
  LL Bean, 333
  Maine Oxy, 402
  Motorola, 523
  Navistar, 523
  Nokia, 320
coal burning
  ash ponds, 430
  metal emissions, 453
  pollution from reducing, 391
  power plants, 429
  ash amounts, 430
  power plants, retrofitting, 392
  radioactive metal emissions, 453
Cœur d’Alene
  Superfund mining site, 351
coliform, fecal, 289
colonial collapse disorder, 468
Colorado, 71, 83, 144, 200, 276, 399
combustion, 12, 76, 335, 429, 483, 546, 555
gasoline, 11
incomplete products of, 11
command-and-control, 39
  limitations, 41
comparative risk assessment, 35–38
copper
  mining, ancient practices, 431
coral reefs, 6, 188, 208
corporations
  3M, 46, 421
  AMOCO, 42
  Androscoggin Energy, 390
  Bayer, 525
  BMW, 331
  BP-Amoco, 390
  Bruce Mansfield, 392
  Castrol Chemical, 523
  Caterpillar, 320
  Chevron, 388
  Chisso, 444
  Donlar, 525
  Dow Chemical, 19, 415, 525
  Duke Energy, 388
  DuPont, 415, 529
  Epson, 531
  Fetzer Vineyards, 531
  Fiat, 331
  General Electric, 418
  Hewlett-Packard, 369
  Honda, 380
  Hooker Chemical, 350
  Interface, 522, 531
  International Paper, 390, 531
  LL Bean, 333
  Maine Oxy, 402
  Motorola, 523
  Navistar, 523
  Nokia, 320
Occidental Chemical, 350
Panasonic, 369
Pillsbury, 531
Proctor & Gamble, 415, 518
Raytheon, 523
Rohm and Hass, 391
Sony, 369
Sunoco, 380
Toyota, 380, 532
Union Carbide, 18, 42
Volvo, 331, 518
Wal-Mart, 325
Xerox, 520, 522, 531
cotinine, 91
crabs, 242, 274, 277
cradle to cradle, 356
criteria air pollutants, see air pollutants, criteria
Cryptosporidium parvum, 289, 300
curare, 59
Curitiba, 25, 311, 337, 345, 346, 536
Czech Republic, 151
critical to know, 44
Davis, 475
DDT, 15, 17, 35, 66, 67, 75, 77, 82, 83, 86, 92, 106, 107, 108, 156, 248, 258, 410, 412, 415, 416, 420, 421, 423, 457, 458, 459, 466, 467, 471, 478, 481 see also persistent organic pollutants (POPs); see also pesticidal chemicals
bomification, 466
malaria, 415
metabolite, 92
one of “dirty dozen”, 415
dead zones, 273, 276–279
Black Sea, 278
recovery, 278
description, 277
Gulf of Mexico, 276–278
nitrate fertilizer, 277
reducing
CAFOs, 279
fertilizer, 279
water pollution, nitrogen glut, 273
dematerialization, 516
Denmark, 51, 107, 399, 447
industrial symbiosis, 51
DES, 83, 84, 93, 94
desert
Gobi, 144, 146
Sahara and Sahel, 144
desertification, 6, 145, 146, 147, 148, 153, 202
and pollution, 145
design for disassembly (DFd), 320
design for the environment, see also DfE, closed-loop systems
design for disassembly, 320, 369
cars, 331
remanufacturing examples, 320
design for the environment (DfE)
Detroit, 361
DfE, 48, 316, 365, 370, 516, 517, see also green chemistry
and design for disassembly, 320, 331
design changes, 324
design for durability, 520
design for waste minimization, 334, 369, 534
electronic equipment, 324
take-back programs, 333
Dhaka, 344
dibromochloropropane, 76
dichlorodiphenyltrichloroethane, see DDT
diethylene glycol, 102
diethylstilbestrol, see DES
dimethyl sulfoxide (DMSO), 65
air emissions, 14
as PBTs, 414
bioaccumulation, 67
bioavailability, 66
bomification, 90
cannot totally ban, 416
chloracne, 417
chlorine-using processes, 90
combustion, 90
processes that produce, 416
dissolved oxygen, 241, 242, 259, 276, 279
Dobson units
see stratospheric ozone depletion, 221
Dominican Republic, 146
drinking water
background, 286
bottled
compared to tap, 299
environmental impact, 299
standards, 299
contaminated, 300
human waste, 300–303
ill effects, 300
issues
most sensitive groups, 298
population, 298
less-developed countries, 300–302
cholera, 308
drinking water (cont.)
point-of-use treatment, 305–306
reducing pathogens, 305
safe
greatest medical milestone, 300
safety
aging systems, 297
small systems, 297
water-borne illness, 290
why treat, 289
drinking-water contaminants
arsenic, 293
Asia, 432
mass poisoning, 293
removing, 295
source, 293
well water, 293
chloroform and trihalomethanes, 291
DBPs, removing, 291
DBPs, risk, 291
disinfection byproducts, 290
fluoride
controversy, 288
lead, 437
microbes, 289
fecal coliform, 289
nitrate
ill effects, 292
immediate threat, 292
sources, 292
pathogens
disinfection, 290–292
ill effects, 289
immediate threat, 289
reducing, 290
sources, 290
drinking-water contaminants, emerging
antibiotics, 296
hormones, 296
treatments for, 297
drinking-water disinfectants
chlorine, 290–291
non-chemical methods, 292
non-chlorine chemicals, 291
reducing, 292
drinking-water standards
maximum contaminant level, 287
primary, 287–288
examples, 288
secondary, 296
public welfare, 296
taste, color, odor, 296
drinking water, less-developed
countries
boiling water, 302
children, impact on, 302
diarrhea, 302
Household Water Treatment Network, 302
one billion without access, 301
pathogens
ill effects, 301
unsafe water and sanitation, 300
untreated human waste, 302
water scarcity and pollution, 302
durability, 535
dematerialization, 530
dust storms and desertification, 147
Earth Summit, 21, 194, 305
Eastern Europe, 262
ecosystem services, 3, 4, 6, 8, 253, 511
Egypt
right-to-know, 44
electricity production
biomass, 399–400
coal
LCA, 386
cornered versus nuclear, 393
cum, oil, gas, 385–388
dams, 403
geothermal, 401
heat mining, 401
hydrogen fuel cells
stationary, 401
micropower
off central grid, 404
natural gas
nitrogen oxides, 387
nuclear fusion, 394
nuclear power, 392–394
France, 393
LCA, 394
safety, 393
waste disposal, 393
ocean energy
thermal energy conversion, 403
tidal, 402
wave, 402
pollution
reducing, 388–392
pollution burning coal, 386
renewable sources, 395–404
renewables
dependence on sun, 395
smart grid, 406
solar, 395–398
photovoltaic, 395–397
large operations, 397
LCA, 396
medium operations, 396
polysilicon pollution, 396
small operations, 395
storing energy, 397
solar, concentrated, 397
wind machines
storage energy, 398
Emergency Planning and Community Right-to-
Know Act (EPCRA), see laws, US
emissions trading, 110
endocrine disrupter, see hormones, environmental
definition, 39
endosulfan, 469
energy use, world, 374–377
corn, 375
coal, 375
conservation
in industry, 390–392
in the home, 388–389
conservation and efficiency, 388–392
conservation, promoting, 403
energy intensity, 407
fossil fuels, 375
future possibilities, 407
increased demand, 374
associated pollution, 374
industry
cogeneration, recycled energy, 391
district heating, 390
electric motors, 390
energy audit, 391
manufacturing, 390
reducing
clean coal technology, 391
cleaner fuels, 391
reducing use, 392
steam generation, 390
waste energy, 391
Japan as a model, 407
rural poor, 405
wood and other biofuels, 375
England, 107
environmental health, poverty, 21
environmental hormones
potential human impact, 86
environmental issues
high-risk global issues, 36
US trends
US EPA, 512
environmental justice, 110
Environmental Performance Index, 535
good governance, 536
environmentally benign manufacturing, 532
environmentally preferable products, 318
epidemics
cancer, 83
water-borne, 290
epidemiology, 93–97
benzene, 94
biological plausibility, 96
birth defects, 96
chimney sweeps, 94
cluster, 95
community studies, 95
confounding factors, 94
definition, 93
electromagnetic fields, 96
exposure evaluation, 94
judging studies, 95–96
limits of, 96
occupational exposures, 94
PCBs, 418
radon, 94
risk factor, 96
scrotal cancer, 94
EPR, 325, 331, 333, 368, 521, 522
ethanol, 400
from cellullosic material, 383
from corn, 383
ethanol and aflatoxins, 78
Ethiopia, 480
EU, 44, 403, 407, 420, 422 see also European Union
Europe, 23, 24, 27, 28, 76, 78, 101, 112, 121, 134, 141,
143, 147, 150, 151, 152, 156, 165, 166, 168,
174, 190, 202, 223, 263, 264, 269, 270, 272,
278, 279, 297, 298, 299, 365, 369, 370, 385,
390, 397, 399, 408, 426, 431, 435, 446, 522,
532, 533, 536
air pollutants, 141
energy production
coal, 385
European Pollutant Emission Register, see laws, EU
European Union, 44, 85, 111, 134, 151, 152, 165, 194,
195, 324, 342, 365
Producer Pays Program, 325
exotic, 1, 278, 475
control agents, danger, 475
exposure to chemicals, see chemical exposure
extended producer responsibility (EPR), 325
Exxon Valdez oil spill, 246, 444
FDA, see agencies: US Food and Drug Administration
Federal Insecticide, Fungicide, and Rodenticide Act, see laws
fire retardants
PBDEs, 414
fishable and swimmable, 39, 236, 255
Florida, 7, 79, 82, 83, 86, 144, 441, 461, 463
fluorine, 543, 544
formaldehyde
effect, 139
France, 14, 74, 331, 371, 392, 459, 536
Freedom Car, 382
fruits, 82, 114, 158, 244, 274, 469
fuel cells, 381
furans, see dioxins
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>gasoline combustion</td>
<td>11</td>
</tr>
<tr>
<td>general circulation models</td>
<td>11, 12</td>
</tr>
<tr>
<td>genetically engineered organism (GEO)</td>
<td>461</td>
</tr>
<tr>
<td>Geneva</td>
<td>299</td>
</tr>
<tr>
<td>GEOs</td>
<td>461, 476</td>
</tr>
<tr>
<td>geothermal electricity production</td>
<td>401</td>
</tr>
<tr>
<td>space heating</td>
<td>401</td>
</tr>
<tr>
<td>Germany</td>
<td>14, 24, 151, 158, 166, 201, 232, 297, 331, 332, 333, 337, 396, 397, 399, 452, 494, 536</td>
</tr>
<tr>
<td>recycling</td>
<td>322</td>
</tr>
<tr>
<td>Ghana</td>
<td>265</td>
</tr>
<tr>
<td>Giardia lamblia</td>
<td>289, 290</td>
</tr>
<tr>
<td>global dimming</td>
<td>23, 143</td>
</tr>
<tr>
<td>global distillation, see grasshopper effect</td>
<td>15, 16, 413</td>
</tr>
<tr>
<td>global warming</td>
<td>176–178</td>
</tr>
<tr>
<td>assessing</td>
<td>182–185</td>
</tr>
<tr>
<td>GCMs</td>
<td>182–184</td>
</tr>
<tr>
<td>IPCC report</td>
<td>184, 206</td>
</tr>
<tr>
<td>background</td>
<td>170</td>
</tr>
<tr>
<td>feedback loop</td>
<td>186</td>
</tr>
<tr>
<td>heat island</td>
<td>176</td>
</tr>
<tr>
<td>how seen</td>
<td>64–68</td>
</tr>
<tr>
<td>future</td>
<td>206–208</td>
</tr>
<tr>
<td>melting ice</td>
<td>178</td>
</tr>
<tr>
<td>permafrost</td>
<td>180</td>
</tr>
<tr>
<td>sea levels</td>
<td>182</td>
</tr>
<tr>
<td>warming earth</td>
<td>176</td>
</tr>
<tr>
<td>warming oceans</td>
<td>178</td>
</tr>
<tr>
<td>ice-core studies</td>
<td>173–175</td>
</tr>
<tr>
<td>ice-core bubbles</td>
<td>542</td>
</tr>
<tr>
<td>mitigation</td>
<td>203–205</td>
</tr>
<tr>
<td>natural?</td>
<td>183</td>
</tr>
<tr>
<td>external forcings</td>
<td>183</td>
</tr>
<tr>
<td>human signature</td>
<td>183</td>
</tr>
<tr>
<td>sun’s radiation</td>
<td>183</td>
</tr>
<tr>
<td>reducing carbon dioxide</td>
<td>196</td>
</tr>
<tr>
<td>CFCs</td>
<td>198</td>
</tr>
<tr>
<td>economics of</td>
<td>206</td>
</tr>
<tr>
<td>fluorochemicals</td>
<td>198</td>
</tr>
<tr>
<td>how</td>
<td>196–198</td>
</tr>
<tr>
<td>International Energy Agency</td>
<td>208</td>
</tr>
<tr>
<td>Kyoto</td>
<td>194–196</td>
</tr>
<tr>
<td>Kyoto beyond</td>
<td>208</td>
</tr>
<tr>
<td>less-developed countries</td>
<td>209</td>
</tr>
<tr>
<td>methane</td>
<td>198</td>
</tr>
<tr>
<td>Montreal Protocol</td>
<td>198</td>
</tr>
<tr>
<td>nitrous oxide</td>
<td>199</td>
</tr>
<tr>
<td>political entities</td>
<td>199–203</td>
</tr>
<tr>
<td>soot</td>
<td>199</td>
</tr>
<tr>
<td>global warming, greenhouse gases</td>
<td>187–188</td>
</tr>
<tr>
<td>sinks</td>
<td>187</td>
</tr>
<tr>
<td>sources</td>
<td>187</td>
</tr>
<tr>
<td>carbon dioxide equivalent</td>
<td>185</td>
</tr>
<tr>
<td>CFCs and others</td>
<td>192</td>
</tr>
<tr>
<td>levels of</td>
<td>173</td>
</tr>
<tr>
<td>livestock emissions</td>
<td>192</td>
</tr>
<tr>
<td>methane</td>
<td>189–190</td>
</tr>
<tr>
<td>fate</td>
<td>190</td>
</tr>
<tr>
<td>sources</td>
<td>189</td>
</tr>
<tr>
<td>nitrous oxide</td>
<td>191</td>
</tr>
<tr>
<td>ocean acidification</td>
<td>188</td>
</tr>
<tr>
<td>ozone</td>
<td>191</td>
</tr>
<tr>
<td>soot</td>
<td>192</td>
</tr>
<tr>
<td>water vapor</td>
<td>186</td>
</tr>
<tr>
<td>Gobi desert</td>
<td>144</td>
</tr>
<tr>
<td>grasshopper effect</td>
<td>15–16, 413</td>
</tr>
<tr>
<td>Great Lakes</td>
<td>67, 255, 256, 284, 410, 417, 418, 419, 420, 423, 433, 466</td>
</tr>
<tr>
<td>green chemistry</td>
<td>415</td>
</tr>
<tr>
<td>what it is</td>
<td>523</td>
</tr>
<tr>
<td>Green Revolution</td>
<td>480</td>
</tr>
<tr>
<td>Greenland</td>
<td>449</td>
</tr>
<tr>
<td>growth regulators</td>
<td>472</td>
</tr>
<tr>
<td>Gulf of Mexico</td>
<td>250, 276, 277, 278, 279</td>
</tr>
<tr>
<td>Haber-Bosch</td>
<td>273, 275</td>
</tr>
<tr>
<td>fertilizer</td>
<td>273</td>
</tr>
<tr>
<td>population growth</td>
<td>273</td>
</tr>
<tr>
<td>Hawaii</td>
<td>435</td>
</tr>
<tr>
<td>hazard</td>
<td>35</td>
</tr>
<tr>
<td>definition</td>
<td>35</td>
</tr>
<tr>
<td>variety of meanings</td>
<td>99</td>
</tr>
<tr>
<td>Hazard and risk</td>
<td>34</td>
</tr>
<tr>
<td>hazardous air pollutants, see air pollutants, HAPs</td>
<td>500–502</td>
</tr>
<tr>
<td>air pollutants</td>
<td>500–502</td>
</tr>
<tr>
<td>hazardous products</td>
<td>500–502</td>
</tr>
<tr>
<td>alternatives</td>
<td>504</td>
</tr>
<tr>
<td>characteristics</td>
<td>504</td>
</tr>
<tr>
<td>corrosive examples</td>
<td>501</td>
</tr>
<tr>
<td>flammable examples</td>
<td>502</td>
</tr>
<tr>
<td>labels</td>
<td>501</td>
</tr>
<tr>
<td>more than one hazard</td>
<td>502</td>
</tr>
<tr>
<td>reactive</td>
<td>502</td>
</tr>
<tr>
<td>examples</td>
<td>502</td>
</tr>
<tr>
<td>toxic</td>
<td>501</td>
</tr>
<tr>
<td>HHW</td>
<td>507</td>
</tr>
<tr>
<td>antifreeze</td>
<td>507</td>
</tr>
<tr>
<td>collection programs</td>
<td>507</td>
</tr>
<tr>
<td>paint, oil-based</td>
<td>507</td>
</tr>
<tr>
<td>pesticides</td>
<td>507</td>
</tr>
</tbody>
</table>
reducing amounts, 508
used oil, 507
household hazardous waste (HHW), 506
labels, 491, 502–504
cautions, 503
nontoxic, 504
reducing exposure, 504
reducing HHW, 506
required information, 503
safe use, 504
toxic labels, 501
TUR, 504
ventilation, 504
hazardous waste
characteristics, 348
corrosive, 349
flammable, 349
reactive, 349
toxic, 348
generators, 352
hazard or risk, 349
reducing generation, 365
tracking cradle to grave, 356
why important, 348
WMH, 353–355
disposal, 354
pollution prevention, 353
recycling and reuse, 353
sources, 352
treatment, 355, 363
bioremediation, 354
purposes of, 354
hazardous waste generators
industry categories, 349
hazardous waste sites, 350, 351
brownfields, 361
cleanup
bioremediation, 363
genetically modified organisms, 363
metal contamination, 362
phytoremediation, 363
site specific standards, 361
cleanup methods, 361–363
definition, 356
evaluating, 356
old, 350
reducing risk, 360–361
cleanup, 360–361
imminent hazard, 360
Superfund, 356
hazardous waste sites, Superfund, 71
Coeur d’Alene megasite, 351
Love Canal, 350
cleanup, 350
dioxins, 351
mining megasites, 351
National Priority List, 356
Smuggler Mountain, 71
hazardous waste, household, 349
composition, 352
hazardous waste, international transport, 364–365
Basel Convention
Control of Transboundary Movements of Hazardous Wastes, 364–365
electronic waste, 370
electronics
illegal movement, 366
ships, old, 370–371
hazards
old buildings
asbestos, 505
heat island, see global warming
heavy metal, 304, 362, 370
definition, 427
helium, 545
hemoglobin, 60, 120, 293, 549
hexachlorobenzene, 415
as PBT, 415
hexazinone, 470
Hong Kong, 343
hormones, 80
cortisol, 295
estrogen, 62
hormone receptor, 62
pharmaceutical androgens, 86
pharmaceutical estrogens, 83
hormones, environmental, 80–86
alligators, 82
BPA, 83
dioxins, DDT and PCBs, 413
estrogen mimic
DDT, 82
Lake Apopka, 82
mimics, 62
phthalates, 85
infant males, 101
phytoestrogens, 81, 86
pollutant, 62
Houston, 25, 123
air pollution, 118
Hudson River, 417
Human Domination, 1, 33, 512
Hungary, 14
hydrocarbons, 133, 489
hydrochloric acid, 556
hydrogen
fuel cell, 381
Iceland, 401, 402
incomplete products of combustion
examples, 555
India, 12, 22, 149, 265, 302, 371, 407, 536
coal reserves, 386
energy use, 387
economic activity, 535
energy use per capita, 375
Kerala, 25
power plants emission controls, 392
steel, 370
individuals
consequences of actions, 334
personal actions, 319
pollution prevention examples, 48
recycling and reuse examples, 49
Indonesia, 452, 479
indoor air pollutants, 483–500
auto exhaust, 488
benzene
description, 490
ill effects, 490
sources, 490
biological
description, 493
carbon monoxide sources, 487–488
formaldehyde
description, 489
ill effects, 490
from carpets, 494
from combustion appliances, 487
from consumer products
advice, 491
reducing exposure, 486
from stoves, fireplaces, 488
moisture
mold, 492
reducing, 492
mold, 486
nitrogen oxides
combustion appliances, 487
other chemicals, 491
PAHs
benzo(a)pyrene, 489
description, 489
sources, 489
paradichlorobenzene
sources, 491
particulates
combustion appliances, 487
description, 494
sources, 494
PERC
sources, 490
radon
action level, 494, 498
how generated, 494
ill effects, uncertainty, 498
lung cancer, 498
polonium-218 and -214, 497
reducing levels, 497
smoking, 497, 498
sources, 494
testing for, 497
well water, 497
tobacco smoke, 487
ubiquitous chemicals, 488
VOCs
sources, 488
indoor air pollution, 77
background, 483
ill effects, 485–486
chronic, 486
elements, 485
temporary, 486
reducing, 493
ventilation, 486
sources, 483
indoor air pollution, less-developed countries, 499–500
carbon monoxide, 499
China, 500
indoor air pollution
ill effects, 499
reducing
alternative fuels, 500
efficient stoves, 500
reducing exposure, 500
smoke, 499
exposure, 499
fuels used, 499
industrial ecology, 51–54, 513–515, 513–516
phosphorus, 271
ultimate goal, 514
wastewater, 263
industrial symbiosis, 51–54
integrated pest management, 268, 474
See IPM
Inuit, 15, 413, 416, 442
ionizing radiation, see also indoor air pollutants:
radon
alpha, beta, gamma particles, 497
carbon-14, 495
cosmic rays, 495
exposure sources, 496
isotopes
nuclear fission, 394
radioisotopes, 495
potassium-40, 495
radioisotopes, 175
half-life, 497
radon, 497
tritium, 542
uranium, thorium, 393
Index

radon, 497
background, 495
terrestrial sources, 495
thorium-232, 495
uranium-238, 495
X-rays, 496
Iowa, 399
IPCC, see global warming
iron, see metals
isopropyl alcohol, 504
Israel, 264, 420
Istanbul
air pollution, 118
Italy, 203, 331, 351, 382, 524
DfE, 368
minimizing energy use, 534
Waste Electrical and Electronic Equipment Directive, 368
Java, 447
jelly comb, 278
Kabul, 343
kaizen, 533
Kalundborg, 51, 390, 515
Kauai, 435
Kentucky, 29, 300
Kenya, 344, 499, 500
Korea, 24, 145, 146, 165, 167, 370
Kyoto Protocol, see global warming
lakes
Lake Chad, 147
Lake Eric, 147
Lake Ontario, 420
Latin America, 15, 147, 265, 308, 464, 475, 477, 480
laws
EU
take back, 325
EU Registration, Evaluation and Authorization of Chemicals, 111
EU Waste Electrical and Electronic Equipment Directive, 324
one size fits all, 42
unintended consequences, 42
US Clean Air Act, 38, 39, 43, 118, 124, 137, 138, 154, 156, 162, 164, 168, 169, 413, 445
air quality standards, 118
grandfathering, 392
US Clean Air Act Amendments, 138, 140, 158, 162, 164, 379, 433
US Clean Water Act, 38, 39, 236–249, 261, 263
US Comprehensive Environmental Response, Compensation and Liability Act, 38 see also US Superfund
US Emergency Planning and Community Right-to-Know Act, 43
US Energy Policy Act, 381
US Federal Food Drug and Cosmetics Act, 102
US Federal Insecticide, Fungicide, and Rodenticide Act, 38, 471, 504
US Hazardous Substances Labeling Act, 502
US Oil Pollution Act, 258
US Poison Prevention Act, 503
US Pollution Prevention Act, 46
US Resource Conservation and Recovery Act, 38, 315, 354
US Safe Drinking Water Act, 38, 236, 287–293
US Toxic Substances Control Act, 38, 111, 249
US Toxics Release Inventory, 43–44, 352
L.C.A., 331, 517–519
coal, 386
computers, 370
definition, 30
environmentally preferable products, 519
four stages of, 517
metal products, 428
refrigerators, autos, 370
lead, see metals, lead and PBT metal, lead, metals
Legionella bacteria, 289
life-cycle assessment, See LCA
Lima, 308
lime, see metals, calcium oxide
livestock
CAFOS, 279
greenhouse gas emissions, 51, 192
Los Angeles, 24, 25, 53, 109, 123, 132, 144, 148, 149, 256, 396
Louisville, 300
lye, 502
Maine, 369, 390, 402, 443, 470
malaria, 471
Manila, 344
marine organisms, 327
Maritime Provinces, 441
Maryland, 270, 369
Massachusetts, 319, 366, 457
McDonough, William, 10, 311, 515
megacities, 27, 149, 257
mercury, 140
metal pollutants
agricultural soils, 431
Arctic haze, 426
characteristics, 425–427
exposure
metal pollutants (cont.)
food, drinking water, 427
hazardous waste sites, 431
mining
ancient practices, 431
sulfur and acid, 428
wastes, 428
particulates, 426
reducing levels, 432
pollution prevention, 433
soil and sediment, 426
sources, 428–431
fossil fuel burning, 429
mining, 428
mining, overburden, 312, 428
smaller sources, 430
transport in water, 426
transport with wind, 426
metals, 70, 363, 427 see also hazardous waste sites
and chemical toxicity
aluminum
bauxite mining, 322
recycling, 322
and coal burning, 453
arsenic, 430, 451–453
as pesticide, 457
sources, 453
sources, natural, 453
arsenic, cadmium, lead, 145
cadmium, 70, 427
Arctic, 449
mining, 448
natural sources, 449
NiCad batteries, 448, 450
takeup into plants, 449
uses, 448
zinc mining, 450
calcium oxide, 426
characteristics, 425–427
copper, 448
copper arsenate
as pesticide, 457
hazardous, 427
heavy, 262
definition, 427
in coal, 386
iron, 331, 336
iron (steel), 322, 324, 378
manufacture, 320, 322, 387, 407
mills, 361
recycling, 370, 452
usage, 452
iron oxide, 426
lead, 448
ancient mining, 431
clean up, 362
dispersive emissions, 412
old leaded paint, 71
properties and uses, 434
remaining uses, 437
smelting, 351
Superfund sites, 351
tetraethyl, 426
lead, see also PBT metal, lead
lead arsenate
as pesticide, 457
lithium, 432
mercury, see also PBT metal
artisanal mining, 439
as pesticide, 457
cinnabar, 439
cycling in environment, 440
hot spots, 443
isotopes, 441
mercuric oxide, 440
products containing, 439
properties, 140
sources, 439
vapor, 440
metal oxides, 426
mining, 71, 427
ancient practices, 431
natural, 427
nickel, 381
nutrient metals, 427
plant hyperaccumulation, 363
plutonium, 363
poisoning with, 432
problematic, 428
radioactive, 386
recoverable, 320
recovering metals from electronics, 369
selenium
wildlife poisoning, 432
shipbreaking, 370
strontium
bioaccumulation in bones, 67
thallium, 430
therapeutic uses, 432
bismuth, 432
folk remedies, 432
gold, 432
lithium, 432
tin, 433
antifouling paint, 433
organotin toxicity, 433
tin, tributyl- (TBT), 433
toxicity
nutrition, 432
uranium and thorium, 393
zinc
in cadmium mining, 448
methane, 387, 545, 548
methanol, 501
methyl bromide, see stratospheric ozone depleting chemicals
methyl chloride, see stratospheric ozone depleting chemicals
methyl isocyanate (MIC), 18, 43, 525
methylene chloride, 136, 504
Mexico, 147, 149, 150, 151
air pollution, 118
Michigan, 361
Millennium Development Goals, 21, 302
Millennium Ecosystem Assessment, 3, 7
Milwaukee, 290, 300
Minamata, 444
coal, 9, 386
Minnesota, 318, 319, 399, 441, 445, 531
Mississippi River, 464, 512
mixtures, toxicity of, see toxicity: mixtures
mole, 552
Molina, Mario, see stratospheric ozone depletion
Mongolia, 144, 145, 146, 167
monocrotophos, 469
motor vehicle fuels
biodiesel, 383
biofuels, 383
flexibly fueled vehicles, 381
motor vehicles
electric, 381
fossil fuel use, 377–384
gasoline use, 378
history, 377
pollution from, 377–378
reducing, 378–381
biomass fuels, 384
energy efficiency, 384
flexibly fueled vehicles, 381
hybrids, 380
hydrogen fuel cell, 381
increasing fuel economy, 380–381
maintenance, 380
reducing, how to, 379
Mt. Pinatubo, 127, 184, 193, 224
Nairobi, 344
nanotechnology, 516
NAPAP, see acid deposition
NASA (US National Aeronautics and Space Administration), 7, 142, 176, 190, 219, 230, 231, 233, 515
natural gas, 387
Natural Resources Defense Council, 256, 299
nature’s services, 2, 7, 38, see also ecosystem services
neon, 543
Nepal, 400
nerve gases, organophosphates, 467
Netherlands, 74, 107, 203, 207, 276, 399, 536
New Delhi, 22, 148, 150
New Hampshire, 152
New Jersey, 332, 345
New York, 2, 6, 13, 32, 33, 53, 87, 109, 132, 149, 159, 164, 165, 345, 400, 417, 418
New York City, 3, 7, 256, 291, 292, 300, 317, 322, 339, 377
Niagara Falls, 350
Love Canal, 350
Nicaragua, 480
nitric oxide, 59
nitrogen fixation, 1 see also bioavailable nitrogen
nitrogen glut, see water pollution, nitrogen glut
nitrogen oxides, see air pollutants, criteria
nitrogen, bioavailable, 272
nitrogen, reactive, 272
nitroglycerine, 59
NOAA (US National Oceanic and Atmospheric Administration), 5, 176, 178, 179, 214, 222–223, 227, 255
North Carolina, 131, 247, 276
Northern Ireland, 402
Norway, 420, 447
nutrition, 294, 449
Arctic ponds, 16
arsenic poisoning, 294, 432
cadmium, 450
liver cancer, 74
malnutrition, 74, 480
metals, 432
xenobiotics, 70
nylon, 529
ocean acidification, see Box 7.5
OECD, 36, 281, 343, 375, 387, 404
Ogallala aquifer, 5
oil spill, 8, 246, 283, 362, 444
Exxon Valdez, 246
Gulf war, 246
Ontario, 300, 421
ore
  bauxite, 322
  cinnabar, 439
  copper, 431
  gold, 29
  iron, 370
  lead, 29, 431
  metal, 245, 311, 429
Oregon, 399
oxalic acid, 501
ozone hole, see stratospheric ozone depletion
ozone, ground level, see air pollutants, criteria
ozone, stratospheric, see stratospheric ozone
Pacific Garbage Patch, 325–328
Pacific Ocean, 24, 144, 178, 326, 422
packaging
  functions of, 324
PAHs (polycyclic aromatic hydrocarbons), see
criteria air pollutants (criteria) and indoor
air pollutants
bioavailability, 66
Pakistan, 370
Paracelsus, 57
parathion, 467
Paris, 109
pathogens, 300–302
  wells, where site, 297
PBDEs, 419–420
  blood of house cats, 420
  Canadian Arctic, 420
  fire retardants, 414, 419
  in breast milk, 420
  in foods, 420
  outgassing, 419
  reducing, 420
PBT metal, cadmium, 448–451
  bioaccumulation, 67, 449, 453
  exposure
    limits, 453
    study of, 450
    vegetarians, smokers, 449
    why in food, 448–451
  exposure sources
    food, 449
  ill effects, 70, 449–450
    calcium metabolism, 450
    carcinogen, 450
    epidemiologic study, 450
    itai itai, 70
    occupational exposure, 449
    target organs, 449
  levels in environment, 448
  reducing levels
    Australia, 450
    batteries, 450
    regulations, 451
  sources, 448
  transport, 449
PBT metal, lead, 434–438
  bioaccumulation, 67
  blood levels, 436
  prehistoric, 438
  exposure sources
    children, 435
    home and workplace, 435
  ill effects, 435
    IQ and memory, 436
    Zambian children, 87
  lead from earlier emissions, 434
  reducing risk
    from gasoline, 436
    from paint, 436
    lead safe, 437
    old lead, 437
    from soil, 362
  sources, 434
    natural, 438
    storage in bones, teeth, 435
    transport, 435
PBT metal, mercury, 415, 438–448
  Arctic animals, 416
  biomagnification, 67, 442, 444, 448
  fish, 441
  blood levels, 447
  exposure
    dental amalgams, 446
    fish, 103, 442
    fish-eating animals, 442
    Inuit, 442
    prenatal, 442
    wildlife, 443
    workplace, 443
    toxicity, 420
    fish advisories, 444
    commercial fish, 444
  ill effects, 444
    humans, 444
    mad hatter, 438
    poisoning, Minamata, 444
    mercury to methylmercury, 403, 431, 439, 442
  reducing deposition, 445
  reducing risk, 446
    changing industrial processes, 446
    combustion, 445
    dental amalgams, 447
    eliminating products, 446
    international reductions, 446
    regulations, 445
    workplace, 445
  risk
    guidelines, 447
    prenatal, 447
    selling mercury, 448
  sediment, 426
sources, 440
mining, 440
power plants, 440
transport, 441
atmospheric lifetime, 440
identifying sources, 441
transport and accumulation, 440
PBTs, metals, 434
multiple problems, 412
PBTs, organic
Arctic animals, 413
bodies of Inuit, 413
characteristics, 411–413
biaccumulation, 411
biomagnification, 412
persistence, 411
toxic, 413
transport, 413
volatility, 413
DDT, 466
decreases in Arctic animals, 416
“dirty dozen” polychlorinated, 415
emissions
dispersive, 412
fire retardants, 414
multiple problems, 412
names of “dirty dozen”, 415
number of, 410
PBT examples, 414
PCBs, 548–549
PFOSs, 421–422
polybrominated fire retardants (PBDEs), 414,
419–420
polyhalogenated, 411
POPs, 411
reducing, 413–416
screening for, 414
PCBs, 11, 15, 17, 38, 67, 68, 72, 73, 75, 90, 92, 103,
107, 156, 219, 243, 249, 262, 288, 357, 363,
369, 370, 410, 412, 415, 416, 417, 418, 420,
421, 422, 423, 424, 444, 448
bioaccumulation, 67, 412
bioavailability, 66
chlordane, 417
cooking oil contamination, 418
cycling in environment, 417
epidemiological studies, 418
exposure today, 417
family, 417–419
fish exposure, 418
Great Lakes fish, 419
Hudson River
contamination and cleanup, 417–418
Superfund site
dredge sediment, 418
obvious toxicity, 418
sediment concentration, 417
subtle toxicity, 419
toxicity, 417, 418, 419
ubiquitous contaminant, 417
uses, 417
where still found, 416
Pennsylvania, 332, 495
persistent organic pollutants (POPs) see also PBTs
persistent, bioaccumulative, and toxic, see PBTs
Peru, 308, 477
pest populations
pest resurgence, 470
resistance
development of, 470
increasing problem, 471
secondary pest, 470
pesticides
crops and food, 465
exposure, 464–466
farming
conventional, 473
IPM, 474
organic, 473
ill effects, 466–469
amphibians, 469
birds, 468
fish, 469
humans, 469
insecticides
carbamates, 467
organophosphates, 466–467
polychlorinated, 466
nontarget species, 468–469
on pollinating insects, 468
soil organic material, 470
organophosphates
fate, 467
pest resistance, 470–471
POPs fate, 466
POPs, persistence and climate, 464
reducing risk, 471–476
biocontrol, 475
changing farming methods,
473–475

pesticide pollution (cont.)
crop protectant, 472
ecologically appropriate regions, 477
educating farmers, 476
organic farming, 473
pheromones and growth regulators, 472
reducing pesticide use, 474
residues
monitoring imported food, 466
monitoring produce, 465
sources of, 463–466
transport, 463
POPs, 464
where detected, 464
pesticides
“dirty dozen”, 415
alternatives to, 460
arsenic
chickens, 452
biopesticides, 461
botanicals, 460
classes of, 460
genetically engineered, 461
microbials, 461
broad spectrum, 459
categories, 457
definition of, 456
desirable characteristics, 473
disinfectants, 459
exposing insects, 467
exposure
farmers’ children, 77
flower growing, 78
fumigants, 459
herbicides, 468
household hazardous waste, 457
ingredients
active and inert, 471
insecticides
organochlorine, 466
perchlorinated examples, 466
introduction to, 456–458
organophosphate metabolites, 91
organophosphate, parathion, 467
organophosphates, 60
pest resistance, 458
polychlorinated
POPs, 466
solubility, 466
POPs
quantities used, 463
registration process, 465
school use, 78
selective (narrow spectrum), 459
testing in humans, 115
tolerances, 465
what they are, 113
types of, 459–461
water solubility, 464
who uses
almost everyone, 463
why banned, 466
why use, 456, 463
aesthetic reasons, 462, 463
grow in more places, 462
long storage time, 462
longer season, 461
monocultures, 462
public health reasons, 462
wood preservative, 451
pesticides, less-developed countries, 477–480
Cambodia, 478
China, 478
dangerous pesticides, 478
Ethiopia, 480
ill effects
poisoning, 477
Indonesia, 479
Nicaragua, 480
obsolete pesticides, 478
prior informed consent, 478
reducing pesticide use, 479
reducing risk
Farmer Field Schools, 479
petroleum distillates, 504
PFOSSs
Arctic wildlife, 422
bioaccumulative, 421
fluorine chemicals, 421
perchlorinated examples, 466
persistance, 421
reducing levels, 422
toxicity, 421
pH, see water pollutants, conventional
pH, ocean, 558
phenol, 459
pheromone, 472
Philadelphia, 332, 380
Philippines, 27, 184, 344
phthalates, 85
metabilies, 92
plasticizers, 414
Plant-Incorporated-Protectants, 461
plastciizers, 414
Poland, 151
polluant
concentrations
described, 9
definition, 8
oxidation, 17
radon-222, 497
recycling
problems, 49
recycling and reuse, 48–49
examples, 49
red tide, 274
Re-power America
carbon-free energy, 406
reuse, 48
Reykjavík, 402
right-to-know
Europe, see laws, EU
Río de Janeiro, 305
risk
definition, 35, 98
risk assessment
chemical, see also chemical risk assessment
comparative, see also comparative risk assessment
comparative, 37
individual activities, 334
risk management, see also chemical risk management
children, 113
greater protection, 113
pesticides, 113
Europe, North America, 112
non-regulatory tools, 111
pesticide tolerance, 113
precautionary principle, 111, 112
river
Big Sandy, 29
Coeur Alene, 351
Cuyahoga, 8
Danube, 14, 278
Emory, 430
Hai, 23
Hudson, 351, 417, 418
Mississippi, 158, 250, 276, 277, 464, 512
New River, 276
Potomac, 83, 243
Rhine, 14, 240, 280, 403, 418
Songhua, 24
Tisza, 14
Yangtze, 3, 146, 280
Yellow, 146, 280
Romania, 14
Rowland, F. Sherwood see stratospheric ozone, depletion
Russia, 375, 394, 435
rust, 426
Safe Drinking Water Act, see laws
San Diego, 218
San Francisco, 144, 254, 299, 321, 322, 337, 345, 377, 446
sand storms, see air pollution
sources, 12
transport
air, 14
chemical signature, 23
grain hopper, 15
transboundary, 23
water, 14
pollutants
anthropogenic, 10
barely detectable, 19
buried, 16
fate, 16
fate and transport, 13
inorganic, 17
mineralization, 17
natural, 10
organic degradation, 16
fate, 16
pollution
actions at a distance, 29
drivers
affluence, 28
individuals, 29, 30, 31
population growth, 26
technology, 28
electronic waste, 370
less-developed countries, 21
obvious, 8
why it happens, 10
pollution indoor air, 77
pollution prevention (P3), 46–48
definition, 45
examples, 46
industry, 47
housekeeping practices, 46
polyacrylates, 524
polyethylene terephthalate, 306, 323
polysilicon, 396
polyvinyl chloride, 532
POPs, see also PBTs, organic
definition, 35, 89, 112, 114, 447
product stewardship, 521
propane, 381
pyrethrins, 460
pyrethrum, 457
Quebec, 413
radon, 11, 107, 484, 485, 494–499, 545
in mines, 498
sanitation
  greatest medical milestone, 301
Scotchgard™, 421
Scotland, 402
Seattle, 270, 533
selenium, 432
Seoul, 145
septic systems, see wastewater treatment
servicizing, 522–523
chemicals
  how it works, 522
sewage, 300–308
shellfish, 139, 236, 247, 255, 258, 259, 274
shipbreaking, 370–371
silicon tetrachloride, 396
silicosis, 69
silver, see metals, silver
Singapore, 264, 337, 343
sludge, see wastewater treatment
smog, history of word, 122
smokers, 63, 133, 295, 431, 487, 488, 490, 497, 498
sodium hydroxide, 557
sodium hypochlorite, 459
solanine, 62
solar energy, 395–398
  passive, 398
solid waste
  China, 344
  combustion of, 336
  slums, 343
  sources, 311
  types, 311
solid waste, developed countries
  management, 343
solid waste, less-developed countries
  in slums, 343
  problems, 343–345
  recovering value
    Bangladesh, 344
    Curitiba, 345
    scavengers, 344
solid waste, municipal, 317
  components, 313
  composting, 329
  design for the environment (DfE) see design for the
  environment
disposal, irresponsible, 326
environmentally preferable products, questions, 519
ill effects, 313
impact on oceans, 325–328
junked cars, 331
landfills, 341
bioreactor, 340
leachate, 339
methane, 339
mining resources, 341
sanitary, 339
Pacific Garbage Patch, land origin of, 326
plastic bags, 345
banning, 345
pollution prevention, 316
  design for recycling, 369
  examples, 316
  reducing food waste, 317
  reducing toxicity, 317
  reducing volume, 316
quantities generated, US, 314
recycling, 321–325
  appliances, 324
  common materials, 322
  electronics, 324, 366, 368
  packaging, 324
  paper, 322
  plastics, 323
  challenges, 323
  problems, 325
  promoting, 322, 331, 333
  used oil, 324
  why do, 321
recycling examples, 337
reducing
  environmentally preferable products, 317–318
  preferable products, 317
  guidelines, 318
  take back, 334
  source reduction
    reuse, 48
treatment
  incineration, 335–339
  Japan, 334
  pros and cons, 336
  regulation of, 338
two purposes, 335
waste management hierarchy, 315, 335
solid waste, social issues
  Europe
    Green Dot, 325
  landfills
    NIMBY, 340
    siting, 340
  take back, 325
  Europe, Japan, 333
source reduction, see pollution prevention
  reuse, 48
Soviet Union, 208, 278
Spain, 396, 397, 420
Stabilization Wedges
  stabilizing atmospheric carbon dioxide, 406
steel, 452
Stockholm Convention, 420, 422 see Stockholm
  Convention on Persistent Organic
  Pollutants
banning the “dirty dozen”, 415
stoichiometry, 552
stratospheric ozone
CFCs
Freon, 218, 219, 220
properties, 218
generating ozone, 215–216
making and remaking, 215
protective effect, 215
questions and answers, 215
ultraviolet radiation, 215
measurements, 217
stratospheric ozone depleting chemicals
chain reaction, 221
CFCs, properties, 219
depleting potential, 220
fate
CFCs and halons, 220
halons, properties, 219, 220
ill effects
greenhouse gases, 228
natural depleters, 220
reducing
alternatives, 230–232
smuggling, 230
water-soluble chemicals, 221
stratospheric ozone depletion
future, 230
history, 218
ill effects, 224–227
ocean life, 226
ozone hole, 218, 224, 230, 232
particle sources, 224
reducing, 228–233
less-developed countries, 229
the future, 232
UV index, 225
volcanic eruptions, 224
where observed, 221–223
Antarctica, 221
Arctic, 222
other regions, 222
stratospheric ozone depletion
reducing depleters, 228
sub-Saharan Africa, 27, 201, 265, 305, 536
sulfonamides, 102
sulfur dioxide, see air pollutants, criteria
sulfuric acid, 558
Superfund, see laws
Surround, 472
Sweden, 304, 331, 447, 452
Switzerland, 278, 299
table salt, 221, 249, 546
Taiwan, 345, 364, 370
take back, 111, 318, 368, 369, 370, 521 see extended producer responsibility
electronics, 521
Japan, European Union, 534
stimulating DfE, 522
Tanzania
Environmental Performance Index, 536
TCDD, 105
Tennessee, 430
teratogens, 75
thalidomide, 59, 76
Tijuana, 438
toilets, 303–305
Tokyo, 109, 149, 407, 444
toluene, 527
Toronto, 421
toxaphene, 416
toxic effects
children and in utero, 75
Toxic Equivalency Potential, 44
Toxic Substances Control Act, see laws
toxicant, see individual chemicals
toxicity, chemical toxicity and epidemiology
acute and chronic, 58
aspirin, 61
body organ
immune system, 72
kidney, 72
liver, 71, 74
lung, 73
nervous system, 72, 466
skin, 73
children’s sensitivity, 76
DDT, 413
definitions, 58
dose per time, 61
dose–response, 60
factors affecting, 70–71
examples, 70
gender, age, nutrition, 70
individual and species variation, 69
poverty, 74, 77
hormones, environmental, 62
ill effect
nervous system, 466
immune system, 72, 226
irritant
skin, lungs, 73
LD50, 60
local, 63
mixtures, 20, 63, 248, 469, 489, 491
nutrient toxicity, 60
obvious
PCBs, 418
PBBs, 420
PCBs, 418, 419
solanine, 62
subtle
PCBs, 418
systemic, 63
toxicity, chemical toxicity and epidemiology (cont.) whole effluent, 63
combined sewer overflow, 255
fecal bacteria, 256
sewer terminology, 255
shellfish, 255
stormwater, 255
VOCs, 252
water pollutants, conventional, 241–248
biochemical oxygen demand, 241
how generated, 244
definition, 241
nutrients, 242
algal blooms, 274
background, 272
Black Sea, 278
dissolved oxygen, 276
excess, 276, 279
Haber-Bosch, 273
hypoxia, 274
ill effects, 273–274
eutrophication, 273
nitrogen glut
reducing, 279
reducing, 271, 277–278
sources, 275–276
CAFO, 275
oil and grease, 246
oil spills, 245
pathogens, 247–248
sources, 247
pH, 244
suspended solids, 245
viruses and bacteria, 247
water pollutants, dead zone, 272–279
water pollutants, drinking water
VOCs, 253
water pollutants, nonconventional and nontoxic, 249
water pollutants, nonpoint sources
reducing, 267–272
agricultural runoff, 268–269
atmospheric deposition, 272
best management practices, 268
urban runoff, 269
water use, 272
water pollutants, point sources
nutrients
reducing, 271
reducing, 260–265
wastewater
sources, 260
wastewater treatment, 261
water pollutants, priority, 248
overlap with HAPs, 248
pesticides, 248
water pollutants, toxic, see water pollutants, priority
water pollution
“nitrogen glut”, 272–279
atmospheric deposition, 242
complicated picture, 512
dead zone, 244
decreasing, see also wastewater
eutrophication, 243
hypoxia, 242
mining, 245, 428
nonpoint sources, 239–241
scarcity, due to, 302
sewage, 303
water pollution, nonpoint sources
runoff, seriousness, 240
water pollution, NPS, see also water pollution, nonpoint sources
water pollution, point sources, 239
water pollution, water body type, 250–260
coastal, 254
land-based pollution of, 254
megacities, 257
non-plastic pollutants, 258
plastics, 257
population growth, 254
reducing BMPs, 258
sewage, 257
estuary, 254
groundwater, 250–252
river, 250
wetlands, 253
wetlands, services, 253
watershed, definition, 240
West Bengal
arsenic, 293
WHO, see also World Health Organization
whole effluent toxicity, 20, 63
Wisconsin, 266, 269, 290, 300, 507, 509
World Health Organization, 22, 36, 81,
110, 148, 293, 300, 302, 307, 310, 368,
417, 477
World Summit, 334
World War II, 394
xenobiotics, 64, 71
foreign chemicals, 63
Yokohama, 534
Yorktown, 42
Yugoslavia, 14
zero emissions, 529
zero waste, 369, 511, 531
cities committing to, 533
individual level, 535
New Zealand, 534
progress toward, 529
sustainability, 531