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n Introduction

1.1 Uncertainty

The realm of manufacturing is replete with instances of uncertainties in job
processing times, machine statuses (up or down), demand fluctuations, due
dates of jobs, and job priorities. These uncertainties stem from the inability to
predict with sufficient accuracy information about product demand, job pro-
cessing times, and occurrences such as unexpected machine breakdowns and
arrivals/cancellations of orders. Although highly efficient forecasting methods
are currently available, product demand errors invariably occur in the pro-
duction system. Process variability is another significant factor that introduces
variations and uncertainty into the manufacturing process.

Uncertainty is inarguably an undesirable factor in the manufacturing pro-
cess because it does not give production managers complete control over the
manufacturing process. Some of the ill effects of these uncertainties include
system instability, excess inventory, customer dissatisfaction because due dates
are not met, and, more important, loss of revenue. Recent advances in manu-
facturing management techniques, such as agile manufacturing, have made
variability an important design criterion in order to ensure predictability and
dependability of production systems. Agility is the ability of a system to thrive
and prosper in an environment of constant and unpredictable change.

1.2 Uncertainty in Scheduling

Astrue asit would be with any other field within manufacturing, the uncertainty
factor is of considerable importance in production scheduling. Scheduling is a
decision-making process that plays an important role in most manufacturing
as well as in most information-processing environments. From a manufac-
turing perspective, a scheduling problem is primarily the determination of
the starting times of the jobs waiting to be processed, on a single machine
or multiple machines (resources) for the objective of optimizing an appro-
priate performance measure of interest. The randomness in the scheduling
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2 Introduction

system could be due to varying processing times, machine breakdowns, and
incomplete information about customer due dates, among other things. Deter-
ministic scheduling involves solving a scheduling problem with the objective
of optimizing a performance measure of interest when the various parame-
ters, viz., job processing times, due dates, release dates, and so on, are known
with certainty. On the other hand, stochastic scheduling deals with problems
when at least one of these parameters is not known with certainty. Scheduling
under stochasticity is relatively more complex and difficult than its deterministic
counterpart.

1.3 Modeling Uncertainty in Scheduling

As stated earlier, uncertainty has a major impact on scheduling decisions.
Conventionally, in stochastic scheduling, the uncertain or variable schedul-
ing parameters are modeled as random variables, and researchers endeavor to
optimize a performance measure of interest that is suitable to the problem at
hand. In a majority of the work, the means and variances or the distributions of
the random variables are assumed to be known a priori. The ultimate goal of
the stochastic analysis is then to find the sequence that has the “best” statistical
distribution. Knowing such a distribution will enable the management to plan
for capacity and quote delivery dates in a manner that achieves set target service
levels and higher customer satisfaction. However, finding the distribution of a
scheduling criterion is extremely complex and, at times, practically impossible.
Hence, researchers resort to more modest and practically viable criteria. The
objective could then be to optimize some function of the performance measure
of interest. The performance measure is also a random variable because it is a
function of the input variables, which are given to be random. Predominantly,
this function of the output performance measure is its expectation: that is, the
goal is to optimize (minimize or maximize) the expectation of the performance
measure.

The reason for such an approach can be surmised easily from the fact that
computing or formulating the expectation function is relatively easier and less
complex than computing or formulating any other function of the random vari-
able, for example, its variance. In addition, optimization becomes arduous and
may even become impossible with the incorporation of the variance function.
Furthermore, determining the variance of a performance measure is highly
complicated and laborious and is not straightforward for most of the commonly
used performance measures (e.g., makespan, tardiness,) in scheduling. Hence,
a preponderance of the work in stochastic scheduling has dealt with optimizing
the expected value of a performance measure. To cite a simple example, while
scheduling jobs with random processing times on a single machine with comple-
tion time as the performance measure, the predominant motive is to minimize
the total expected completion time of all the jobs. By focusing only on the
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1.4 Significance of Variance in Scheduling

expected value and ignoring the variance of the objective, the scheduling prob-
lem becomes purely deterministic, and the significant ramifications of schedule
variability are neglected. However, in many practical cases, a scheduler would
prefer to have a stable schedule with minimum variance over a schedule that
has lower expected value and unknown (and possibly higher) variance.

1.4 Significance of Variance in Scheduling

As mentioned earlier, it is important to consider the issue of the variance of
a performance measure in scheduling problems. To illustrate the significance
of variance by means of a very simple example, consider four jobs waiting to
be processed on a single machine with the objective of minimizing the total
completion time (total flow time). The job processing times (in some specified
units) are random with known means and variances, as given in Table 1.1.

Conventionally, the approach in tackling this problem would be to min-
imize the total expected completion time by sequencing the jobs using the
shortest expected processing time (SEPT) policy. Hence the optimal SEPT
sequence is 3-4-1-2. If we let C; be the completion time of job j, then the result-
ing expectation and variance of the total completion time are E [Z C]-] =256
and Var [} Gj] = 357.

However, by scheduling the jobs alternatively, say, in the 4-3-1-2 sequence,
we have E [} Cj] = 258 and Var [Y_ C;] = 217. Schedule 2 possesses a slightly
higher expected value but has a considerably lower variance than the SEPT
schedule. This is illustrated in Figure 1.1, assuming that ) C; for the two
schedules follow a normal distribution.

If the manufacturer prefers to deliver all the jobs by a particular date, say,
d = 280, we then can analyze the probability with which the deadline will be
met using the two schedules in Figure 1.1:

Schedule 1 (SEPT schedule): 11 = 256 and 012 = 357
Pr[" G =280] = PriZ = 1.272] = 0.898 = 89.8%
Schedule 2: py = 258 and o5 = 217
Pr[) G = 280] = PriZ < 1.493] = 09324 = 93.24%
(Z is the standard normal variable with mean 0 and variance 1.)

Table 1.1. Total Completion Time Example

N 1 2 3 4
w 35 40 20 22
o2 8 5 20 0
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4 Introduction

d = Preferred completion time of all jobs

f(t)
SEPT schedule

~v

Figure 1.1. Representation of normally distributed completion time variables.

The probability of meeting the deadline is higher if the second schedule is
employed. Apparently, it becomes imperative to determine a sequence that is
“good” in terms of both expectation and variance. We would not have been able
to identify Schedule 2, which, in fact, turned out to be practically better, had we
not included the variance and, instead, had focused only on the expectation.

Soroush and Fredenhall (1984) recognized the importance of consid-
ering both mean and variance in scheduling while studying the impact of
random processing times on the earliness and tardiness costs for schedul-
ing jobs on a single machine. The significance of variance is not necessarily
confined to production systems because it has been addressed in the con-
text of other fields as well, such as telecommunication networks (Shayman
and Gaucherand, 2001), financial investment decision problems (Chue and
Nagasawa, 1999), and media planning/selection (de Kluyver, 1980). In commu-
nication networks, sequential testing is the process of identifying the defective
component from a set of components that is attributed as a root cause of a
failure. There is a random cost associated with the testing of each component,
and traditionally, the objective has been to find a sequence that minimizes
the average (or expected) sum of testing costs. Shayman and Gaucherand
(2001) assert that the network scheduler should use a risk-sensitive optimal-
ity criterion to correctly model the system by taking into consideration the
risk factor associated with the variance of the total cost. In optimal invest-
ment decision problems, the most desirable objective for a decision maker
is to maximize the expected profit resulting from the investment as well as
minimize the investment risk (variation in profit). In media scheduling prob-
lems, the objective is to select and schedule different media options that
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1.5 Multiobjective or Multicriteria Stochastic Scheduling 5

would maximize the return (e.g., gross profit, gross audience) given a set of
media options, budget, and other relevant data. In addition, it is necessary
to recognize the effect of variance and control schedule variance by incor-
porating an effective risk-return analysis (de Kluyver, 1980; de Kluyver and
Baird, 1984).

1.5 Multiobjective or Multicriteria Stochastic Scheduling

Multiobjective or multicriteria optimization, especially in the field of schedul-
ing, has always been an interesting and challenging topic for researchers. A
scheduler’s endeavor, from a practical point of view, is to optimize one or
more objectives of interest simultaneously and achieve a trade-off solution,
which is commonly referred to as a Pareto-optimal solution. The solution to
a multiobjective optimization problem is considered to be Pareto-optimal if
there are no other solutions that are better in satisfying all the objectives simul-
taneously. That is, there can be other solutions that are better in satisfying one
or several objectives, but they must be worse than the Pareto-optimal solution
in satisfying the remaining objectives.

Deterministic multiobjective scheduling has been addressed rather exten-
sively in the literature, and some of the work reported can be found in
Wassenhove and Gelders (1980), Lin (1983), Nelson et al. (1986), Daniels and
Chambers (1990), Sarin and Hariharan (2000), and Sarin and Prakash (2004),
among many others. T’Kindt and Billaut (2005) have recently edited a special
issue of the European Journal of Operational Research devoted to this topic.

On the stochastic front, Forst (1995) addressed the problem of minimiz-
ing the sum of the expected total weighted tardiness and the expected total
weighted flow time for the single-machine and m-machine flow-shop schedul-
ing problems. He proved that an optimal sequence is obtained by sequencing
the jobs in increasing stochastic order of their processing times. The job pro-
cessing times are assumed to be independent random variables, and the jobs
have a common random due date. Lin and Lee (1995) considered a single-
machine scheduling problem with known distributions of random processing
times and due dates. The objective was to determine a schedule that mini-
mized a secondary criterion subject to a primary criterion that was held at
its best value. They formulated three different models with completion times
and lateness-related bicriteria objectives, and they provided algorithms for
obtaining optimal solutions.

Few studies have been devoted to the stochastic analysis of a sched-
ule as compared with its deterministic counterpart. Liu et al. (1992) dealt
with a discounted Markov decision model to determine a schedule with opti-
mal expectation and variance of a criterion. They discussed the difficulties
involved in minimizing variance by Markovian models. They also formulated
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6 Introduction

a multiobjective nonlinear programming problem and presented an algorithm
for determining a Pareto-optimal solution.

Lu et al. (1994) addressed the problem of reducing the mean and variance
of cycle times in semiconductor manufacturing environments, which feature
the characteristic reentrant process flows. In reentrant flows, lots repeatedly
return to the same service stations for further processing at different stages
of their production. Lu et al. introduce a new class of scheduling policies,
called fluctuation smoothing policies, that achieve the best mean and variance
of the cycle time. The effectiveness of these policies was demonstrated via
simulation modeling of two semiconductor manufacturing plants. Kumar and
Kumar (1994), subsequently, established through their work that these policies
are stable for all stochastic reentrant lines under certain conditions.

It would be germane at this juncture to mull over the fact that the multiple
objectives that the researchers considered in stochastic multicriteria scheduling
are related predominantly to completion time and tardiness. From a problem-
modeling perspective, the different scheduling parameters, viz., job processing
times, due dates, and so on, were primarily modeled as random variables with
known distributions. The performance measures of interest, such as the total
flow time or tardiness, which are in turn random variables and a function of
the random variables, were optimized. More often than not, this function is the
expectation. This seemed valid enough because consideration of other func-
tions, such as the variance of completion time or lateness, would make the
problem enormously complex and difficult to solve.

1.6 Variance of the Performance Measure: Other
Production Systems

As we strive to understand the importance of variance from a scheduling per-
spective, it is also apposite to survey the variance-related research in other
production control systems. This section briefly reviews the work done in com-
puting the variance of the output measure in serial production lines operated
using CONWIP and other systems. There is an abundance of information in
this domain, and only an illustrative review is provided to underline the fact
that variance is indeed a parameter worthy of consideration.

1.6.1 CONWIP Systems

A CONWIP line, or constant work-in-process line, is a pull-based production
system proposed by Spearman et al. (1990) (Figure 1.2). The output measures
ina CONWIP line are, predominantly, throughput [or time between departures
(TBD)] and flow time. Considerable research has been done on CONWIP sys-
tems to study and analyze the mean and variance of these measures. Spearman
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Figure 1.2. CONWIP schematic.

and Hopp (1991) developed an expression to estimate the throughput of a
CONWIP manufacturing line subject to machine failures. They computed the
throughput and average cycle time as a function of the work-in-progress (WIP)
level.

In a subsequent paper, Duenyas et al. (1993) derived an approximation for
the variance of the throughput of a CONWIP line with deterministic processing
and random outages. Dar-el et al. (1998) focused on a CONWIP line to develop
estimates for four important performance measures: the means and variances
of the TBD and flow time. TBD is the inverse of the throughput rate.

1.6.2 Production Lines

It has been shown that the distribution of the output from a production line
is asymptotically normal as a result of the central limit theorem. Hence, a
majority of the work dealing with uncertain production lines, owing to ran-
dom processing times or unreliable machines, had striven only to determine
the expectation and variance of the output performance measure of interest.
Knowing the mean and variance of the output gives the asymptotic distribution
of the throughput, which could be used to derive other performance mea-
sures (e.g., meeting a customer due date) based on the probability of other
events.

Hendricks (1992) analyzed the mean and variance of the output process of
a serial production line of N machines with exponential processing time distri-
butions and finite buffer capacities. Analytic expressions for the interdeparture
distribution and the correlation structure of the output process were developed
using a continuous-time Markov chain model.

Tan (1997) developed a closed-form expression for the variance of the
throughput of an N-station production line with no intermediate buffers and
time-dependent failures. Time-to-failure and time-to-repair distributions were
assumed to be exponential, and the variance of the throughput was deter-
mined by modeling the process as an irreducible recurrent Markov process.
In a subsequent paper, Tan (2000) determined the variance of the throughput
of a production line with finite buffers by modeling the line as a discrete-time
Markov chain.
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8 Introduction

1.7 Processing Time Variance in Scheduling

Variation in the processing times is a major factor or cause of uncertainty in
scheduling, and the impact of variation in processing times on the efficiency
of scheduling has been a subject of discussion in the literature for a long time.
McKay et al. (1988) pointed out that the primary reason for poor applica-
bility of scheduling theory in practice is its inability to properly account for
extreme variations in processing times. This is primarily due to the ubiquitous
attempt to use deterministic models in practical situations, which are highly
stochastic. In the world of agile and lean manufacturing, effective scheduling
under uncertainty has become a survival necessity for companies to meet com-
mitted shipping dates and effective utilization of available resources. Hence,
it becomes imperative to devise the right scheduling strategies to employ in
practice.

Dodin (1996) contends that the pseudodeterministic sequence that is
obtained by sequencing tasks when all the activities are assumed to take their
expected times does not fully reflect the goals of stochastic analysis of a sched-
ule. Dodin further suggests using an alternative sequence determined using
a ranking system based on optimality indices (Ols), defined as their respec-
tive probabilities of being the best. The OlIs are computed using the strong
dominance properties of distributions. Dodin conducted extensive simula-
tions to analyze and compare the sequences obtained by the preceding two
methods in order to determine which performs best. However, the results
do not favor one method over the other and remain inconclusive. Portuo-
gal and Trietsh (1998) also agreed with Dodin in stating that minimizing the
expectation alone is not good enough for the scheduler. They introduced and
defined two new sequences called stochastically smallest and almost surely
smallest sequences. They analyzed these sequences along with Dodin’s two
sequences, under different scenarios, to find the sequence with the best distri-
bution. They concluded that stochastically smallest and almost surely smallest
should always be selected whenever they exist. However, stochastically small-
est and almost surely smallest sequences do not always exist in practice, and
even if they do exist, determining them is an arduous task. They argued that
Dodin’s sequence based on Ols does not take variability into account and sug-
gested that a variance-reduction objective should be considered explicitly to
attain optimal service levels while retaining the expected completion time.

Ayhan and Olsen (2000) considered scheduling on a single machine
(server) that processes a number of different classes of items. They proposed
two heuristic procedures for scheduling on such a multiclass single server
that minimize the throughput time variance and the outer percentiles of the
throughput time.

© in this web service Cambridge University Press www.cambridge.org



http://www.cambridge.org/9780521518512
http://www.cambridge.org
http://www.cambridge.org

Cambridge University Press

978-0-521-51851-2 - Stochastic Scheduling

Subhash C. Sarin, Balaji Nagarajan and Lingrui Liao
Excerpt

More information

1.8 Analytic Evaluation of Expectation and Variance of a Performance Measure 9

1.8 Analytic Evaluation of Expectation and Variance of a
Performance Measure

In addition to these observations, a telling inference that can be made is that
analytic expressions for the expectation and variance of simpler performance
measures such as the total completion time on a single machine can be read-
ily formulated and computed, but expressions for other complex measures
related to tardiness are relatively complex and not as straightforward to evalu-
ate. This task is even harder for measures related to makespan in multimachine
scheduling environments such as parallel machines, flow shops, or job shops.
Besides, no comprehensive work is reported in the literature that strives to
address this issue. Hence, our primary motive in this book is to present a com-
prehensive analysis in order to devise methodologies and derive closed-form
expressions (wherever possible) to determine the expectation and variance
of various performance measures for different scheduling environments. The
scheduling environments considered in our analysis include

Scheduling on a single machine
Permutation flow shops with unlimited intermediate storage
Job shops with unlimited intermediate storage

Bl

Scheduling on identical machines in parallel.

This analysis is contingent on the facts that the schedule is given a
priori and that it is necessary to ascertain the expectation and variance of the
given performance measure for that given schedule. The position of each job
is, therefore, known with certainty from the schedule. The randomness in the
scheduling process is due to variable processing times with known means and
variances. All other parameters, such as the job due dates and weights, are
assumed to be deterministic. In some cases, it might also be necessary to know
the processing time distributions, and those instances are cited appropriately.
Our interest, then, is to develop analytic expressions or methodologies to com-
pute the parameters under consideration, viz., expectation and variance of the
objective function value. The analysis does not involve optimization, and it is a
vital exercise in modeling the performance of the scheduling system. However,
it is worth mentioning that this endeavor will only trigger and enable variance
considerations in schedule optimization. This knowledge would provide valu-
able insights in improving the performance of a schedule. A scheduler would
be in a better position to base his or her decisions knowing the variability of
the schedule and appropriately striking a balance between the expected value
and variance. In addition, these expressions and methodologies can be incor-
porated in various scheduling algorithms (and available software packages) to
determine efficient schedules in terms of both the expectation and variance.
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10 Introduction

The different models considered for our analysis include

1. Single-machine models. The different performance measures considered
for the single-machine case can be classified under two different categories,
namely,

a. Completion-time-based measures

b. Tardiness-based measures.
The various completion-time-based measures are

a. Total completion time (total flow time)

b. Total weighted completion time

c. Total weighted discounted completion time.
The various tardiness-based measures are

a. Total tardiness

Total weighted tardiness

Total number of tardy jobs

Total weighted number of tardy jobs

o e T

Mean lateness
f. Maximum lateness.

2. Parallel-machine models. For parallel machines, both preemption and
no-preemption cases are considered. The performance measures are
makespan and total completion time for the no-preemption case, and only
makespan for the preemption case.

3. Flow shops. The objective is the makespan of a permutation flow shop with
unlimited intermediate storage.

4. Job shops. The objective is to evaluate the makespan for a classic job shop
with unlimited intermediate storage.

However, before we present our work, we would like to study and under-
stand in detail the available literature in the field of stochastic scheduling, where
researchers have attempted to consider both expectation and variance in their
analyses. Our focus is only on the randomness owing to processing time uncer-
tainty, which, as mentioned earlier, is a significant cause of stochasticity in
scheduling.

1.9 Organization of the Book

The organization of this book is as follows: In this introductory chapter we have
focused on the impact of uncertainty in scheduling and the need for efficient
modeling of stochastic scheduling problems, as well as the need to devise effec-
tive scheduling strategies to counter the impact of uncertainty (or variability).
We have specifically highlighted the prevalence of variability in job process-
ing times and elicited the issue of neglecting variance in schedule optimization
and the significance of considering variance. The need for a comprehensive
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